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Abstract—The transmission and reflection of electromagnetic
waves at dielectric-fractal interface is studied, the fractal exhibits
quasi fractional space properties. The closed form expressions for
transmission and reflection coefficients are formulated for such an
interface. The classical results are obtained when integer dimensions,
instead of fractional dimension are inserted in the said expressions.
This work can be used to study behavior of electromagnetic waves in
slabs and waveguides filled with fractal media.

1. INTRODUCTION

Shapes and forms are found in nature that cannot be described by
Euclidean geometry, for instance the way trees branch, the roughness of
ocean floor, the geometry of clouds and the dust in planetary disks etc..
These are cases of high spatial complexity. This kind of complexity is
evident at microscopic level as well as in biological tissues for instance;
branching of bronchial tubes in lungs, cells, proteins and plasma. It
is difficult to describe such structures because we cannot attribute a
characteristic length to them. Mandelbrot [1] first introduced the term,
“Fractal” to differentiate pure geometries from other types which do
not fit into a simple classification. Fractal is used to describe the
degree of irregularity or fragmentation of a sample or structure which
is identical at all scales. The term, “self similar” is also used in the
same context. Fractals are characterized by a fractional dimension,
D. Hence complex structures can be modeled at microscopic and
macroscopic levels [2, 3]. The use of fractional dimension analysis is
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well established in areas of physics [4–7]. In the last few years the
fundamentals for fractional dimension analysis have been studied in
depth and various new breakthroughs have resulted [9, 10] beginning
from Stillinger’s [8], “Axiomatic basis for spaces with noninteger
dimension”.

It is important to apply the generalization of electromagnetic
theory in fractional space in order to extract full benefits of
fractal models, which are becoming popular due to small number
of parameters that define a medium of greater complexity and
a rich structure. Theoretical and experimental investigations of
the problem of interaction of electromagnetic waves with different
inhomogeneous media possessing fractal properties have been carried
out [11–14] and useful results regarding scattering of electromagnetic
waves and fractional calculus have been presented. It was proposed
that smoothing of microscopic characteristics over the physically
infinitesimal volume transforms the initial fractal distribution into
fractional continuous model that uses fractional integrals [15].
Solutions to Poisson’s and Laplace equation for scalar potential
in fractional space have been discussed in [16, 17]. Recently
Zubair, et al. [18–23] have worked on electromagnetic wave propagation
in fractional space, and have given solutions to plane, cylindrical
and spherical waves in D-dimensional fractional space. Antenna
radiation in fractional space was also investigated and presented by
Mughal, et al. [24]. Similarly Faraday’s and Ampere’s laws were derived
for fractional space and Maxwell’s electromagnetic stress tensor was
reformulated, by Martin, et al. [25]. The electromagnetic radiation
from fractal structures has also been an area of interest in the last few
years [26–29]. The study of transmission and reflection at an interface
of fractional space medium, will facilitate us to analyze fractional
waveguides and wave behavior in fractional space slabs.

The quasi fractional space is used in this analysis, because such
a boundary was realized by Attiya [30], in which the magnetic field
properties are equivalent to complementary fractional space wave
equation.

In this paper the expressions for transmission and reflection
coefficients are derived for parallel and perpendicular polarizations
at an integer-fractal interface. The general solution for plane waves
in fractional space is described, which is then used to formulate the
expressions for electric and magnetic fields. The resulting expressions
reduce to classical results when the dimension D is an integer. In
Section 2, the geometry of the problem is given, field equations for
parallel polarization are given, transmission and reflection coefficients
are derived. This is also done for perpendicular polarization. In
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Section 3, it is shown that classical results can be recovered from
fractional space, when integer dimensions are inserted. And finally
results are discussed.

2. REFLECTION AND TRANSMISSION AT
DIELECTRIC-FRACTAL INTERFACE

In this section, behavior of TEM fields in lossless media, at a planar
Dielectric-Fractal interface is investigated at oblique incidence. The
boundary is assumed to be infinite. Furthermore, the permeability of
the two media is the same, i.e., µ1 = µ2 = µ0. And fractionality exists
in z direction only. Figure 1 shows the geometry of incident, reflected
and transmitted waves at the dielectric-fractal interface.

2.1. Parallel Polarization

For this polarization, the electric field is parallel to the plane of
incidence. The field equations for incident and reflected waves can
be written as follows:

Ei = (âx cos θi − âz sin θi) E0e
−jβ1(x sin θi+z cos θi) (1)

Hi = ây
E0

η1
e−jβ1(x sin θi+z cos θi) (2)

Figure 1. Geometry of the incident, reflected and transmitted waves
at the interface.
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where Ei = E0 and Hi = E0/η1. The wave impedance η1 =
√

µ1/ε1,
and the wave number β1 = ω

√
µ1ε1.

Er = (âx cos θr + âz sin θr) ΓE0e
−jβ1(x sin θr−z cos θr) (3)

Hr = −ây
ΓE0

η1
e−jβ1(x sin θr−z cos θr) (4)

where Er = ΓE0 and Hr = ΓE0/η1. The wave impedance η1 =√
µ1/ε1, and the wave number β1 = ω

√
µ1ε1.

The transmitted fields can be described in a similar manner, where
âx, ây and âz are the vectors, the exponential function is used to
describe wave propagation in x direction and Hankel function of second
kind of order n is used to represent wave propagation in z direction as
is done by Zubair, et al. [20]. Since fractionality is assumed to exist in
z axis only, Hankel function of second kind of order n is being used.
Thereby the wave equation for transmitted electric field can be written
as follows:

Et =(âx cos θt−âz sin θt)TE0e
−jβ2x sin θt(β2zcos θt)n

[
H(2)

n (β2zcos θt)
]

(5)

where Et = TE0. The wave impedance η2 =
√

µ2/ε2, and the wave
number β2 = ω

√
µ2ε2. H

(2)
n (β2z cos θt) is Hankel function of second

kind of order n. It is used to represent positive traveling waves. Also
n = |3−D|/2, and D is the dimension.

The wave equation for magnetic field used to describe the
transmitted magnetic field is:

Ht = ây
TE0

η2
e−jβ2x sin θt(β2z cos θt)nh [H(2)

nh
(β2z cos θt)] (6)

where Ht = TE0/η2. The wave impedance η2 =
√

µ2/ε2, and the
wave number β2 = ω

√
µ2ε2. H

(2)
n (β2z cos θt) is Hankel function of

second kind of order n. It is used to represent positive traveling waves.
Also nh = |D − 1|/2, and D is the dimension.

The transmission and reflection coefficient are the unknowns.
These can be expressed in terms of incident angle θi and other
parameters of the given media by applying boundary conditions
on tangential components of electric and magnetic fields which are
continuous at boundary z = d. Since the tangential component of
electric and magnetic fields must be continuous at the boundary z = d,
the following must hold true for both electric and magnetic fields:

Eix(z = d) + Erx(z = d) = Etx(z = d) (7)

Hix(z = d) + Hrx(z = d) = Htx(z = d) (8)
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Inserting field expressions in (7) and (8) results in:

cos θie
−jβ1(x sin θi+d cos θi) + Γcos θre

−jβ1(x sin θr−d cos θr)

= T cos θte
−jβ2x sin θt(β2d cos θt)n[H(2)

n (β2d cos θt)] (9)
1
η1

[
e−jβ1(x sin θi+d cos θi) − Γe−jβ1(x sin θr−d cos θr)

]

=
T

η2
e−jβ2x sin θt(β2d cos θt)nh

[
H(2)

nh
(β2d cos θt)

]
(10)

It must be noted that (9) and (10) are functions of x and z. For
continuity condition to hold at z = d, for all x, the variation of x must
be same on both sides of interface. Hence,

β1 sin θi = β1 sin θr = β2 sin θt (11)

As a consequence the following two relations are obtained:

θi = θr (12)
β1 sin θi = β2 sin θt (13)

Inserting (12) and (13) into electric and magnetic field equations,
and then solving them simultaneously, expressions for transmission
coefficient, T and reflection coefficient, Γ are obtained:

T‖ =
2η2 cos θie

−jβ1d cos θi

η1 cos θiA + η2 cos θtB
(14)

Γ‖ =
e−jβ1d cos θi(η2 cos θtB − η1 cos θiA)
ejβ1d cos θi(η2 cos θtB + η1 cos θiA)

(15)

where,

A = (β2d cos θt)nh

[
H(2)

nh
(β2d cos θt)

]
(16)

B = (β2d cos θt)nH(2)
n (β2d cos θt) (17)

For parallel polarization case, Brewster’s angle can also be
formulated. Setting (15) equal to zero, the following expression is
obtained:

cos θi =
√

µ2ε1
µ1ε2

B cos θt

A
(18)

Using (13), (18) can be written as:

sin θi =

√
ε2A/ε1 − µ2B/µ1

ε2A/ε1 − ε1B/ε2
(19)
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Since sine function cannot exceed unity, (19) exists only if:
ε2A

ε1
− µ2B

µ1
≤ ε2A

ε1
− ε1B

ε2
(20)

since µ1 = µ2, (19) reduces to:

sin θi =

√
ε2A/ε1 −B

ε2A/ε1 − ε1B/ε2
(21)

Hence,

θi = sin−1

√
ε2A/ε1 −B

ε2A/ε1 − ε1B/ε2
(22)

2.2. Perpendicular Polarization

For this polarization, field expressions for Electric and Magnetic field
intensities are as follows:

Ei = âyE0e
−jβ1(x sin θi+z cos θi) (23)

Hi = (−âx cos θi + âz sin θi)
E0

η1
e−jβ1(x sin θi+z cos θi) (24)

where Ei = E0 and Hi = E0/η1. The wave impedance η1 =
√

µ1/ε1,
and the wave number β1 = ω

√
µ1ε1.

Er = âyΓE0e
−jβ1(x sin θr−z cos θr) (25)

Hr = (âx cos θr + âz sin θr)
ΓE0

η1
e−jβ1(x sin θr+z cos θr) (26)

where Er = ΓE0 and Hr = ΓE0/η1. The wave impedance η1 =√
µ1/ε1, and the wave number β1 = ω

√
µ1ε1.

The transmitted fields can be described in a similar manner, where
âx, âz and ây are the vectors, the exponential function is used to
describe wave propagation in x direction and Hankel function of second
kind of order n is used to represent wave propagation in z direction.
Since fractionality is assumed to exist in z axis only, Hankel function
of second kind of order n is being used. Accordingly the wave equation
for transmitted electric and magnetic fields is:

Et = âyTE0e
−jβ2x sin θtB (27)

Ht = (−âx cos θt + âz sin θt)
TE0

η2
e−jβ2x sin θtA (28)

where Et = TE0, Ht = TE0/η2. The wave impedance η2 =
√

µ2/ε2,
and the wave number β2 = ω

√
µ2ε2. H

(2)
n (β2z cos θt) is Hankel function
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of second kind of order n. It is used to represent positive traveling
waves. Also n = |3−D|/2 and nh = |D−1|/2, and D is the dimension.

By following a procedure similar to that for parallel polarization,
expressions for transmission and reflection coefficients for perpendicu-
lar polarization are found to be, as follows:

T⊥ =
2η2 cos θie

−jβ1d cos θi

η1 cos θtB + η2 cos θiA
(29)

Γ⊥ =
e−jβ1d cos θi(η2 cos θiA− η1 cos θtB)
ejβ1d cos θi(η2 cos θiA + η1 cos θtB

(30)

where,

A = (β2d cos θt)nh

[
H(2)

nh
(β2d cos θt)

]
(31)

B = (β2d cos θt)nH(2)
n (β2d cos θt) (32)

3. RESULTS AND DISCUSSION

The results obtained in the previous section are for fractional space.
Insertion of integer dimensions in expressions for transmission and
reflection coefficients of both parallel and perpendicular polarizations
gives back the classical results. Hence for D = 2, n becomes equal to
1/2 and nh becomes equal to 1/2 as well. Hankel function of second

Figure 2. Transmission coefficient for parallel polarization for D = 2
versus varying incident angles.
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Figure 3. Transmission coefficient for parallel polarization for D = 1.5
versus varying incident angles.

Figure 4. Transmission coefficient for perpendicular polarization for
D = 2 versus varying incident angles.

kind is now of order 1/2, which can be expressed in exponential form
as follows [31]:

H(2)
n (z) =

√
2
πz

e−jz (33)
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Using this definition of Hankel function, in (14), (15) and (22), the
following is obtained:

T‖ =
η2 cos θi

η1 cos θi + η2 cos θt
(34)

Γ‖ =
(η2 cos θt − η1 cos θi)
(η2 cos θt + η1 cos θi)

(35)

Figure 5. Transmission coefficient for perpendicular polarization for
D = 1.5 versus varying incident angles.

Figure 6. Reflection coefficient for parallel polarization for D = 2
versus varying incident angles.
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Figure 7. Reflection coefficient for parallel polarization for D = 1.5
versus varying incident angles.

Figure 8. Reflection coefficient for perpendicular polarization for
D = 2 versus varying incident angles.

and

θi = sin−1

√
ε2

ε2 + ε1
(36)

which are the same expressions as those obtained by Balanis [31] for
transmission, reflection coefficients and Brewster’s angle for parallel
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Figure 9. Reflection coefficient for parallel polarization for D = 1.5
versus varying incident angles.

Figure 10. Transmission coefficient for parallel polarization for
varying dimension, D for ε1/ε2 = 0.11.

polarization. Similarly for perpendicular polarization, on inserting
dimension, D = 2, classical results are recovered which are same as
those mentioned in Balanis [31].

Transmission coefficient was plotted against varying incident
angles for materials with different permittivities. Plots of transmission
coefficient with D = 2 and D = 1.5 were obtained for comparison in
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integer and fractional space. This was investigated for both parallel
and perpendicular polarization, as shown in Figure 2 through Figure 5.
The same was done for reflection coefficient as presented in Figure 6
through Figure 9. For a fixed ratio of permittivities of the two
media, transmission coefficient was plotted against varying angles of
incidence for different fractional dimensions. It was observed that as

Figure 11. Transmission coefficient for perpendicular polarization for
varying dimension, D for ε1/ε2 = 0.11.

Figure 12. Reflection coefficient for parallel polarization for varying
dimension, D for ε1/ε2 = 0.11.
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Figure 13. Reflection coefficient for perpendicular polarization for
varying dimension, D for ε1/ε2 = 0.11.

1/D decreases, transmission coefficient increases. This is true for both
parallel and perpendicular polarization, as it is evident in Figure 10
and Figure 11. Similarly Figure 12 and Figure 13 show the reflection
coefficient versus incident angle for different fractal dimensions.

It can be observed that Brewster’s angle for parallel polarization
changes considerably with changing dimensions. In Figure 6, the
Brewster’s angle is concurrent with the familiar Brewster’s law and the
results obtained by Balanis [31]. However in Figure 7, with D=1.5 the
angle increases with decreasing ratios of permittivities, and Figure 12
shows that as the dimension decreases, brewster’s angle increases.

4. CONCLUSION

Reflection and transmission coefficients were formulated in this paper
for dielectric-quasi fractal interface. It was assumed, fractionality
exists only along z-axis of the fractional space and that the
permeability of the fractional medium is approximately same as that
of integer space. It was found that as the dimension D increases
the transmission coefficient for both parallel and perpendicular
polarizations also increases. This work will provide a foundation for
investigating the behavior of electromagnetic fields and waves inside
slabs, waveguides, and other multiple interfaces filled with fractal
media.
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