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Abstract—Axial permanent magnetic couplings are composed of two
discs with a small air-gap in-between. Each disc consists of several
segments in the shape of slices of cakes. The segments are polarized in
axial direction with alternating polarity. In this work the homogeneous
magnetization in the segments is replaced by equivalent currents on
the surface of the segments (Amperean model). In a simplified model
we consider only radial currents whereas azimuthal currents along
the perimeter of the discs are discarded. This corresponds to the
arrangement where one of the discs has much larger diameter than
the other disc. Compared to the case of two equal discs it leads to
a notable error in the magnetic field near the perimeter, yet it has
only a small effect on the torque, especially for the case of optimum
couplings. This trick allows for summing up the fields of all segments
in closed form. A concise double integral over the radial magnetic
field component describes the torque. An investigation of this integral
reveals many properties of axial magnetic couplings: A diagram is
introduced and areas in this diagram are identified where the torque
shows overshoot, rectangular pulse shape or sinusoidal dependence
versus twist angle between both discs. The diagram contains also
a curve for maximum torque and one point on this curve is of
considerable economic significance: It denotes the global maximum
of torque over magnet mass.
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1. INTRODUCTION

Axial permanent magnetic couplings transfer torque between two
discs (or wide rings) facing each other. Each disc has a multitude
of permanent magnetic segments, each segment having the shape
of a piece of cake. Before the torque can be computed one has
to compute the magnetic field generated by one of the two discs.
This can be done in numerous ways [1–14]. In the majority of
these publications the contributions of all segments are summed up
numerically. Only [1, 9, 11, 12] present formulae where the summation
was done in closed form. The torque computation means integrating
over the force density of these fields. Without a closed solution for the
magnetic field this leads to a large number of multiple integrals (in
general up to six). Although this procedure renders numerical results
[15–19] it seems difficult or even impossible to derive general conditions
for torque maximization. Therefore experimental investigation is still
important to study the various degrees of freedom in the design of
these couplings [20–23].

This work is based on [1], where closed analytical formulae for the
magnetic field components of axially magnetized multi-pole discs and
rings are given. There also the torque of axial magnetic couplings is
studied in the limit of infinitely thin discs. In this work we extend
the discussion to discs of finite thickness. It leads to single and double
integrals that cannot be solved in closed form. Yet a diagram is found
that visualizes these integrals in a normalized way. Finally this diagram
gives a guideline on how to optimize axial magnetic couplings.

2. DEFINITIONS

A cylindrical coordinate system (r, ψ, z) with unit vectors (~nr, ~nψ, ~nz)
is used. The z-axis is the axis of rotation of both discs. Each disc is
made up of 2p segments, each covering an azimuthal angle

ψk, 1 ≤ ψ ≤ ψk, 3, 0 ≤ k ≤ 2p− 1, (1a)
ψk, 1 = −π/(2p) + πk/p, ψk, 3 = π/(2p) + πk/p (1b)

The magnetization in the k-th segment is given by ~Mk =
(−1)k (Brem/µ0)~nz. It has only a z-component and it is homogeneous
inside each segment. In axial direction the lower disc extends from
−t/2 ≤ z ≤ t/2 and the upper disc extends from g+t/2 ≤ z ≤ g+3t/2,
where g is the air-gap between both discs. Note that the term “axial
magnetic coupling” refers to both the axial direction of magnetization
and the axial shift in position between both discs. Examples are shown
in Fig. 1.
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Figure 1. Several cases of axial magnetic couplings: Dark segments are
magnetized upwards and light segments are magnetized downwards.
Driving disc and driven disc have the same number of segments and
the same thickness. #1 shows the most simple model of the presented
theory, where the driving disc is infinitely large and the driven disc
has a finite diameter 2r2. The spacing between the discs is arbitrary
— both narrow and wide gaps are covered by the theory. Also the
thickness and the number of poles is arbitrary. #2 shows a coupling
with discs having identical diameters spaced apart by a narrow gap.
#3 shows the same discs at wider gap and larger number of poles. #4
shows an arrangement where the discs of #3 have a bore with inner
diameter 2r1 > 0. The presented theory is exact for #1, but it is only
an approximation of #2, #3, and #4.

Let us call the lower disc driving disc and the upper disc driven
disc. Although the roles of both discs could be exchanged, for the sake
of clarity we stick to the notion that the driving disc is the source
of a magnetic field into which the driven disc is immersed. Thus the
two discs are assumed to interact only via linear superposition without
any demagnetization effects of one disc on the other. Then the torque
on the driven disc is the integral of radial distance times azimuthal
component of force density subtending the volume of the driven disc

T (on driven disc) =
∫

volume of driven disc

rfψdV (2)

This azimuthal component of force density is given by (cf.
Section 10 [1])

fψ =
Mz (of driven disc)

r

∂Bz (of driving disc)
∂ψ

(3)
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To keep it simple both discs are supposed to have vanishing inner
diameter (2r1 = 0). In practice the discs have a small bore yet its
effect on the torque is negligible (see Subsection 3.2 and Fig. 5). The
driven disc has outer diameter 2r2. Thus the integral in (2) extends
in radial direction from r = 0 to r = r2. In practice the driving
disc has the same outer diameter 2r2. The magnetic field of such a
multi-polar disc of finite size leads to elliptic integrals that deny a
closed summation formula over all p pole pairs. Yet in the sequel we
need a closed summation formula to study the influence of p on the
torque. Therefore we assume that the driving disc has infinite outer
diameter, which allows for closed summation over all p pole pairs as
shown in Section 6 of [1]. Of course this simplified model over-estimates
the magnetic field and the torque. Yet we will show by comparison
with finite element simulations that for reasonably small air-gap and
thickness of discs or for large number of pole-pairs this error in torque is
small. So the conceptual idea of our theory is to deliberately neglect a
minor part of the magnetic field in order to get a better overview of the
dominant mechanisms of torque transfer in axial magnetic couplings.
The results of this theory assist in finding optimum configurations — in
practice they should serve as starting point for more detailed numerical
computations [24–29].

Within this model the torque can be expressed as a double integral
over the z-component of the magnetic field (cf. (59) in [1])

T (ψ0) =
4pBremr2

2

µ0

1∫

ρ=0

g+3t/2∫

z=g+t/2

Bz

(
r2ρ, ψ0 +

π

2p
, z

)
ρ dρ d z (4)

or as a single integral over the r-component of the magnetic field (cf.
(62) in [1])

T (ψ0) =
2pBremr3

2

µ0

1∫

ρ=0

(
1− ρ2

) {
Br

(
r2ρ, ψ0 +

π

2p
, g +

3t

2

)

−Br

(
r2ρ, ψ0 +

π

2p
, g +

t

2

)}
dρ (5)

where ψ0 specifies the angular shift between both discs. Equation (5)
is better suited for our discussion: Shortcomings of our model with
the infinitely large driving disc lead to significant errors in the Br-field
near r = r2, however, in the integral they are strongly suppressed by
the factor

(
1− ρ2

)
. This is the justification why our simplified model

with infinitely large driving disc can be used for torque optimization.
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3. THE RADIAL FIELD COMPONENT OF THE
DRIVING DISC

3.1. The Infinitely Large Driving Disc

For an infinitely large driving disc the field can be expressed as (see
(30) in [1])

B r (r, ψ, z)=
−Brem

π

p arcsinh((z+t/2)/r)∫

β=p arcsinh((z−t/2)/r)

cos (pψ) sinh (β/p) coshβ

(coshβ)2−(sin (pψ))2
dβ (6)

In the limit of vanishing thickness the properties of this field component
were discussed in [1]. In a similar way they also hold for discs with
finite thickness as explained in the following paragraph.

At large axial distance it holds p arcsinh ((z − t/2)/r) > 1. There
the Br (ψ)-pattern is sinusoidal. At small axial distance p (z − t/2) < r
it shows overshoot. Conversely, at infinite radial distance the Br (ψ)-
pattern shows overshoot, and this overshoot is reduced as the test point
approaches the axis. For small enough radial distance the overshoot
disappears; then the pattern is pulse shaped and with even smaller
radial distance it becomes sinusoidal. Thus, if the radius r2 of the
driven disc is small enough it experiences no field with overshoot. In
the following discussion we will see that for maximum torque overshoot
has to be avoided. Therefore the overshoot is studied in more detail in
Appendix A.

In the absence of overshoot the amplitude of the Br (ψ)-pattern is

B̂(no)
r (r, z)=Br

(
r, ψ=

π

p
, z

)
=

Brem

π

p arcsinh((z+t/2)/r)∫

β=p arcsinh((z−t/2)/r)

sinh (β/p)
coshβ

dβ (7)

This non-overshoot amplitude is indicated by the index “(no)”. It
diminishes like (r/|z|)p−1

/√
r2 + z2 near the axis. For large p this is

the reason why the torque does not change notably if the driven disc
has a bore.

At large radial distance the non-overshoot amplitude also
diminishes (it decreases like r−2). Thus for p >1 there must be a
maximum at intermediate radial distances†, which can be found by

† For p = 1 the amplitude B̂
(no)
r does not vanish at r = 0: It has its

maximum there and it decreases monotonically versus radial distance B̂
(no)
r =

(Brem/π) ln
(
1 + t(2g + t)

/(
r2 + g2

))
.
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differentiation ∂B̂
(no)
r

/
∂r = 0. With z = t/2+ g, γ = g/r and τ = t/r

this gives

cosh (p arcsinhγ)
cosh (p arcsinh (γ + τ))

√
1 + γ2

1 + (γ + τ)2
=

γ2

(γ + τ)2
(8)

the solution of which is given in Table 1 and Fig. 2. Obviously for large
torques r should be significantly lower than r2 so that the integrand
in (5) is large.

3.2. The Driving Disc with Finite Diameter

A numerical simulation was carried out for the parameters t = 15 mm,
r2 = 80 mm, p = 5. Fig. 3 shows the geometry and the fluxlines, Fig. 4

Table 1. Solution of ∂B̂
(no)
r

/
∂r = 0: The table gives values for

parcsinhγ for several values of parcsinhτ for the extreme values p = 2
and p → ∞ (the solutions for all other p are between these two
extremes). The case parcsinhτ = 0 agrees with (28) in [1].

parcsinhτ 0.0 1.0 2.0 3.0 4.0
p = 2 1.94303 1.62785 1.32645 1.04252 0.799715

p →∞ 2.06534 1.61003 1.23984 0.944123 0.710276

1p

p  

rgparcsinh

2p

3p

rtparcsinh  =

=

=

(    )

(     )

Figure 2. Solution of ∂B̂
(no)
r /∂r = 0 (cf. (8) and Table 1).
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Figure 3. Fluxlines for a driving disc with 160mm diameter, 15 mm
thickness, having 5 pairs of north/south-poles. Due to symmetry only
one quarter of the first magnetic pole k = 0 with ~Mk ·~nz > 0 is modeled
(only half of the wedge and half of the thickness). The side view at
the right hand side clearly shows that the flux lines bend towards the
axis for r < 0.8× r2 whereas they bend outwards for r > 0.8× r2.
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Figure 4. The radial field of the driving disc of Fig. 3 in y = 0 at
air-gaps 5, 15, 25 mm. This is identical to the non-overshoot amplitude
B̂

(no)
r (r, z) plotted versus radial distance. For small radial position the

curves are accurately described by (7). Near the perimeter the finite
element simulation (FEM) shows a large positive peak which (7) fails
to describe.

shows the radial field component versus radial distance, and Fig. 5
shows the integrand of (5) versus radial distance. In Fig. 4 the magnetic
field close to the perimeter of the disc differs drastically from the values
obtained by (7), because the latter assumes an infinitely large disc.
However, in Fig. 5 the integrand of (5) shows much smaller differences
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between the finite disc (computed numerically) and the infinite disc
(according to (6)). Fig. 5 is also interesting for small radial distance:
There the integrand of (5) has large magnitude for small axial distance
to the disc. This shows that for small number of pole-pairs, small air-
gap between the two discs, and small thickness of the discs one cannot
neglect the bore of the magnets, because the peak of the integrand
occurs close to the axis.

The accuracy of the theory can be improved by the following
approximation which includes effects of finite size of the driving disc.
As shown in Fig. 6, we place a linear strip of alternating north- and
south poles with width w next to a driving disc with radius r2 so that
the strip touches the disc at its perimeter. The strip extends infinitely
in x-direction. Its width should also go to infinity while its left edge
remains unchanged. The length of magnetic poles of the strip should
match the length of the segments on the perimeter 2πr2 = pλ. We
want to improve the accuracy of the magnetic field calculation near
the perimeter. In this region of interest the finite driving disc plus the
strip cause a magnetic field that is similar to the field caused by an
infinitely large driving disc. Of course this is only an approximation,
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g = 5mm  (7)
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g = 25mm  (7)

Figure 5. Integrand of the torque integral (5), where Br is computed
numerically with FEM or analytically with (7). The curves are plotted
versus radial distance for the disc of Fig. 3 at air-gaps 5, 15, 25 mm.
For small radial position both FEM simulation and (7) show good
agreement. At larger radial distance (7) is less accurate. The torque
is the area between these curves and the abscissa. The error due to
the finite size of the driving disc has opposite sign than the main part
of the integral: Thus neglecting these effects near the perimeter over-
estimates the torque. Note that for small distances g the integrand
shows quite large peaks at small radial position. Therefore for small p
and g the torque may still be affected by a bore in the magnet discs.
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Figure 6. With regard to the field in the region of interest an infinitely
large driving disc is equivalent to a finite disc plus an infinite strip
where the lengths of the segments match 2πr2 = pλ. This is accurate
for p →∞ and for finite p it is an approximation.
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Figure 7. The same radial field as in Fig. 4, yet with strip correction
term (9) subtracted from (7). For the sake of comparison the FEM
results are also shown. At small air-gap (7, 9) is fairly accurate. At
larger air-gap the relative error of (7, 9) is larger.
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Figure 8. The same function as in Fig. 5, yet with strip correction
term (9) subtracted from (7). FEM results are shown for comparison.
A small error is visible at large radial distance. The integration over
this function gives the torque and there the error is even smaller.

because it neglects the curvature beyond the disc perimeter. Yet in
the limit of p → ∞ the aperture angle of each segment vanishes and
hence the error of the approximation becomes negligible.

The By-field of the strip near its left edge can be computed by
(51) of [1], if we set y = −w/2− (r2 − r) and x = rψ and identify the
By-field with the Br-field

Br =
2Brem

π2

∞∑

n=0

(−1)n

2n + 1
cos((2n + 1)pψ)

×K0

(
p

r2
(2n + 1)

√
η2 + ζ2

) ∣∣∣∣
r−r2

η=r−r2−w

∣∣∣∣
z+t/2

ζ=z−t/2

(9)

with the modified Bessel function K0. In (9) we used the abbreviation
f (x)|bx=a = f (b)− f (a). Let w →∞ and insert (9) into (5) to obtain
the torque correction term from the strip

Tstrip(ψ0) ≈ −p

(
2Brem

π

)2 r3
2

µ0

∞∑

n=0

1
2n + 1

sin((2n + 1)pψ0)

×
1∫

ρ=0

(1− ρ2)
{

K0

(
p(2n + 1)

√
(ρ− 1)2 + γ2

)

−2K0

(
p(2n + 1)

√
(ρ− 1)2 + (γ + τ)2

)

+K0

(
p(2n + 1)

√
(ρ− 1)2 + (γ + 2τ)2

)}
dρ (10a)
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The torque of the finite disc is approximately given by

Tfinite disc (ψ0) ≈ Tinfinite disc (ψ0)− Tstrip (ψ0) (10b)

As shown in Appendix B the correction term from the strip vanishes
in the limit p →∞. Yet for finite p it improves the accuracy for torque
computations significantly (Figs. 7 and 8).

4. TORQUE OVERSHOOT

For the sake of simplicity we disregard the torque correction term from
the strip (10a) in this section. It alters the results for finite p only
slightly and makes no difference in the case p → ∞. Inserting (6)
into (5) gives the torque T versus angular twist ψ0 between driving
disc and driven disc. At large air-gap g the Br-field varies sinusoidally
versus angular position ψ (cf. Appendix A). In this case, also the
torque varies sinusoidally versus ψ0. Yet at small air-gap the function
T (ψ0) becomes pulse shaped and at even smaller air-gaps it exhibits
overshoot. In the limit of thin discs t → 0 this was discussed in
Section 10 of [1]. Here we extend the discussion to discs with finite
thickness t > 0.

Torque overshoot starts when the maxima of the pulses become
flat, thus

∂2T

∂ψ2
0

= 0 for ψ0 =
−π

2p
(11)

With (5), (6), and (11) one arrives at an implicit equation for the so

Table 2. Numerical solution of (12) for p arcsinhγ = 0: Torque
overshoot limit curve for vanishing air-gap (cf. Fig. 9).

p 1 2 3 4 6 10 ∞
p arcsinhτ 0.834 0.743 0.718 0.708 0.700 0.696 0.694081

Table 3. Numerical solution of (12) for parcsinhτ = 0: Torque
overshoot limit curve for vanishing thickness of the multi-polar discs
(cf. Fig. 9). The values agree with (72) in [1].

p 1 2 3 4 6 10 ∞
p arcsinhγ 0.6197 0.5772 0.5659 0.5614 0.5581 0.5562 0.5552
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Figure 9. Torque overshoot limit curves (drawn for p = 1, 2,∞).
Torque overshoot is confined to a small finite region in the (p arcsinhγ;
p arcsinhτ)-plane. See also numerical values in Tables 2 and 3.

called limit curve of torque overshoot

0 =

1∫

ρ=0

(
1− ρ2

)



parcsinh((γ+2τ)/ρ)∫

β=parcsinh((γ+τ)/ρ)

3− cosh(2β)
(coshβ)3

sinh
(

β

p

)
d β

−
parcsinh((γ+τ)/ρ)∫

β=parcsinh(γ/ρ)

3− cosh(2β)
(coshβ)3

sinh
(

β

p

)
d β


 d ρ (12)

This limit curve separates the region where torque overshoot
occurs from the region without torque overshoot in the (p arcsinhγ;
p arcsinhτ)-plane (see Fig. 9). Table 2 gives numerical values of
p arcsinhτ at vanishing air-gap p arcsinhγ. Table 3 gives numerical
values of p arcsinhγ at vanishing thickness of the discs p arcsinhτ = 0.
Comparison of Fig. 9 with Fig. A1 in Appendix A shows that the
region of torque overshoot is smaller than the region of overshoot in
Br- and Bz-fields. The reason is that torque is obtained by integrating



Progress In Electromagnetics Research B, Vol. 40, 2012 13

the fields over radial distance and there is no field overshoot at small
radial distance.

In the limit p → ∞ we may skip the arcsinh-functions in (12).
This is explained in Appendix C. Replacing sinh (β/p) → β/p and
carrying out the inner integrals

∫
(3− cosh (2β)) (coshβ)−3 βdβ =

2(1 + βtanhβ)/coshβ one obtains an equation that is better suited for
numerical solution

1∫

ρ=0

(
1− ρ2

)(
1 + ((pγ + 2pτ)/ρ)tanh((pγ + 2pτ)/ρ)

cosh((pγ + 2pτ)/ρ)

+
1+(pγ/ρ)tanh(pγ/ρ)

cosh(pγ/ρ)
−2

1+((pγ+pτ)/ρ)tanh((pγ+pτ)/ρ)
cosh((pγ+pτ)/ρ)

)
dρ=0(13)

In the limit p arcsinhτ → pτ → 0 we may develop (13) into a Mac
Laurin series, with the dominant second order term. This leads to the
solution pγ = 0.5552 as in (72) of [1].

5. MAXIMUM TORQUE BY OPTIMUM NUMBER OF
POLE-PAIRS

As shown in Section 10 of [1] highest torque values are obtained in the
non-overshoot region. This torque amplitude is called pull-out torque
and it is given by

T̂ (no) = T

(
ψ0 =

−π

2p

)
=

2pB2
remr3

2

µ0π

1∫

ρ=0

(
1− ρ2

)




p arcsinh((γ+τ)/ρ)∫

β=p arcsinh(γ/ρ)

sinh (β/p)
coshβ

dβ−
p arcsinh((γ+2τ)/ρ)∫

β=p arcsinh((γ+τ)/ρ)

sinh (β/p)
coshβ

dβ


dρ (14)

The optimum number of pole-pairs is given by differentiating (14)
against p and setting the result equal to zero. With sinh (β/p) → β/p
for p →∞ and Appendix C this leads to

1∫

ρ=0

(
1
ρ2
−1

){
(pγ+2pτ)2

cosh((γ+2τ)/ρ)
−2

(pγ+pτ)2

cosh((γ+τ)/ρ)
+

(pγ)2

cosh(pγ/ρ)

}
dρ=0(15)

This is an implicit equation for the optimum-p curve in the (p arcsinhγ;
p arcsinhτ)-plane. It is shown in Fig. 10 and numerical values are given
in Table 4.
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The (p arcsinhγ; p arcsinhτ)-diagram assists in getting a survey on
how the four design parameters p, g, t, and r2 interact with the torque:
If only the air-gap g is increased the point representing the system
moves on a horizontal line to the right. If only the thickness t of the
discs is increased it moves on a vertical axis upwards. If only the
number of pole-pairs p is increased the point moves outwards on a
straight line through the origin of the plane. If only the diameter of
the discs is increased the point moves outwards on a curve that is a
straight line going through the origin with some curvature at larger
distance to the origin (only in the case g = t this curve is a perfectly
straight line even at large distance from the origin).

Thus, if a typical coupling with g << r2 and t << r2 is designed,
we may begin with p = 1. Then the point in the (p arcsinhγ;

Maximum torque  

by optimized p 

Torque  

overshoot  

limit curves 

1.52 

 

2arcsinh rgp

2arcsinh rtp

 

(        )

(        )

8

Figure 10. Root locus for axial magnetic couplings with maximized
torque by optimum number of pole-pairs. This optimum-p curve is
shifted right of the torque overshoot limit curves (drawn for p =
1, 2,∞). See also numerical values in Table 4.

Table 4. Optimum-p curve: Numerical solution of (15) (cf. Fig. 10).
Bold numbers denote the most cost efficient design (cf. Section 6).
The value parcsinhγ = 1.51812 agrees with (79) in [1].

p arcsinhγ 0 0.05679 0.14010 0.33224 0.50111 0.61142 0.74233

p arcsinhτ ∞ 4.0 3.0 2.0 1.5 1.25 1.0

p arcsinhγ 0.761740 0.86359 1.00085 1.15519 1.32744 1.42046 1.51812

p arcsinhτ 0.966215 0.8 0.6 0.4 0.2 0.1 0
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Figure 11. Torque amplitude (in units Newton-times-meter)
of axial magnetic couplings without ferrous backplanes for
2B2

remr3
2

/
(µ0π) = 1 Nm and p → ∞ (non-overshoot case) according

to (14). The torque for parameters along the line (21) is also drawn:
It shows that the torque has a relative maximum if the point moves
outwards along a straight line in the (p arcsinh (g/r2) ; p arcsinh (t/r2))-
plane.

p arcsinhτ)-plane is within the torque overshoot region. If we increase
p the point moves outwards leaving the overshoot region: Then the
T (ψ0)-dependence is pulse shaped and with increasing p it resembles
more and more a sine wave. During this outward movement of the
point the peak torque value increases continuously until it reaches
its maximum when the point traverses the optimum-p curve. If p is
increased beyond this value the torque decreases again.

Figure 11 shows the torque amplitude in a 3D-plot. It increases
with smaller air-gap and thicker magnets, yet not infinitely. The
maximum torque is obtained for vanishing air-gap and infinitely thick
discs. For a finite air-gap g > 0, very thick discs, and large number of
pole-pairs the torque amplitude tends to the limit

lim
p→∞ lim

τ→∞ T̂ (no) =
2B2

remr3
2

µ0π

1∫

ρ=0

(
1− ρ2

) ∞∫

β=p arcsinh(γ/ρ)

βdβ

coshβ
dρ (16a)

Reversing the sequence of inner and outer integration gives

lim
p→∞ lim

τ→∞ T̂ (no) =
2B2

remr3
2

µ0π

∞∫

β=pγ

(
2β

3
− pγ +

(pγ)3

3β2

)
dβ

coshβ
(16b)
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For small pγ we can develop (16b) into a Mac Laurin series. With

∂

∂ (pγ)

∞∫

β=pγ

(
2β

3
− pγ +

(pγ)3

3β2

)
dβ

coshβ

∣∣∣∣∣∣∣
pγ→0

= −
∞∫

β=0

dβ

coshβ
+ lim

pγ→0
(pγ)2

∞∫

β=pγ

dβ

β2coshβ
(16c)

With the rule of de l’Hospital one can prove that the second term is of
type 0 ×∞ and converges to zero. The first integral is equal to π/2.
Thus the result for small air-gap is

lim
p→∞ lim

τ→∞ T̂ (no) =
2B2

remr3
2

µ0π

(
4
3

CCatalan − π

2
pγ + O2 (pγ)

)
(17)

with Catalan’s constant CCatalan
∼= 0.915966. For vanishing air-gap we

get the absolute maximum torque

T̂max = lim
p→∞ lim

τ→∞ T̂ (no)
∣∣∣
γ=0

=
8B2

remr3
2

3µ0π
CCatalan

∼=0.7775×B2
remr3

2

µ0
(18)

Thus with a strong anisotropic NdFeB magnet having Brem = 1.32T
one could theoretically obtain a torque of 135 Nm for discs with 10 cm
diameter. Of course this is not practical, because the magnet mass
would be huge and the air-gap needs to be kept close to zero. Yet
according to (17) the decrease of torque at small air-gaps is only
moderate: −13% for pg/r2 = 0.1.

6. MAXIMUM RATIO OF TORQUE OVER VOLUME OF
MAGNET

In practice one wants to achieve a certain torque with minimum mass of
magnet in order to keep the costs, the weight, and the inertia moment
low. To this end we compute the ratio of torque amplitude over twice
the volume of the driven disc V = 2πtr2

2 with Appendix C

lim
p→∞

T̂ (no)

V
=

B2
remr2

µ0π2g

pγ

pτ

1∫

ρ=0

(
1−ρ2

)



p(γ+τ)/ρ∫

β=pγ/ρ

βdβ

coshβ
−

p(γ+2τ)/ρ∫

β=p(γ+τ)/ρ

βdβ

coshβ


 dρ (19)

In (19) we factored out the term r2/g: g is usually given by mechanical
tolerances of the system and r2 is adjusted in order to achieve the
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desired value of the torque. Fig. 12 shows that this ratio has a global
maximum

lim
p→∞

(
T̂ (no)

V

)

max

= 0.17854× B2
remr2

µ0π2g
. (20a)

This maximum torque-volume ratio is obtained for

parcsinh (g/r2) = 0.76174 and parcsinh (t/r2) = 0.966215. (20b)

The ratio of the two coordinates in (20b) describes a straight line
through the origin of the (p arcsinhγ; p arcsinhτ)-diagram which we call
optimum t/g-line

1.2684 =
parcsinh (t/r2)
parcsinh (g/r2)

∼= t

g
(21)

Thus for axial couplings the thickness of the magnets should be 27%
larger than the spacing between them. Couplings with maximum
torque-volume ratio must fulfill this geometrical requirement. From
Section 5 we know that the point representing the coupling in the
(p arcsinhγ; p arcsinhτ)-diagram moves outwards on this straight line
when p increases and there is a maximum torque when the line
intersects the optimum-p curve. This proves that the solution (20b)
lies on the optimum-p curve (cf. Fig. 13).

VT
noˆ  

optimum t /g-line (21) 

2arcsinh rtp

2arcsinh rgp  (      )

(      )

(  )

Figure 12. Torque-volume ratio (in units Newton-times-meter-per-
cubic-meter): Ratio of non-overshoot torque amplitude over twice
the volume of the driven disc for B2

remr2/
(
µ0π

2g
)

= 1 Nm/m3. The
maximum is 0.17854 Nm/m3, it lies on the optimum t/g-line and occurs
at parcsinh (g/r2) = 0.76174 and parcsinh (t/r2) = 0.966215.
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iso-lines

optimum-p

curve (15) 

optimum t/

line (21) 

g-

maximum ratio

of torque over

magnet volume

arcsinh (      )p g/r2

arcsinh (      )p t/r2

^
T     /V

(no)

Figure 13. Torque-volume ratio in the (p arcsinhγ; p arcsinhτ)-plane.
The maximum torque-volume ratio is located on the crossing of the
optimum t/g-line (21) with the optimum-p curve (15).

With (21) and (20a) we get the most cost efficient torque

T̂ (no) ∼= 0.144172× B2
remr3

2

µ0
for

t = r2sinh
(

1.2684× arcsinh
g
r2

)
and p =

0.76174
arcsinh (g/r2)

(22)

Comparison of (22) with (18) shows that the most cost efficient torque
is 5.4 times smaller than T̂max. Therefore discs with 10 cm diameter
and Brem = 1.32T give cost efficient torques with 25Nm. This holds
for arbitrary air-gaps as long as (22) is fulfilled and the number of
pole-pairs does not get too small. Theoretically a coupling with a
10 cm diameter and 1µm thick magnet and 0.79µm gap with 96423
pole pairs would also produce 25Nm torque — thus one can minimize
magnetic mass by improved accuracy in the spacing of the discs.

Design Examples:
Suppose a rare earth magnet with Brem = 1.074T . A cost efficient

coupling should be constructed that has 1000 Nm torque. With (22)
it follows r2 = 19.6 cm. For this size an air-gap of approximately 1 cm
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can be guaranteed by construction. With parcsinh (g/r2) = 0.76174,
we get p = 14.9. We choose p = 15 and r2 = 20 cm. With
parcsinh (t/r2) = 0.966215 we get t = 12.9mm. The volume of the
driving disc is 1621 cm3. With a mass density of 7.5 g/cm3 its mass is
about 12.2 kg.

[N
m

]
T

ψ [ ]o
0

Figure 14. Comparison of torque: Finite element simulation (FEM)
versus analytic formula (14). The coupling has the parameters Brem =
0.54T , g = 10 mm, t = 13.5mm, p = 5, r2 = 67mm. The analytic
formula (14) assumes infinitely large driving disc. The FEM model
uses a driving disc which is 35% larger than the driven disc (see inset).
For large driving discs the analytic formula (14) is perfectly accurate.

VT
noˆ

iso-lines

maximum ratio 

of torque over 

magnet volume 

optimum-p

curve 

optimum t/g-

line 

2arcsinh rtp

2arcsinh rgp

(       )

(      )

(   )

Figure 15. Torque-volume ratio, optimum-p curve, and optimum t/g-
line for axial magnetic couplings with two ferrous backplanes (derived
from (25) in [30]).
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Another coupling has Brem = 0.54T , g = 10 mm, t = 13.5mm,
p = 5, and r2 = 67mm. It is close to the torque-volume maximum:
parcsinh (g/r2) = 0.744, parcsinh (t/r2) = 1.001. A torque amplitude
of 10.6Nm is predicted by (14). A finite element simulation gives
10.65Nm. There the driving disc was 35% larger than the driven disc
(r2 = 90.5 mm). If both driving disc and driven disc have r2 = 67 mm
a calculation according to chapter 4.7 of [33] predicts 8.65 Nm and
the analytical approximation (10b) gives only a 2% larger value with
significantly less computational effort: 8.82Nm.

7. CONCLUSION

The torque between two coaxial discs with multi-polar magnetization
in axial direction was discussed. Starting point was the field generated
by a driving disc with infinite diameter. The radial component of
this field can be expressed in an exact manner as a single integral
(6). It has a maximum at some specific radial distance (Fig. 2)
and its dependence versus rotational position is non-sinusoidal for
sufficiently small values of p arcsinh (t/r) and p arcsinh (g/r) (Fig. A1).
The torque between an infinitely large driving disc and a finite
driven disc (with diameter 2r2) can be expressed rigorously as
an integral over a term that is proportional to the radial field
component (5). Also for the torque we could identify a region in
the (p arcsinh (g/r2) ; p arcsinh (t/r2))-diagram, where its dependence
on twist angle between both discs shows overshoot (Fig. 9). For a given
geometry (g, t, r2) the torque shows a maximum versus the number of
pole-pairs p. These sets of parameters are located on the optimum-p
curve in the (p arcsinh (g/r2) ; p arcsinh (t/r2))-diagram (Fig. 10). The
ratio of torque over volume of the magnet has a global maximum (20),
which is located on the optimum-p curve (Fig. 13). An upper limit for
the torque on a disc with 10 cm diameter was found to be 135 Nm.
To this end the discs must be infinitely thick, their axial distance
must vanish, and anisotropic NdFeB magnets with Brem = 1.32T
are necessary (18). More economic couplings with maximum torque-
volume ratio have 5.4 times smaller torque and their magnet thickness
must be 27% larger than the spacing between them (21).

Comparison with numerical computations suggests that the
assumption of an infinitely large driving disc seems to hold well as
long as the radius of the driving disc is larger than the one of the
driven disc plus the sum of spacing and thickness (Fig. 14). If both
discs are equal in size one may resort to a correction term (10a). For
practical cases near the optimum torque-volume ratio this procedure
over-estimates the torque only by a small amount (Fig. 8).



Progress In Electromagnetics Research B, Vol. 40, 2012 21

In many practical cases one or both multi-pole magnetic rings
are glued to ferromagnetic backplanes, which increase the torque and
the dimensional stability of the coupling (cf. [30, 31]). The presented
theory does not account for this, yet it is possible to upgrade it by
use of the method of images in case of a single ferrous backplane or
by use of infinite series of images between two backplanes [32, 33].
For backplanes with µr → ∞ the Br-field vanishes at its surface
z = g +3t/2, which makes the torque formula (5) more compact. This
leads to curves similar to Fig. 13 yet with a different scale: Optimum
systems with ferrous backplanes have thinner magnets for the same
gap. This is also affirmed by the 2D approximation (25) in [30]: It
leads to a torque-volume ratio of

T̂ (no)

V
=

B2
remr2

µ0π2g

8
3

pg/r2

pt/r2

(sinh (2pt/r2))
2

sinh (4pt/r2 + 2pg/r2)
(23)

The largest value of (23) is obtained for pt/r2 = 0.301308 and
pg/r2 = 0.487383. It is 2.265 times larger than the torque-volume
ratio of (20a) without backplanes. Fig. 15 summarizes all properties
of (23) in the (p arcsinh (g/r2) ; p arcsinh (t/r2))-diagram.

For practical applications it is also important to consider the
significant axial force between the two discs. This is studied, e.g.,
in [24, 30, 33, 34] and there it is shown that the force is maximum at
zero torque and vice versa. This can be used to convert a rotation into
an axial vibration (e.g., for dynamic vibration absorbers or for a lock
that is opened by a magnetic key).

APPENDIX A.

When the test point approaches the driving disc the Br- and Bz-field
components versus angular position differ significantly from sinusoidal:
First the maxima get flat and the patterns become similar to pulse
shaped — then peaking occurs at the rising and falling edges of the
pulses. This so called overshoot is studied here.

A necessary condition for the occurrence of overshoot is

∂2

∂ψ2
Br

(
r, ψ =

π

p
, z

)
= 0

⇒
p arcsinh((z+t/2)/r)∫

β=p arcsinh((z−t/2)/r)

sinh (β/p)
coshβ

(
1− 2

(coshβ)2

)
dβ = 0. (A1)
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With z = t/2 + g, γ = g/r and τ = t/r this gives

p arcsinh(γ+τ)∫

β=p arcsinhγ

sinh (β/p)
coshβ

(
1− 2

(coshβ)2

)
dβ = 0 (A2)

Note that in the context of fields (not torque) g means the distance
of the test point from the surface of the disc and not the gap between
driving disc and driven disc. Equation (A2) defines a curve in the
(p arcsinhγ; p arcsinhτ)-plane. In the limit of vanishing thickness t → 0
the integrand must vanish and there again the second factor must
vanish. It follows

(cosh (p arcsinhγ))2 = 2 ⇔ p arcsinhγ = arcsinh (1) (A3)

A comparison of (A3) with Fig. 4 and (15a) in [1] shows that for
t → 0 overshoot in Br (ψ)- and Bz (ψ)-pattern occur simultaneously.
It also shows that for finite p the (p arcsinhγ; p arcsinhτ)-plane is more
appropriate than the (p γ; p τ)-plane, which was used in [1].

For arbitrary thickness and p → ∞ we may replace sinh (β/p) →
β/p in (A2). Closed integration gives

1 + p (arcsinhγ) tanh (p arcsinhγ)
cosh (p arcsinhγ)

=
1 + p (arcsinhγ + arcsinhτ) tanh (p arcsinhγ + p arcsinhτ)

cosh (p arcsinhγ + p arcsinhτ)
(A4)

For arbitrary thickness and p = 1 closed integration gives

2
1 + (γ + τ)2

− 2
1 + γ2

= ln
1 + γ2

1 + (γ + τ)2
. (A5)

(A4) and (A5) define two overshoot-limit curves for p = 1 and p →∞:
The curves for all other values of p are between these two curves (cf.
Fig. A1). Numerical values are given in Table A1.

Table A1. solution of (A4, A5): The table gives values for parcsinhτ
for several values of parcsinhγ for the extreme values p = 1 and
p → ∞ (the solutions for all other p are between these two extremes,
cf. Fig. A1). The case parcsinhτ = 0 agrees with (15) in [1].

p arcsinhγ 0.0 0.2 0.4 0.6 0.75 0.881374
p = 1 1.43479 1.29988 1.064080 0.710366 0.358582 0

p →∞ 1.50553 1.25810 0.930983 0.556529 0.261790 0
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zB

 (A 6) 

rB  
 (A2) 

2arcsinh rgp

2arcsinh rtp (     )

(     )

(      )ψ

(      )ψ

Figure A1. Overshoot limit curves for Br (ψ)- and Bz (ψ)-field
patterns (drawn for p = 1, 2,∞). For thin discs parcsinh(t/r2) → 0
they are identical yet for thick discs they differ. For parcsinh(t/r2) >
1.50553 Br (ψ) has no overshoot whereas Bz (ψ) has overshoot if
parcsinh(g/r2) is small enough. See numerical values in Tables 5 and
6.

According to (15a) in [1] the overshoot-limit curves for the
Bz (ψ)component are solutions to the equation.

sinh (parcsinh (γ + τ)) sinh (parcsinhγ) = 1 (A6)

For γ → 0 one obtains τ → ∞. Thus, for t > 0 these limit
curves are quite different from the Br (ψ)-limit curves as is shown
in Fig. A1. Numerical values are given in Table A2. For p = 1
(A6) gives τ = 1/γ − γ and for p → ∞ (A6) gives parcsinhτ =
arcsinh (1/sinh (parcsinhγ))− parcsinhγ.

APPENDIX B.

Here we prove that the torque correction term (10a), accounting for
the finite diameter of the driving disc, vanishes in the limit p → ∞.
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Table A2. Solution of (A6): The table gives values for parcsinhγ for
several values of parcsinhτ for the extreme values p = 1 and p →∞ (the
solutions for all other p are between these two extremes, cf. Fig. A1).
The case parcsinhτ = 0 agrees with (15a) in [1].

parcsinhτ 0.0 1.0 2.0 3.0 4.0 ∞
p = 1 0.881374 0.584227 0.40320 0.298331 0.233929 0

p →∞ 0.881374 0.468803 0.218425 0.090978 0.035362 0

First we split the integral in two positive parts
1∫

ρ=0

(
1−ρ2

)
K0

(
p

√
(ρ−1)2+γ2

)
dρ

=

1−γ∫

ρ=0

(
1−ρ2

)
K0

(
p

√
(ρ−1)2+γ2

)
dρ+

1∫

ρ=1−γ

(
1−ρ2

)
K0

(
p

√
(ρ−1)2+γ2

)
dρ(B1)

where we consider only n = 0. For 0 ≤ γ ≤ 1 the first part is bounded
by

1−γ∫

ρ=0

(
1−ρ2

)
K0

(
p

√
(ρ−1)2 + γ2

)
dρ<

1−γ∫

ρ=0

2 (1−ρ)K0(p (1−ρ)) dρ

=
2
p

(γK1 (pγ)−K1 (p)) (B2)

where we used 1 − ρ2 = (1 + ρ) (1− ρ) < 2 (1− ρ) and

K0

(
p
√

(ρ− 1)2 + γ2

)
< K0

(
p
√

(ρ− 1)2
)

. For 0 ≤ γ ≤ 1 also the

second part is bounded by
1∫

ρ=1−γ

(
1− ρ2

)
K0

(
p

√
(ρ− 1)2 + γ2

)
dρ

<

1∫

ρ=1−γ

2γK0

(
p
√

2 (ρ− 1)
)

dρ = 2γ2K0

(
p
√

2 (εγ)
)

(B3)

Here we used K0

(
p
√

(ρ− 1)2 + γ2

)
< K0

(
p
√

(ρ− 1)2 + (ρ− 1)2
)

.

The integration was not carried out because it leads to the Struve
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function L−1 (0) (which is not defined at zero and we would therefore
need to use a limit approach). Instead we used the mean value theorem
for integrals according to which the last identity in (B3) is valid for
some ε with 0 ≤ ε ≤ 1.

In (10) the integral of (B1) is multiplied by p

p

1∫

ρ=0

(
1− ρ2

)
K0

(
p

√
(ρ− 1)2 + γ2

)
dρ

< 2γK1 (pγ)− 2K1 (p) + 2γ (pγ) K0

(
εpγ

√
2
)

(B4)

In the limit p → ∞ with pγ remaining finite this means γ → 0 and
therefore all terms in (B4) vanish. We can repeat this argument with
the other two terms in the integrand of (10) by using γ + τ and γ + 2τ
instead of γ. This holds also for n > 0. Therefore, (10) vanishes for
p → ∞. This shows that our theory is accurate for two cases: (i) for
arbitrary p and infinite r2, and (ii) for infinite p and arbitrary r2.

APPENDIX C.

Here we prove a transformation of the torque integral, which is used
several times throughout this paper. Inserting (6) into (5) gives

T (ψ0)=
2pB2

remr3
2

µ0π
sin(pψ0)

1∫

ρ=0

(
1−ρ2

)




parcsinh((γ+2τ)/ρ)∫

β=parcsinh((γ+τ)/ρ)

sinh(β/p)coshβ

(coshβ)2 − (cos(pψ))2
dβ−
parcsinh((γ+τ)/ρ)∫

β=parcsinh(γ/ρ)

sinh(β/p)coshβ

(coshβ)2 − (cos(pψ))2
dβ





dρ (C1)

In Sections 4, 5, and 6 several properties of the torque are discussed and
it is found that they are located in the finite area 0 < p arcsinhγ < 2
and 0 < p arcsinhτ < 4 in the (p arcsinhγ; p arcsinhτ)-plane. This
implies that in the limit p → ∞ it must hold γ → 0 and τ → 0.
Therefore one is allowed to use p arcsinhγ → pγ and p arcsinhτ → pτ .
However, this is no justification to use p arcsinh (γ/ρ) → pγ/ρ in (C1),
because the integration variable ρ also assumes zero! Yet, we may
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write for the second integral in (C1)

lim
p→∞

1∫

ρ=0

parcsinh((γ+τ)/ρ)∫

β=parcsinh(γ/ρ)

(
1− ρ2

)
sinh(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ

= lim
p→∞

{ ∞∫

β=parcsinh(γ+τ)

(γ+τ)/sinh(β/p)∫

ρ=γ/sinh(β/p)

(
1− ρ2

)
sinh(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ

+

parcsinh(γ+τ)∫

β=parcsinhγ

1∫

ρ=γ/sinh(β/p)

(
1− ρ2

)
sinh(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ

}

=

∞∫

β=p(γ+τ)

p(γ+τ)/β∫

ρ=pγ/β

(
1− ρ2

)
(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ

+

p(γ+τ)∫

β=pγ

1∫

ρ=pγ/β

(
1− ρ2

)
(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ

=

1∫

ρ=0

p(γ+τ)/ρ∫

β=pγ/ρ

(
1− ρ2

)
(β/p)coshβ

(coshβ)2 − (cos(pψ0))2
dβdρ (C2)

This is the justification to skip the arcsinh-functions in (C1). It follows

lim
p=∞T (ψ0)=

2pB2
remr3

2

µ0πp

1∫

ρ=0

(
1−ρ2

)




p(γ+2τ)/ρ∫

β=p(γ+τ)/ρ

sin(pψ0)βcoshβ

(coshβ)2 − (cos(pψ0))2
dβ−

p((γ+τ)/ρ)∫

β=pγ/ρ)

sin(pψ0)βcoshβ

(coshβ)2 − (cos(pψ0))2
dβ





dρ (C3)
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