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Abstract—High-resolution wide-swath (HRWS) imaging with space-
borne synthetic aperture radar (SAR) can be achieved by using az-
imuth displacement phase center antenna (DPCA) technique. How-
ever, it will consequently leads to extremely high data rate on satellite
downlink system. A novel sparse sampling scheme based on compressed
sensing (CS) theory for azimuth DPCA SAR was proposed, by which
only a small proportion of radar echoes are utilized for imaging to re-
duce data rate. The corresponding image formation algorithm for the
proposed scheme was presented in the paper. The SAR echo signal
of each channel can be reconstructed with high probability by using
orthogonal matching pursuit (OMP) algorithm in Doppler frequency
domain. The reconstructed echo signals of each channel are jointly
processed by means of spectrum reconstructing filter for compensat-
ing Doppler spectrum aliasing resulting from non-uniform sampling in
azimuth direction. The high quality SAR image can be obtained by us-
ing chirp scaling algorithm. The effectiveness of the proposed approach
was validated by computer simulations using both point targets and
distributed targets.

1. INTRODUCTION

The increasing demands on high-resolution wide-swath (HRWS)
spaceborne synthetic aperture radar (SAR) are arising among several
applications, e.g., ocean surveillance, disaster monitoring, etc. [1–
5]. High-resolution and wide-swath are contradictions with the
conventional single-channel spaceborne SAR systems [6–9]. But, it can
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be mitigated by using azimuth Displacement Phase Center Antenna
(DPCA) technique, if azimuth spectrum aliasing in case of non-
DPCA condition is accurately compensated [6–8]. DPCA has been
successfully applied in the advanced spaceborne SAR systems, e.g.,
RADARSAT-II and TerraSAR-X. However, the multi-channel receivers
in DPCA lead to huge data volume, which challenges both on-board
storage and downlink subsystem of the SAR satellite.

Recently, Donoho [10] proposed a new theory of compressed
sensing (CS). The basic principle of CS is to reduce the number of
measurements lower than the limitation imposed by Nyquist theory, if
it is known that a signal has a sparse representation in some transform
domain [10–13]. Considering SAR image is a map of the spatial
distribution of the reflectivity of stationary targets, many SAR images
are sparse or compressible under a certain basis. Some researchers
applied CS theory on imaging radar, including SAR and ISAR [14–
19]. Baraniuk and Steeghs [17] proposed a novel compressive radar
receiver based on CS to reduce A/D converter rate at radar receiver.
The signals were reconstructed by means of orthogonal matching
pursuit (OMP) greedy algorithm [20]. Moreover, Varshney et al. [18]
studied a reduced set of randomly samples to reduce the amount
of data samples collected at the radar receiver, and employed the
regularized OMP (ROMP) to reconstruct SAR image [18]. Patel et
al. [19] investigated the sparse signal representation from complete
dictionaries [19]. Most recent studies on implementation of CS based
SAR techniques assumed the radar targets in the scene are sparse.
However, the approaches discussed in above literatures [14–19] only
concentrated on the application of CS theory for conventional single-
channel SAR systems, which cannot be directly applied to azimuth
DPCA SAR systems without modification on azimuth spectrum
aliasing compensation.

In order to solve such problem, we developed a new approach
for spaceborne DPCA SAR based on CS theory in this paper.
The compressibility of the echo signal in azimuth time domain was
investigated, to make the echo signal sparse in Fourier domain via
sparse processing. Then the random Gaussian matrix was utilized as
sampling matrix. A small proportion of SAR echoes are randomly
collected at sub-Nyquist-rate in azimuth direction among the multi-
channel receivers in DPCA, which significantly reduces downlink data
rate. Then, the original fully-sampled signal can be reconstructed with
OMP algorithm [20] in Doppler frequency domain, and the Doppler
spectrum can be reconstructed by means of conventional reconstruction
filter. The traditional chirp scaling image formation algorithm was
employed in azimuth direction without losing main information of
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sparse targets (e.g., ships in the ocean).
The remainder of this paper is organized as follows. In Section 2,

the basic principle of CS was introduced. In Section 3, the azimuth
DPCA SAR is briefly reviewed. In Section 4, a novel sparse
sampling scheme based on CS theory for azimuth DPCA SAR, namely
CS-HRWS SAR, is proposed. The corresponding image formation
algorithm for the proposed CS-HRWS SAR scheme is presented in
Section 5. In order to validate the proposed approach, simulation
experiments with both point targets and distributed targets were
carried out in Section 6. Finally, the conclusions and discussions are
presented in Section 7.

2. COMPRESSED SENSING PRINCIPLE

Compressed sensing (CS) is a newly developed theory which enables
the reconstruction of sparse signal by projecting high dimensional
signal on a lower dimensional space [10]. The signal can be recovered
with high probability using CS, if the signal is compressible or sparse,
which means only small number of samples are required to reconstruct
original signal within certain error bound. Sparsity can be defined
as ratio of non-zero elements to total number of elements in a signal
in time or spatial domain. In a transform domain, it is defined as
ratio of number of non-zero coefficients to total number of coefficients
required to reconstruct the original signal. Higher sparsity level will
lead to less number of samples used for reconstructing the original
signal. According to CS theory, the number of measurements can be
much smaller than the number of Nyquist-rate samples [12].

Consider a finite discrete-time signal vector s ∈ RN is K-sparse
under a certain orthogonal basis Ψ ∈ CN×N , and the sparse signal can
be expressed as:

x = Ψs (1)

where ‖x‖0 = K ¿ N , ‖‖0 denotes l0 norm. Vector x is sparse
representation of original signal vector s in Ψ domain. In fact, under
CS theory, final observation is not in Ψ domain, but is a projection of
s onto a random M × N measurement matrix Φ = [φ1, φ2, . . . , φN ],
with M < N . It makes sense that only M samples of signal s need to
be measured instead of N samples. The measurements signal y ∈ RM

is described as:
y = Φs = ΦΨHx = Θx (2)

where Θ = ΦΨ is a M ×N matrix and ΨH is transpose matrix of Ψ.
The inverse problem of solving Equation (2) is an ill-posed problem,
and the original signal s cannot be directly measured by M observation
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values. However, it is possible to recover the sparse signal via CS when
measurement matrix Φ and vector x satisfies the restricted isometry
property (RIP), which requires that:

1− δk ≤ ‖Θx‖2
2

‖x‖2
2

≤ 1− δk (3)

where δk ∈ (0, 1). The RIP is closely related to an incoherency
property. It is proved that the random matrix performs well [10]. If
the number of measurements M ≥ K log(N/K), the K-sparse signal s
can be exactly reconstructed with high probability [12].

When Φ satisfies RIP, the reconstruction is achieved by estimation
via a convex optimization problem based on l1 norm:

min ‖x‖1 s.t. y = Θx (4)

Current reconstruction method includes greedy algorithms such
as basic pursuit (BP), orthogonal matching pursuit (OMP) and
regularized orthogonal matching pursuit (ROMP), etc. [18].

3. SPACEBORNE AZIMUTH DPCA SAR

Spaceborne azimuth DPCA technique is an effective approach for
implementation of high-resolution wide-swath SAR imaging. Fig. 1
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i
d

Figure 1. Azimuth multi-channel SAR geometry.
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illustrates the geometry of spaceborne azimuth DPCA SAR, where
the whole antenna transmits radar pulses and L sub-aperture antennas
simultaneously receive the scattered echo signals from the illuminated
targets. For the i-th receiver separated by distance di from the antenna
phase center, the echo signal can be written as:

S(i)(t, τ) = σWa(t) exp
{
−j

2π

λ
(R(t) + Ri(t))

}

exp

{
−jπb

[
τ−R(t)+Ri(t)

c

]2}
=σWa(t)hsi(t)hsi(τ), i=1, 2, . . . , L (5)

where σ is backscatter coefficient, Wa (t) is antenna pattern, t is
azimuth time, τ is range time, hsi (t) and hsi (τ) denote azimuth and
range impulse response function, respectively; λ denotes wavelength,
R (t) denotes the slant range from the transmitter to the scatter, Ri (t)
denotes the slant range of the i-th receiver.

The echo data sample received at the i-th receiver can be written
in digital signal form as:

S(i)(m,n)=σWa(m/fp)hsi(m/fp)hsi(n/fs), 1≤m≤Na, 1≤n≤Nr (6)

where t = (m−Na/2)/fp, τ = (n−Nr/2)/fs, m = 1, 2, . . . , Na,
n = 1, 2, . . . , Nr.

For simplification, S(i) (m, n) can be rewritten in array format,
which is given by:

S(i)
Na×Nr

=




s
(i)
11 s

(i)
12 . . . s

(i)
1Nr

s
(i)
21 s

(i)
22 . . . s

(i)
2Nr

...
...

...
...

s
(i)
Na1 s

(i)
Na2 . . . s

(i)
NaNr



=
[
S(i)

1 S(i)
2 . . . S(i)

Nr

]
, i=1, 2, . . . , L (7)

where S(i)
Na×Nr

denotes the echo data array received at the i-th receiver

with size of Na×Nr, S(i)
n = [s(i)

1n, s
(i)
2n, . . . s

(i)
Nan]T denotes azimuth echo

signal vector with size of Na × 1 at a given range cell.
For each transmitted pulse, the multi-channel receivers in DPCA

simultaneously receive L records of radar echoes. Therefore, the radar
can operate at lower pulse repetition frequency (PRF), which is one
over L of the required PRF, without increasing azimuth ambiguities.
The echo signals by multiple receivers can be combined into one data
array with the required PRF. Such processing is called reconstruction
filter, which allows for unambiguous reconstruction of original signal
from aliased spectra with the L representations [6].
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4. SPARSE SAMPLING SCHEME FOR CS-HRWS SAR

A novel sparse sampling scheme for azimuth DPCA SAR based on CS
theory is proposed in this section, to implement lower data rate for
spaceborne CS-HRWS SAR system.

4.1. Azimuth Time Domain Sparse Processing

An important prerequisite of CS sparse reconstruction is that the
signal must be sparse or compressible in certain representations [21, 22].
However, the echo data are not sparse in azimuth direction without
any disposing. To enhance the sparsity of original signal in azimuth
direction, the pre-processing of coarse focusing should be employed in
azimuth direction, by means of multiplying the original signal with a
reference phase term in each column, shown as follows:

P(i) =
[
P(i)

1 P(i)
2 . . . P(i)

Nr

]
, i = 1, 2, . . . , L (8)

and
P(i)

n = S(i)
n · hsi, n = 1, 2, . . . , Nr,

where P(i)
n (n = 1, 2, . . . , Nr) is column vector of matrix P(i), which

is the signal after spare processing in azimuth direction of the i-th
channel. hsi = [η1, η2, . . . , ηNa ]T denotes the column vector of the
reference phase term, where ηm = exp{j 2π

λ [R(m/fp) + Ri(m/fp)]},
m = 1, 2, . . . , Na.

Most of elements are close to the same value after sparse processed
in azimuth time domain, and the processed signal of each channel can
be represented with the small number of significant coefficients under
Fourier basis, i.e., the signal becomes sparse in azimuth frequency
domain.

4.2. Azimuth Frequency Domain Sparse Representation

The processed azimuth echo signal of each channel is then projected
into azimuth frequency domain. Fourier basis was chosen as the
transform matrix Ψ, the definition of Ψ is given by:

Ψ =
1√
Na




1 1 . . . 1
1 exp

{
−j2π
Na

}
. . . exp

{−j2(Na−1)π
Na

}

...
... . . .

...
1 exp

{−j2(Na−1)π
Na

}
. . . exp

{−j2(Na−1)2π
Na

}




(9)
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where Na is the length of echo signal in azimuth direction, Ψ satisfies
orthogonality Ψ = ΨH . The sparse signal of each channel in Ψ domain
can be written as:

P(i) = ΨHX(i) = ΨH
[
X(i)

1 X(i)
2 . . . X(i)

Nr

]

=
[
P(i)

1 P(i)
2 . . . P(i)

Nr

]
, i = 1, 2, . . . , L (10)

where ΨH denotes transposed matrix of Ψ, X(i)
n (n = 1, 2, . . . , Nr) is

sparse representation of P(i) in Ψ domain with size Na × 1, and has
K strongest nonzero coefficients with K ¿ Na where K denotes the
number of targets in azimuth direction.

4.3. Sparse Sampling in Azimuth Time Domain

In order to use CS, a linear sampling model of SAR is required.
Here, a random Gaussian matrix was selected as the sampling matrix
since it would satisfy the RIP with high probability [12]. The linear
measurement result can be written as:

Y(i) = ΦP(i) = Φ
{

Re
(
P(i)

)
, Im

(
P(i)

)}
, i = 1, 2, . . . , L (11)

where Re (P(i)) and Im (P(i)) are the real and imaginary part of P(i)

respectively. Y(i) is linear measurement result with size M × 1.
Putting (10) into (11) we can derive:

Y(i) =ΦP(i) =ΦΨHX(i) =Θ
{

Re
(
X(i)

)
, Im

(
X(i)

)}
, i=1 . . . L (12)

where Re (X(i)) and Im (X(i)) are the real and imaginary part of X(i)

respectively.

5. SPACEBORNE CS-HRWS SAR IMAGE FORMATION

5.1. Sparse Reconstruction in Azimuth Frequency Domain

According to Equations (6)–(12) the frame of CS is constructed, and
the reconstruction is achieved by means of estimation through a convex
optimization problem based on l1 norm, shown as follows:

min
∥∥∥X̂(i)

n

∥∥∥
1

s.t. Y(i) = ΘX̂(i), i = 1, 2, . . . , L (13)

OMP algorithm is adopted to solve Equation (13) and then the sparse
signal of X̂(i)

n (n = 1, 2, . . . , Nr) is derived from frequency domain.
The OMP algorithm built up a solution element by element which
based on the simple fact that the element was strongly correlated with
signal’s residual.
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5.2. Phase Compensation in Azimuth Frequency Domain

In order to compensate for the eliminated phase term in (8), the
reconstructed signal X̂(i)

n (n = 1, 2, . . . , Nr) should be convolved with
reference function h∗si in frequency domain. The recovered original
signal can be given as:

P̂(i)
n = X̂(i)

n ⊗ F (h∗si) , i = 1, 2, . . . , L, n = 1, 2, . . . , Nr (14)

where h∗si denotes conjugate of hsi, P̂(i)
n is the recovered signal and

F (·) denotes Fourier transform.

5.3. Spectrum Reconstruction in Azimuth Frequency
Domain

The spectrum reconstruction algorithm is based on the theory of
combining L independent representations of each echo signal; each
channel samples the echo with 1/L the Nyquist frequency [6]. This
allows the unambiguous reconstruction of the original signal from the
aliased spectra of the L representative multiple radar echoes. The
echo signals collected at different spatial positions are jointly processed
through a filter which is shifted by integer multiples of the PRF in the
frequency domain shown as follows:

Ŝn = P̂(i)
n ·H(f), n = 1, 2, . . . , Nr, i = 1, 2, . . . , L (15)

where

H(f)=




exp
{
−j d1

2v2πfa

}
exp

{
−j d2

2v2πfa

}

exp
{
−j d1

2v (2πfa + fp)
}

exp
{
−j d2

2v (2πfa + fp)
}

...
...

exp
{
−j d1

2v [2πfa + (L− 1)fp]
}

exp
{
−j d2

2v [2πfa + (L− 1)fp]
}

. . . exp
{
−j dL

2v 2πfa

}

. . . exp
{
−j dL

2v (2πfa + fp)
}

. . .
...

. . . exp
{
−j dL

2v [2πfa + (L− 1)fp]
}




−1

,

By using the reconstruct filter, the spectrum of all the azimuth signals
is reconstructed without aliasing.



Progress In Electromagnetics Research, Vol. 125, 2012 535

5.4. SAR Image Formation Processing

The chirp scaling imaging algorithm has matured. Theoretically, it is
possible to adopt the multi-channel SAR signal model for a complete
reconstruction of the scene reflectivity. Due to the reconstructed
azimuth signal is already in range Doppler domain, the main steps
of the chirp scaling algorithm includes: applying chirp scaling; Range
FFT which transform the reconstructed signal into two-dimensional
frequency domain; a phase multiply applies range compression; Range
IFFT which transform the signal back to the range Doppler domain;
a phase multiply is performed to apply azimuth compression with a
range-varying matched filter; the final step is an azimuth IFFT to
transform the compressed data back to two-dimensional time domain,
which is the SAR image domain. The whole processing flowchart is
shown in Fig. 2.

6. SIMULATION AND DISCUSSIONS

To evaluate the validity of the proposed CS-HRWS SAR imaging
algorithm, the computer simulation experiments were carried out on
nine point targets array with constant scattering coefficients. The
parameters for spaceborne CS-HRWS SAR are listed in Table 1.

According to the given parameters, the SAR system has single
transmit phase center and three receive phase centers. The PRF of

Table 1. Simulation parameters.

Parameters Values
Subaperture Number N 3

Wavelength λ (m) 0.03
Altitude H (km) 495

Slant Range R (km) 700
Antenna Length L (m) 15
Band width Br (MHz) 120

Sampling Rate fs (MHz) 144
Sparse Sampling Rate M 1/8
Subaperture Length d (m) 5

Pulse Width Tr (µs) 20
Satellite Velocity v (m/s) 7500

Pulse Repeat Frequency (PRF) fp (Hz) 1200
Incidence Angle θ (deg) 45
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Figure 2. Flowchart of spaceborne CS-HRWS SAR processing.

the spaceborne CS-HRWS SAR is 1200 Hz, with the corresponding
swath-width is 75 km. The reconstructed Doppler bandwidth is near
3000Hz, with corresponding azimuth resolution of 2.5m. The original
data rate of the spaceborne HRWS SAR system is 1451 Mbps, which
is difficult for satellite downlink subsystem.

The radar echoes are simulated based on Equation (5). And, the
raw echo signals were sparsely processed according to Equation (8) in
the first step, and then the processed signals are projected into Fourier
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Figure 3. Sparse processing in azimuth time domain.

Figure 4. Imaging result of the
proposed CS-HRWS SAR with
12.5% sampling.

Figure 5. Imaging result of
conventional DPCA SAR with
full samples of raw data.

basis (see Fig. 3). Fig. 3 illustrates that the echo signal after sparse
processing shows distinct sparsity in azimuth frequency domain, which
indicates the possibility of using CS theory.

Only 12.5% received echo records were randomly selected in
azimuth direction among the receiving channels. The data rate was
reduced to 181Mbps with the novel CS-HRWS scheme.

The multi-channel raw data can be reconstructed with CS theory
if the targets are sparse in certain domain. The reconstructed
SAR images of the point targets using the proposed method and
conventional method with full samples are shown in Figs. 4 and 5.
Comparing Fig. 4 with Fig. 5, it shows that the proposed CS-HRWS
SAR with 12.5% sampling rate can generate the nearly same image
quality as the conventional DPCA SAR.
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To further validate the proposed method, the imaging results
shown in Figs. 4 and 5 are quantitatively evaluated by means of
the spatial resolution, and Peak Side Lobe Ratio (PSLR) as well as
Integrated Side Lobe Ratio (ISLR) [23]. The resolution, PSLR and
the ISLR of the nine point targets simulation with the proposed CS-
HRWS SAR and conventional DPCA SAR are listed in Tables 2 and 3,
respectively.

Table 2. Evaluating results of the proposed CS-HRWS SAR with
12.5% sampling rate.

Points
Azimuth Slant Range

ρa PSLR ISLR ρgr PSLR ISLR
1 2.714 −26.026 −21.507 1.379 −25.946 −20.813
2 2.710 −26.027 −21.423 1.381 −26.473 −20.833
3 2.710 −26.017 −21.440 1.379 −25.940 −20.817
4 2.714 −26.168 −21.488 1.381 −25.972 −20.836
5 2.710 −26.138 −21.421 1.381 −26.447 −20.835
6 2.714 −26.172 −21.492 1.381 −25.931 −20.826
7 2.710 −25.956 −21.445 1.381 −25.952 −20.831
8 2.710 −25.982 −21.444 1.381 −26.474 −20.843
9 2.714 −26.013 −21.496 1.379 −25.941 −20.817

Table 3. Evaluating results of conventional DPCA SAR with full
samples of raw data.

Points
Azimuth Slant Range

ρa PSLR ISLR ρgr PSLR ISLR
1 2.710 −25.958 −21.390 1.381 −25.975 −20.831
2 2.710 −25.972 −21.396 1.381 −26.506 −20.849
3 2.710 −25.981 −21.396 1.381 −25.975 −20.828
4 2.706 −26.152 −21.409 1.381 −25.975 −20.831
5 2.706 −26.180 −21.415 1.381 −26.506 −20.849
6 2.706 −26.203 −21.416 1.381 −25.975 −20.828
7 2.706 −25.902 −21.388 1.381 −25.975 −20.831
8 2.706 −25.931 −21.394 1.381 −26.506 −20.849
9 2.706 −25.954 −21.396 1.381 −25.975 −20.823
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Figure 6. Original TerraSAR
image as distributed targets for
echo simulation.

Figure 7. Imaging result of
conventional DPCA SAR full
samples of raw data.

(a) (b)

Figure 8. Imaging result of the proposed spaceborne CS-HRWS SAR
with different azimuth sampling rate. (a) With 50% samples, (b) with
25% samples.

Comparing the image quality evolution results listed in Tables 2
and 3, we can see very small difference between the proposed
method and conventional chirp scaling method on the image quality
measurements, i.e., spatial resolution, PSLR and ISLR.

The second experiment utilized a real TerraSAR image as
distributed targets scene containing three ships in the ocean (see
Fig. 6). The imaging result according to the conventional DPCA SAR
is shown in Fig. 7. The imaging results by the proposed spaceborne
CS-HRWS SAR with different azimuth sampling rate (e.g., 50% and
25%) are shown in Fig. 8, which indicates that 25% sampling rate is still
acceptable for ocean monitoring applications. Thus, the corresponding
data rate is reduced to as low as 362 Mbps.
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7. CONCLUSIONS

Spaceborne azimuth DPCA technique is an effective approach for
implementation of HRWS SAR imaging. However, the multi-channel
receivers in DPCA lead to huge volume data, which challenges both
on-board storage and downlink subsystem of the SAR satellite. The
conventional applications of CS in SAR imaging can utilize far fewer
samples of echo signals to produce SAR images, but it also comes
along the common drawback that recovery performances is under
investigation.

In addition, direct application of CS in multiple channel SAR
system will lead to spectrum aliasing caused by non-uniform sampling.
To solve such problems, azimuth multiple channels based SAR mode,
a novel scheme for each channel data sparse sampling and processing
based on CS is proposed. The proposed method can not only reducing
the heavy burden resulting from large volume of data acquisition
and storage, but also it is possible to utilize far fewer samples in
azimuth direction to produce high-quality images. It can be applied
to spaceborne azimuth DPCA SAR systems, without changing its
acquisition scheme. It only needs modify the on-board data handling
subsystem, for dealing with the computation loads resulting from time
domain sparse processing and frequency domain sparse representation
procedures. The effectiveness of the proposed method has been proved
by simulation and evaluation results.
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