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Abstract—Principle component analysis based through wall image
enhancement is proposed which is capable of discriminating target,
noise and clutter signals. The overlapping boundaries of clutter,
noise and target signals are separated using fuzzy logic. Fuzzy
inference engine is used to assign weights to principle components.
The proposed scheme works well significantly for extracting multiple
targets having different range profiles in heavy cluttered through wall
images. Simulation results are compared on the basis of mean square
error, peak signal to noise ratio and visual inspection.

1. INTRODUCTION

Through Wall Imaging (TWI) is an active research area due to its
wide range of applications (especially in rescue, military, surveillance
and remote sensing). TWI (seeing through opaque materials) gives the
ability to examine building structure layout, detection and localization
of target(s). Compared to other remote sensing techniques (ground
penetrating radar and medical imaging), TWI has to deal with
variety of challenges (propagation environment, sensor positioning
and operational requirements). Moreover, propagation medium (often
composed of multiple unknown, non-homogenous and non-uniform
walls) leads to multi-paths and strong clutters which makes TWI a
complex and challenging problem [1].

TWI system works on synthetic aperture RADAR principle.
Electromagnetic pulse of certain frequency is transmitted that reflects
from target and is received with some attenuation [2]. Low frequencies
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provide good penetration through walls but result in poor resolution
compared to high frequencies. However, antennas become large at low
frequencies which restrict lower frequency range to 1 GHz practically.
On the other hand, if we address detection through concrete walls, the
upper frequency range is limited to 3 GHz [3].

Hardware setup (antennas, Vector Network Analyzer (VNA) and
position controller) and software algorithms for TWI are improving
day by day [4]. Once the hardware receive the reflected signals, the
first task is to reconstruct image by measuring attenuation coefficient
and total flight time. Various methods of image reconstruction in
TWI include Kirchhoff migration, f -k migration, differential SAR and
beamforming, etc. [4]. Improvements [4–13] are suggested to overcome
some limitations (like knowledge of wall parameters, incidence and
reflective angles, homogenous medium, multiple targets and point
target, etc.). Reconstructed image quality directly affects the target
classification accuracy.

Image enhancement in TWI, has enjoyed an increasing interest
over last few years [14–27]. Clutter and noise (due to antenna
attenuation, cross talk, false targets and wall reflections) result in
degradation of image quality, ambiguity in localization of targets
and appearance of false targets. Techniques for image enhancement
in TWI include, background subtraction [14], spatial filtering [15],
wall parameter estimation/modeling based [17, 18], doppler domain
filtering [21], image fusion [22, 23] and statical methods.

Major drawback of background subtraction technique is that
it requires a surveillance mode of operation in which there is an
access to the background (image scene that is free from targets)
or reference [14, 20]. Spatial filtering relies on invariance of wall
characteristic (where wall return remains same with changing antenna
location). Moreover, this scheme works only for homogeneous (or near-
homogeneous) walls at low operating frequencies [15, 20]. Limitation of
wall parameter estimation/modeling based approach is that it requires
accurate modeling and parameter estimation [17, 20]. Doppler domain
filtering assumes that background is stationary and targets are moving
so a doppler shift occurs which can be used to discriminate target and
clutter signals [21]. Image fusion methods require multiple images of
same scene from different locations (which is not possible especially in
case of moving targets) [22, 23]. Some statistical method for TWI
enhancement include Singular Value Decomposition (SVD), Factor
Analysis (FA), Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) [27]. Statistical methods having less
computational complexity and provide comparable results to other
image enhancement methods. However these methods (SVD, PCA,
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FA and ICA) suffer from limitation that total number of targets are
known a-priori. Statistical methods sometimes also require a subjective
threshold value.

PCA and fuzzy logic based image enhancement is proposed
for TWI which provides better accuracy than existing PCA based
image enhancement. PCA is chosen for its low complexity and
simplicity over other methods (SVD, FA and ICA). Proposed method
successfully estimates total number of targets and result in improved
image quality. Proposed scheme significantly works well for extracting
multiple targets in heavy cluttered TWI image. Existing and proposed
algorithms are compared on the basis of mean square error, peak signal
to noise ratio and visual inspection.

2. IMAGE ENHANCEMENT

2.1. Data Acquisition and Image Reconstruction

TWI setup is shown in Figure 1 while geometrical representation of
TWI is shown in Figure 2.

Let H transceivers be placed (parallel to the x-axis) in the x-y
plane. Image region (located beyond the wall along the positive y-
axis) is divided into grid of M × N pixels (m = 1, 2, 3 . . . , M and
n = 1, 2, 3 . . . , N). Let θ(t) be a wideband transmitted signal then
pixel value at location mn can be computed by weighted sum and
delay beamforming [4]. Output ζmn(t) for target located in x-y plane

Figure 1. TWI setup.
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Figure 2. Geometrical representation of TWI.

at pixel location mn is given by:

ζmn(t) =
H∑
p,q

ξ(p, q)ϑ(t + τmn(p, q))

where ξ(p, q) are weights (normally based on Kaiser or Hamming
window) used to control side lobes, and τmn(p, q) is time delay.
Received signal ϑ(t) is delayed version of transmitted signal θ(t) with
some attenuation αmn(p, q), i.e., ϑmn(t) = αmn(p, q)θ(t − τmn(p, q))
where τmn(p, q) are time delays. Let θ̂(t) = θ(−t) be a filter matched
to transmitted signal then the de-convoluted output for pixel mn, fmn

is given as:

fmn =
(
ζmn(t) ∗ θ̂(t)

)∣∣∣
t=0

fmn =

(
H∑
p,q

αmn(p, q)ξ(p, q)θ(t− τ̂mn(p, q) + τmn(p, q)) ∗ θ̂(t)

)∣∣∣∣∣
t=0

τ̂mn(p, q) are estimated time delays and can be calculated by various
methods depending on the available wall information [2]. Above
process is repeated for each pixel location mn to obtain B-scan image.

F =




f11 f12 · · · f1N

f22 f22 · · · f2N
...

...
. . .

...
fM1 fM2 · · · fMN
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2.2. PCA Based Image Enhancement

PCA transforms correlated variables into a set of uncorrelated variables
called principal components. First principal component has highest
variance and succeeding components have as high variance as possible
under the constraint that it will be orthogonal to the preceding
components. PCA (also named as discrete Karhunen Loeve transform,
Hotelling transform and proper orthogonal decomposition) is used
in variety of data analysis applications (dimension reduction of
complex data sets, noise reduction and probability density function
estimation) ranging from neuroscience to computer graphics because
of its simplicity and non-parametric method of extracting relevant
information from confusing data sets [28, 29]. Image enhancement in
TWI can be performed by decomposing B-scan image into different
spectral components (subspaces). Let B-scan image F be composed of
target S and noise V images.

F = S + V

Covariance matrix CF of image F is:

CF =
1
N

FF T = CS + σ2
V I (1)

where noise is modeled as white noise having variance σ2
V , CS is

covariance matrix of targets and I is identity matrix. CF is decomposed
into different spectral components using eigen value decomposition,
i.e.,

CF = ΓΛSΓT + σ2
V I = Γ(ΛS + σ2

V )ΓT = ΓΛΓT =
M∑

m=1

λmγmγT
m

where Γ is M × M unitary matrix (Γ−1 = ΓT ) containing eigen
vectors Γ = [γ1 γ2 . . . γM ], Λ is diagonal matrix containing eigen
values, i.e., Λ = ΛS + σ2

V I = diag[λ1 λ2 . . . λM ], λi = λsi + σ2
V and

λ1 ≥ λ2 ≥ . . . ≥ λM . Principle components matrix Φ = [φ1 φ2 . . . φM ]
is:

Φ = F T Γ (2)

F = ΓΦT can be decomposed into different subspaces as:

F =
M∑

m=1

γmφT
m =

k1∑

m=1

γmφT
m +

k2∑

m=k1+1

γmφT
m +

M∑

m=k2+1

γmφT
m

where first k1 principle images belong to wall clutters followed by
k2 target images and the rest are noise images. Above statement is
derived from the fact that when eigen value belong to target then
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λm = λsm + σ2
V ' λsm because λsm À σ2

V and incase when eigen value
does not belong to target λm = λsm +σ2

V ' σ2
V because λsm ¿ σ2

V . It is
observed that difference between noise eigenvalues ∆λm = λm − λm+1

are relatively small than target eigenvalues. Verma, et al. in [4] state
that k1 = 1 for wall clutter and k2 = 2 for target subspaces and
rest subspaces represent noise. However, we note that this statement
(by Verma, et al.) is not true in case of multiple targets. We observe
that number of targets (which are not known a-priori) determine the
value for k2. Therefore, some statistical analysis needs to be performed
in order to determine value for k2. In this regard, some schemes are
found in literature like difference of eigen values (λm− λm+1), ratio of
eigen values (λm/λm+1) and percent of total power in an eigen value
(λm/tr[CF ]). These methods do not always provide satisfactory results
(and some times require a user defined threshold).

2.3. PCA and Fuzzy Logic Based Image Enhancement

It is observed that the boundaries of clutter, noise and target signals
are not sharply defined. Therefore, it is not possible to extract target
eigen values accurately. This motivates use of weights to sharpen the
boundaries of clutter, noise and target signals. It is observed that when
λm and ∆λm are high, then λm possibly belongs to target and need
to be enhanced by applying heavy weights. Otherwise λm belongs to
noise and clutter and needs to be suppressed by assigning light weights.
Figure 3 describe this concept.

Figure 3. Illustration of weighted PCA.
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Let $m be weight assigned to mth principle component:

Ftar =
M∑

m=2

Fm$m =
M∑

m=2

γmφT
m$m (3)

Various weight assignment techniques like linearly weights, exponen-
tially weights, logistic weights, fuzzy weights, etc.) are available in
literature but are never explored (to the best of authors’s knowledge)
for TWI image enhancement. Some weighting schemes are defined as:

• Linear weights

$m =
ψ1λm + ψ2∆λm

ψ3
(4)

• Exponential weights

$m =
e(ψ1λm + ψ2∆λm)

ψ3
(5)

• Logistic weights

$m =
ψ3

1 + e− (ψ1λm + ψ2∆λm)
(6)

where ψ1 and ψ2 are constants used to control the effect of λm and ∆λm

respectively and ψ3 is normalizing constant. Above weight assignment
techniques appear simple to use but their main drawback is empirical
determination of constants (ψ1,ψ2 and ψ3) are empirical. Note that,
weight assignment using fuzzy logic is automatic therefore we use it
for TWI image enhancement.

Figure 4 shows block diagram of a fuzzy system.

Figure 4. Fuzzy system.
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2.3.1. Gaussian Fuzzifier (GF)

Let eigen values λm and difference of eigen values ∆λm can be
represented in vector notation as below:

x∗ = [x∗1 x∗2] = [λm ∆λm]

where x∗ ∈ R2 represents real value points. We define gaussian
membership functions µAd(x1) and µBe(x2) for inputs as under:

µAd(x1) = e
−

(
x1−x̄

(d)
1

σ
(d)
1

)2

(7)

µBe(x2) = e
−

(
x2−x̄

(e)
2

σ
(e)
2

)2

(8)

where d = 1, 2, 3 and e = 1, 2, 3 represents number of fuzzy sets. x̄
(d)
1 ,

x̄
(e)
2 and σ

(d)
1 , σ

(e)
2 are constant parameters representing means and

variances of fuzzy sets. GF is used to map x∗ ∈ R2 into fuzzy set AB
having following gaussian membership function:

µAB(x1, x2) = e
−

(
x1−x∗1

a1

)2

? e
−

(
x2−x∗2

a2

)2

= e
−

(
x1−x∗1

a1

)2

e
−

(
x2−x∗2

a2

)2

(9)

where ? is t-norm operator and is taken as algebraic product. a1 and
a2 are positive parameters used for noise suppression in input data
(e.g., if a1 and a2 are larger than σ

(d)
1 , σ

(e)
2 the noise will be greatly

suppressed so one can choose a1 = 2
3

max
d=1

σ
(d)
1 and a2 = 2

3
max
e=1

σ
(e)
2 . GF

has the advantage over other fuzzifiers in terms of accuracy [30, 31].

2.3.2. Product Inference Engine (PIE)

PIE process fuzzy inputs based on fuzzy rule base and linguistic rules.
PIE structure consists of individual rule based inference with union
combination, Mamdani product implication, algebraic product for t-
norm and max operator for s-norm [31]. Fuzzy IF-THEN rules for
noise and clutter reduction are defined on experimental observations
that the eigen values of target signals have high magnitude and spread
compared to noise signals. Fuzzy rule-base decision matrix for image
enhancement is shown in Figure 5.

Ru(1): If λm is A1 and ∆λm is B1 then ym is C1.

Ru(2): If λm is A1 and ∆λm is B2 then ym is C2.

Ru(3): If λm is A1 and ∆λm is B3 then ym is C3.

Ru(4): If λm is A2 and ∆λm is B1 then ym is C2.
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Figure 5. Decision matrix.

Ru(5): If λm is A2 and ∆λm is B2 then ym is C4.

Ru(6): If λm is A2 and ∆λm is B3 then ym is C5.

Ru(7): If λm is A3 and ∆λm is B1 then ym is C2.

Ru(8): If λm is A3 and ∆λm is B2 then ym is C5.

Ru(9): If λm is A3 and ∆λm is B3 then ym is C6.

Cc for c = 1, 2, . . . , 6 are output membership functions. A1, A2,
A3 and B1, B2, B3 are input fuzzy membership functions corresponds
to high, medium and low. Similarly Cc are output membership
functions with C1 corresponds to highest and C6 corresponds to lowest.

µCc(ym) = e
−

(
ym−ȳ(c)

%(c)

)2

(10)

where ȳ(c) and %(c) are constant parameters representing mean and
variances of output fuzzy sets. PIE is defined as:

µC′(ym) = max
{c,d,e}

[
sup

{x1,x2}
µAB(x1, x2)µAd(x1)µBe(x2)µCc(ym)

]

Putting values of µAB(x1, x2), µAd(x1), µBe(x2), µCc(ym), above
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equation reduces to:

µC′(ym) = max
{c, d, e}


exp


−

(
x1−x̄

(d)
1

σ
(d)
1

)2

−
(
x2−x̄

(e)
2

σ
(e)
2

)2

−
(
xd

1T−x̄d
1

a1

)2

−
(
xe

2T−x̄e
2

a2

)2
]
µCc(ym)

]

where,

xd
1T =

a2
1x̄

d
1 + (σd

1)2x∗1
a2

1 + (σd
1)2

and xe
2T =

a2
2x̄

e
2 + (σe

2)
2x∗2

a2
2 + (σe

2)2

2.3.3. Center Average Defuzzifier (CAD)

Fuzzy outputs are converted to real world outputs using defuzzification
process. CAD specifies the real output y∗m as the weighted sum of 6
output fuzzy sets having centers ȳ(c) and height w

(c)
m .

$m = y∗m =

6∑
c=1

ȳ(c)w
(c)
m

6∑
c=1

w
(c)
m

CAD has less computational complexity, higher accuracy and
continuity than other defuzzifiers (center of gravity, maximum
defuzzifier, etc.) [31].

2.3.4. Fuzzy Parameters Selection

For designing a fuzzy system fuzzy parameters selection (x̄(d)
1 , σ

(d)
1 , x̄

(e)
2 ,

σ
(e)
2 and ȳ(c), %(c)) is important. For fuzzy sets x1 ∈ [0, 1], x2 ∈ [0, 1]

and y ∈ [0, 1] one way is to assign uniform spaced membership
functions between zero and one as shown in Figure 6. Although this
approach is quite simple in nature but it leads to poor results so a
novel method based on K-means algorithm is proposed for estimating
optimal fuzzy parameters.

K-means [32] is one of the simplest unsupervised data clustering
algorithm that classify data into certain number (fixed a priori) of
clusters. K-means has applications in various other fields ranging from
market segmentation, computer vision, geo-statistics, astronomy and
agriculture.



Progress In Electromagnetics Research, Vol. 127, 2012 471

(a) (b)
Eigen (or difference of eigen) values Output Weights

In
p
u
t 

M
em

b
er

sh
ip

 F
u
n
ct

io
n
s

O
u
tp

u
t 

M
em

b
er

sh
ip

 F
u
n
ct

io
n
s

Figure 6. Uniform input and output membership functions.
(a) Input. (b) Output.
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Figure 7. Input membership functions obtained by K-means.
(a) Eigen values. (b) Difference of eigen values.

• Step 1: Initialize k centroids, i.e., one for each cluster. These
centroids should be initialized in a cunning way because different
initialization leads different result. Better choice is to place them
randomly as far as possible from each other.

• Step 2: Assign class labels to data points by using some distance
metric (usually euclidian distance is used).

• Step 3: Calculate mean (average value) of each class and assign
means as new centriods. Repeat Step 2 until change between new
and old centriods becomes negligible.

Once data is clustered the centers x̄
(d)
1 , x̄

(e)
2 and spread σ

(d)
1 , σ

(e)
2 are

calculated by mean and variance of that class as shown in Figure 7.
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As output distribution is not known a-priori so we have used equally
spaced output membership functions (as discussed earlier). K-means
is sensitive to initial randomly selected centers so the algorithm is
run multiple times (with different starting points) to get optimized
clustering results.
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Figure 8. Single target. (a) Eigen values. (b) Difference of eigen
values. (c) Original image. (d) Conventional PCA. (e) Fuzzy PCA
with uniform membership functions. (f) Fuzzy PCA with K-means
based membership functions. (g) Unity weights PCA. (h) Background
subtracted image.
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Figure 9. Multiple target. (a) Eigen values. (b) Difference of eigen
values. (c) Original image. (d) Conventional PCA. (e) Fuzzy PCA
with uniform membership functions. (f) Fuzzy PCA with K-means
based membership functions. (g) Unity weights PCA. (h) Background
subtracted image.

3. SIMULATION AND RESULTS

Variety of experiments are conducted by varying parameters like
type of walls, number and shape of targets and target locations.
Experimental setup for TWI consists of Vector Network Analyzer
(VNA) that generates a stepped frequency waveform (1 GHz
bandwidth with 5 MHz step size). Horn antenna (1 GHz bandwidth)
is used in mono-static mode for transmitting and receiving signals.
Antenna is mounted on 2D-scanning frame which can slide along
cross range and height. Scanning is precisely controlled by micro-
controller and at each point scattering parameters are recorded by
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Figure 10. MSE and PSNR comparison of conventional PCA and
proposed Fuzzy PCA against number of targets. (a) MSE comparison.
(b) PSNR comparison.

VNA and transferred to local computer for image reconstruction
and post processing tasks. Time delays and weights are fed into
beamforming algorithm for image reconstruction. Image enhancement
algorithms (PCA and proposed fuzzy logic based PCA) are simulated
in MATLAB and results are compared on the basis of MSE, PSNR
and visual inspection.

MSE =
1

M ×N

N∑

n=1

M∑

m=1

(Fbs(n,m)− Ftar(n,m))2

PSNR(dB) = 10 log10

1
MSE

Fbs is background subtracted image used for comparison of proposed
and existing algorithms. Figure 8 shows the performance of
conventional PCA and proposed fuzzy PCA based schemes for single
target. It can be seen that conventional and proposed schemes provide
comparable results. Figure 9 shows that proposed method successfully
detects all six targets (placed randomly behind wall) while conventional
PCA algorithm is not able to detect. Figure 10 summarizes MSE and
PSNR plots for different number of targets placed behind wall. For
single target conventional PCA and proposed fuzzy PCA schemes give
comparable results but as number of target increases proposed scheme
perform significantly better (compare to conventional PCA).
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4. CONCLUSION

Fuzzy logic and PCA based image enhancement technique capable
of discriminating between target and clutter signals is proposed for
TWI. The proposed scheme is capable of detecting single and multiple
targets in heavy clutter environment. Moreover, assigning membership
functions by K-means clustering results in better performance than
uniform membership functions. Simulation results show that the
proposed fuzzy logic based PCA based image enhancement scheme
has significant improvement in conventional PCA based image
enhancement. The proposed scheme can also be modified for other
statistical methods such as SVD, FA, and ICA to get better accuracy.
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