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MAGNETIC FORCE BETWEEN INCLINED CIRCULAR
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Abstract—This paper presents a new general formula for calculating
the magnetic force between inclined circular loops placed in any
desired position. This formula has been derived from the Lorentz
force equation. All mathematical procedures are completely described
to define the coil positions that lead to a relatively easy method
for calculating the magnetic force between inclined circular loops in
any desired position. The presented method is easy to understand,
numerically suitable and easily applicable for engineers and physicists.
The obtained formula is given in its simplest form from the already
existing formulas for calculating the magnetic force between inclined
circular loops. We validated the new formula through a series of
examples, which are presented here.

1. INTRODUCTION

The calculation of the inductance and magnetic force through
analytical or semi-analytical methods has received considerable
attention in recent years, and much progress has been made [1–27].
The vast majority of this attention has been given to the purely
coaxial geometries [9–25]. More recently the focus has been shifted
to calculation of the mutual inductance and magnetic force between
circular coils with lateral and angular misalignments [1–15]. Using
the powerful numerical methods, such as Finite Element Method
(FEM) and Boundary Element Method (BEM) [27, 28], it is possible
to calculate accurately and rapidly this important physical quantity.
Also, this problem can be tackled by some semi-analytical methods
that can considerably reduce the computational time and the enormous
mathematical procedures. In this paper we give a new formula of
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the magnetic force between inclined circular loops in any desired
positions. This force obtained by using the Lorentz law represents the
simplification of the magnetic force between treated coils obtained by
the Biot-Savart law and by the approach of the mutual inductance [1].
We treated the most general case using some elementary mathematical
transformations to describe coil positions in different planes. The
magnetic force has been obtained by a simple integral whose kernel
function contains some combinations of the complete elliptic integrals
of the first and second kind. The obtained new formula for the
magnetic force is very suitable for numerical treatment. The presented
formula can be easily used in the calculation of the magnetic force
between inclined circular coils of rectangular cross section using the
filament method.

2. BASIC EXPRESSIONS

Let’s take into consideration two circular loops as showed in Figure 1,
where the center of the larger circle (primary coil) of the radius RP

is placed at the plane XOY with the axis of Z along the axis of this
circle. The smaller circle (secondary coil) of the radius RS is placed in
an inclined plane (the plane x′Cy′) whose general equation is,

λ ≡ ax + by + cz + D = 0 (1)
Also, we define the center of the secondary coil in the plane λ,
C(xC , yC , zC) and a point DS on this circle, DS(x0, y0, z0). The
coordinates of the point DS can be given by the couple D1[xC −
abRS/(Ll), yC + (a2 + c2)RS/(Ll), zC − bcRS/(Ll)] or D2[xC +
abRS/(Ll), yC − (a2 + c2)RS/(Ll), zC + bcRS/(Ll)], where L = (a2 +
b2 + c2)0.5, l = (a2 + c2)0.5 [9].

Thus, we define the positions of two coils in 3D space that will
permit us to calculate all necessary parameters in the calculation of
the magnetic force between them.

For coils (see Figure 1) we define:
1) The primary coil of radius RP is placed in the plane XOY

(Z = 0) with the center at O (0, 0, 0).
An arbitrary point BP (xP , yP , zP ) of this coil has parametric

coordinates,
xP = RP cos t

yP = RP sin t

zP = 0 t ∈ (0, 2π)
(2)

2) The differential element of the primary coil is given by,

d~lP = RP

(
− sin t~i + cos t~j

)
dt, t ∈ (0, 2π) (3)
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Figure 1. Filamentary circular coils with angular and lateral
misalignment.

3) The unit vector N (the unit vector of the axis z′) at the point
C (center of the secondary coil) laying in the plane λ, is defined by,

~N = {nx, ny, nz} =
{

a

|~n| ,
b

|~n| ,
c

|~n|
}

|~n| = (
a2 + b2 + c2

) 1
2 = L

(4)

4) The unit vector between two points C and DS they are placed
in the plane λ is,

~u = {ux, uy, uz} =
{
−ab

lL
,

l

L
,− bc

lL

}

l =
(
a2 + c2

) 1
2 , L =

(
a2 + b2 + c2

) 1
2

(5)

5) We define the unit vector v as the cross product of the unit
vectors N and u as follows,

~v = ~N × ~u = {vx, vy, vz} =
{
−c

l
, 0,

a

l

}

l =
(
a2 + c2

) 1
2

(6)

6) An arbitrary point ES (xS , yS , zS) of the secondary coil has
parametric coordinates,

xS = xC + RSux cosφ + RSvx sinφ

yS = yC + RSuy cosφ + RSvy sinφ φ ∈ (0, 2π)
zS = zC + RSuz cosφ + RSvz sinφ

(7)

This is well-known the parametric equation of circle in 3D space.
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7) The differential element of the secondary coil is given by,

d~lS = RS

[
lSx

~i + lSz
~j + lSz

~k
]
dφ φ ∈ (0, 2π)

lSx = −ux sinφ + vx cosφ

lSy = −uy sinφ + vy cosφ

lSz = −uz sinφ + vz cosφ

(8)

3. CALCULATION METHOD

From the Lorentz low the magnetic force between two line elements
can be calculated by [3],

d~F = ISd~lS × ~BP

(
~lS

)
(9)

where dF is the force acting on the line element dlS due to an externally
imposed magnetic field BP (lS). Integrating Equation (9) around a
closed circuit C gives the force on the circuit due to the magnetic field
BP (lS) as,

~F = IS

∮

C

d~lS × ~BP

(
~lS

)
(10)

The magnetic field BP (lS) produced by the primary coil of the radius
RP carrying the current IP can be calculated in an arbitrary point DS

(xS , yS , zS) by,

~BP

(
~lS

)
=

µ0Ip

4π

∮

lP

d~lP × ~rSP

r3
SP

(11)

where
r2
SP = (xS − xP )2 + (yS − yP )2 + (zS − zP )2

= R2
P + x2

S + y2
S + z2

S − 2RP

√
x2

S + y2
S cos(t− γ)

cos γ =
xS√

x2
S + y2

S

, sin γ =
yS√

x2
S + y2

S

xS , yS , zS are given by (7) and dlP by (3).
µ0 = 4π × 10−7 H/m — the permeability of free space (vacuum).
Equation (11) can be written by three components as follows,

Bx(xS , yS , zS) =
µ0IP RP zS

4π

2π∫

0

cos t

r3
SP

dt



Progress In Electromagnetics Research B, Vol. 38, 2012 337

By(xS , yS , zS) =
µ0IP RP zS

4π

2π∫

0

sin t

r3
SP

dt

Bz(xS , yS , zS) =
µ0IP RP

4π

2π∫

0

[
RP −

√
x2

S + y2
S cos(t− γ)

]

r3
SP

dt

(12)

Introducing the substitution t − γ = π − 2β expression (2) can be
obtained in the form,

Bx(xS , yS , zS)=T0zS cos γ

2π∫

0

(
1− 2 cos2 β

)

∆3
dβ

By(xS , yS , zS)=T0zS sin γ

2π∫

0

(
1− 2 cos2 β

)

∆3
dβ

Bz(xS , yS , zS)=−T0

2π∫

0

(√
x2

S+y2
S−RP−2

√
x2

S+y2
S cos2 β

)

∆3
dβ

T0 =
µ0IP RP

π
[
(RP +

√
x2

S + y2
S)2 + z2

S

]3/2

∆=
√

1− k2 sin2 β

k2 =
4RP

√
x2

S + y2
S

(
RP +

√
x2

S + y2
S

)2

+ z2
S

(13)

Resolving integrals in (13) we obtained the final form of the magnetic
field in an arbitrary point DS (xS , yS , zS) produced by the primary
coil of the radius RP carrying the current IP ,

Bx(xS , yS , zS) = − µ0IP zSxSk

8π
√

RP

(
x2

S + y2
S

)5/4
L0

By(xS , yS , zS) = − µ0IP zSySk

8π
√

RP

(
x2

S + y2
S

)5/4
L0

Bz(xS , yS , zS) =
µ0IP k

8π
√

RP

(
x2

S + y2
S

)3/4
S0

(14)
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where

L0 = 2K(k)− 2− k2

1− k2
E(k)

S0 = 2
√

x2
S + y2

SK(k)−
2
√

x2
S + y2

S −
(
RP +

√
x2

S + y2
S

)
k2

1− k2
E(k)

K(k) — complete elliptic integral of the first kind [29, 30];
E(k) — complete elliptic integral of the second kind [29, 30].
Applying Equation (10) magnetic force components are,

Fx = ISRS

2π∫

0

[Bz(xS , yS , zS)lSy −By(xS , yS , zS)lSz] dφ

Fy = ISRS

2π∫

0

[Bx(xS , yS , zS)lSz −Bz(xS , yS , zS)lSx] dφ

Fz = ISRS

2π∫

0

[By(xS , yS , zS)lSx −Bx(xS , yS , zS)lSy] dφ

(15)

where Bx, By and Bz are given by (14) and lSx, lSy and lSz by (8).
After some transformations we obtain from (10) the final form of

magnetic force components,

Fx =
µ0IP ISRS

8π
√

RP

2π∫

0

Ixdφ

Fy =
µ0IP ISRS

8π
√

RP

2π∫

0

Iydφ

Fz =
µ0IP ISRS

8π
√

RP

2π∫

0

Izdφ

(16)

where

Ix =
k

(x2
S + y2

S)3/4


 zSyS√

x2
S + y2

S

L0lSz + S0lSy




=
k

(
x2

S + y2
S

)5/4

[
zSySlSzL0 +

√
x2

S + y2
SlSyS0

]
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Iy = − k
(
x2

S + y2
S

)3/4


 zSxS√

x2
S + y2

S

L0lSz + S0lSx




= − k
(
x2

S + y2
S

)5/4

[
zSxSlSzL0 +

√
x2

S + y2
SlSxS0

]

Iz =
kzSL0(

x2
S + y2

S

)5/4
[xSlSy − ySlSx]

=
k

(
x2

S + y2
S

)5/4
zS [xSlSy − ySlSx] L0

k2 =
4RP

√
x2

S + y2
S

(
RP +

√
x2

S + y2
S

)2

+ z2
S

L0 = 2K(k)− 2− k2

1− k2
E(k)

S0 = 2
√

x2
S + y2

SK(k)−
2
√

x2
S + y2

S −
(
RP +

√
x2

S + y2
S

)
k2

1− k2
E(k)

(ux, uy, uz); (vx, vy, vz); (xS , yS , zS) and (lSx, lSy, lSz) are given
by (5), (6), (7) and (8) respectively.

3.1. Special Cases

a) b = a = 0, c = 1 (The secondary coil is parallel to the plane XOY ).
Even though this case is directly covered by the general case (16) we
give the complete expressions of the magnetic force because this case
is involved in many technical applications. For this case,

xS = xC −RS sinφ lSx = − cosφ

yS = yC + RS cosφ lSy = − sinφ

zS = zC lSz = 0

Ix = − k sinφ
(
x2

S + y2
S

)3/4
S0

Iy =
k cosφ

(
x2

S + y2
S

)3/4
S0

Iz =
kzC [RS − xC sinφ− yC cosφ] L0(

x2
S + y2

S

)5/4

(17)
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k2 =
4RP

√
x2

S + y2
S

(
RP +

√
x2

S + y2
S

)2

+ z2
C

In the case of two coaxial coils (the center of the secondary coil is laying
on the Z axis, xC = yC = 0) the magnetic force components are,

Fx = 0
Fy = 0

Fz =
µ0IP ISkzC

4
√

RP RS
L0

k2 =
4RP RS

(RP + RS)2 + z2
C

(18)

b) b = c = 0, a = 1 (The secondary coil is parallel to the plane
Y OZ). This case is also directly covered by the general case (16). For
this case we have,

xS = xC lSx = 0
yS = yC + RS cosφ lSy = − sinφ

zS = zC + RS sinφ lSz = cosφ

Ix =
k

(
x2

C + y2
S

)3/4


 zSyS cosφ√

x2
C + y2

S

L0 − sinφS0




Iy = − kzSxC cosφ
(
x2

C + y2
S

)5/4
L0

Iz = −kzSxC sinφL0(
x2

C + y2
S

)5/4

k2 =
4RP

√
x2

C + y2
S

(
RP +

√
x2

C + y2
S

)2

+ z2
S

(19)

c) a = c = 0, b = 1 (The secondary coil is parallel to the plane
XOZ).

This special case is not covered by the general case (17) and it is
necessary to carefully solve it. For this special case we keep (16) with
changes,

xS = xC + RS sinφ lSx = cosφ

yS = yC lSy = 0
zS = zC + RS cosφ lSz = − sinφ
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Ix = − kzSyC sinφ
(
x2

S + y2
C

)5/4
L0

Iy = − k
(
x2

S + y2
C

)3/4


− zSxS sinφ√

x2
S + y2

S

L0 + S0 cosφ




Iz = − k cosφzSyC(
x2

S + y2
C

)5/4
L0

k2 =
4RP

√
x2

S + y2
C

(
RP +

√
x2

S + y2
C

)2

+ z2
S

(20)

4. EXAMPLES

To verify the validity of the presented formula for the magnetic force,
we present the following set of examples.
Example 1.

The center of the primary coil of the radius RP = 0.2m is O (0;
0; 0) and the center of the secondary coil of the radius RS = 0.1m is
C (xC = 0.1m; yC = 0.1m; zC = 0.1m). The secondary coil is located
in the plane x + y + z = 0.3. Calculate the magnetic force between
coils. All currents are unit.

The magnetic force obtained by [1] is,

Fx = −0.1080729656128444µN
Fy = −0.1080729656128444µN
Fz = −1.407372060313650µN
F = 1.415646724272760µN

The magnetic force obtained by (16) (Lorentz approach) is,

Fx = −0.1080729656128444µN
Fy = −0.1080729656128444µN
Fz = −1.407372060313650µN
F = 1.415646724272760µN

Example 2.
The center of the primary coil of the radius RP = 0.4 m is O (0; 0;

0) and the center of the secondary coil of the radius RS = 0.05m is C
(xC = 0.1m; yC = 0.15m; zC = 0.0m). The secondary coil is located
in the plane 3x + 2y + z = 0.6. Calculate the magnetic force between
coils. All currents are unit.
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The magnetic force obtained by [1] is,
Fx = 4.171776672650815 nN
Fy = 6.523855691357912 nN
Fz = 27.71549975211961 nN
F = 28.77695849456434 nN

The magnetic force obtained by (16) (Lorentz approach) is,
Fx = 4.171776672650815 nN
Fy = 6.523855691357912 nN
Fz = 27.71549975211961 nN
F = 28.77695849456434 nN

Example 3.
The center of the primary coil of the radius RP = 0.9m is O (0;

0; 0) and the center of the secondary coil of the radius RS = 0.6m is
C (xC = 0.3m; yC = 0.2m; zC = 0.5m). The secondary coil is located
in the plane x+ y + z = 1. Calculate the magnetic force between coils.
All currents are unit.

The magnetic force obtained by [1] is,
Fx = 0.5228604018646984µN
Fy = 0.4983356050923922µN
Fz = −0.6364927281992902µN
F = 0.9627275669635154µN

The magnetic force obtained by (16) (Lorentz approach) is,
Fx = 0.5228604018646984µN
Fy = 0.4983356050923922µN
Fz = −0.6364927281992902µN
F = 0.9627275669635154µN

Example 4.
The center of the primary coil of the radius RP = 0.005m is O (0;

0; 0) and the center of the secondary coil of the radius RS = 0.001 m is
C (xC = 0.003m; yC = 0.001m; zC = 0.0005m). The secondary coil
is located in the plane 3x + y + 2z = 0.011. Calculate the magnetic
force between coils. All currents are unit.

The magnetic force obtained by [1] is,
Fx = 0.1370009982312461µN
Fy = 0.04566699941041536µN
Fy = 0.09856738399856347µN
F = 0.1748435802076503µN
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The magnetic force obtained by (16) (Lorentz approach) is,

Fx = 0.1370009982312461µN

Fy = 0.04566699941041536µN

Fz = 0.09856738399856347µN

F = 0.1748435802076503µN

Example 5.
The center of the primary coil of the radius RP = 0.3 m is O (0; 0;

0) and the center of the secondary coil of the radius RS = 0.3m is C
(xC = 0.1m; yC = −0.3m; zC = 0.2m). The secondary coil is located
in the plane x − 2y + z = 0.9. Calculate the magnetic force between
coils. All currents are unit but of the opposite sign.

The magnetic force obtained by [1] is,

Fx = 0.2292455704933025µN

Fy = −0.5621415690326643µN

Fz = −0.09249247340323912µN

F = 0.6140940749279009µN

The magnetic force obtained by (16) (Lorentz approach) is,

Fx = 0.2292455704933025µN

Fy = −0.5621415690326643µN

Fz = −0.09249247340323912µN

F = 0.6140940749279009µN

Example 6.
In the following examples we verify the validity of each special

case obtained by two different approaches.
The center of the primary coil of the radius RP = 1 m is O (0; 0;

0) and the center of the secondary coil of the radius RS = 0.5m is C
(xC = 2 m; yC = 2m; zC = 2 m). The secondary coil is located in the
plane z = 2. Coils are with parallel axes. Calculate the magnetic force
between coils. All currents are unit.

The magnetic force obtained by [1] is,

Fx = −2.745371984357346 nN

Fy = −2.745371984357346 nN

Fz = 3.509473102444032 nN

F = 5.233596862748077 nN
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The magnetic force obtained by (17) (Lorentz approach) is,

Fx = −2.745371984357346 nN
Fy = −2.745371984357346 nN
Fz = 3.509473102444032 nN
F = 5.233596862748077 nN

The special case (a = b = 0, c = 1) is directly included in the
general case (16).
Example 7.

The center of the primary coil of the radius RP = 1m is O (0;
0; 0) and the center of the secondary coil of the radius RS = 0.5 m
is C (xC = 1m; yC = 2 m; zC = 3m). The secondary coil is located
in the plane x = 1. Coils are with perpendicular axes. Calculate the
magnetic force between coils. All currents are unit.

The magnetic force obtained by [1] is,

Fx = 1.939241379554508 nN
Fy = −1.861181718234281 nN
Fz = −2.202382194552672 nN
F = 3.474930480937514 nN

The magnetic force obtained by (19) (Lorentz approach) is,

Fx = 1.939241379554508 nN
Fy = −1.861181718234281 nN
Fz = −2.202382194552672 nN
F = 3.474930480937514 nN

The special case (b = c = 0, a = 1) is directly included in the
general case (16).
Example 8.

The center of the primary coil of the radius RP = 1m is O (0;
0; 0) and the center of the secondary coil of the radius RS = 0.5m is
C (xC = 2m; yC = 2 m; zC = 2m). The secondary coil is located
in the plane y = 2. Coils are with perpendicular axes. Calculate the
magnetic force between coils. All currents are unit.

Applying directly the special case (10(a)) or (15(a)), (b = 1;
a = c = 0) in [1], the components of the magnetic force are:

Fx = −4.901398177052345 nN
Fy = −1.984872313200137 nN
Fz = −2.582265710169336 nN
F = 5.884855001411407 nN
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The magnetic force obtained by (20) (Lorentz approach) is,

Fx = −4.901398177052345 nN
Fy = −1.984872313200137 nN
Fz = −2.582265710169336 nN
F = 5.884855001411407 nN

Thus we confirmed the validity of this singular case (20).
Example 9.

In this example we calculated the restoring (radial) magnetic force
Fr and the propulsive (axial) magnetic force Fa between the primary
circular coil RP = 42.5mm and the secondary circular coil RS = 20 mm
with the axial displacement d = 3 mm. Filamentary circular coils are
with parallel axes and the distance between planes in which they are
positioned is c = 10 mm [15]. All currents are equal to 1A.

In [15] we calculated the restoring and the axial magnetic forces
for circular loops with parallel axes positioned in different planes.

For previous data we obtained,

Fr = 0.3281745285065932× 10−7 N

Fa = −3.996817851575968× 10−7 N

Applying the method here presented, the center of the primary
loop RP = 42.5mm is O (0; 0; 0) positioned in the plane z = 0
and the center of the secondary loop of the radius RS = 20 mm is
C (xC = 0.003m; yC = 0 m; zC = 0.01m) positioned in the plane
z = 10mm whose equation is defined by parameters a = 0, b = 0 and
c = 1. By the presented work the magnetic force components are,

Fx = 0.3281745285065932× 10−7 N
Fy = 0 N

Fz = −3.996817851575967× 10−7 N

All results are in an excellent agreement as expected and
the restoring and axial forces (Fr and Fa) [15] correspond to the
components Fx and Fz from this work respectively.

From previous examples we can conclude that all results obtained
by this work for calculating the magnetic force between circular loops
positioned in any desired position are in an excellent agreement with
results given in [1] that confirm the validity of all methods. If we
compare two methods presented in [1] and this one presented in
this paper obviously that the presented work here is obtained in the
simplest form. All calculations were executed using Mathematica
programming. A Mathematica implementation of previous formulas
is available from the authors on the request.
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5. CONCLUSION

In this paper, we give a new formula for calculating the magnetic force
between inclined circular loops placed in any desired positions. This
formula is derived from the Lorentz force equation. We confirmed
already obtained formulas of the magnetic force between inclined
circular loops derived by the Biot-Savart law and by the approach
of the mutual inductance. In order to use the new formula, whose
final expressions are given per (16) or per (17), (18), (19) and (20),
one needs to provide the radius of the primary and secondary coils,
the position of the center of the secondary coil (the primary coil is
assumed to be centered at origin), and the plane equation with all unit
vectors in which the secondary coil is located. With these parameters,
the problem is completely defined. All possible cases were tested with
this formula, and none of them failed. We note that our new formula is
general, very suitable and easily applicable for engineers and physicists.
In this formula, the kernels are relatively simple and expressed by
elliptic integrals of the first and second kind so that their integration
using Mathematica or Matlab programming is accurate with significant
reduced computational time.
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