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Abstract—Linear magnetic gears take the definite merit of direct
force amplification or speed reduction without using any bulky,
inefficient rotary-to-linear mechanism. In this paper, an analytical
calculation approach to determine the performance of linear tubular
magnetic gears is proposed. The key is to adopt the concept
of anisotropic magnetic permeability to handle the field-modulation
region which consists of iron rings and airspaces in a zebra-striped
manner. By solving the Laplace’s and Poisson’s equations in the linear
tubular magnetic gear, the corresponding magnetic field distributions
can be analytically determined. Finally, the analytical calculation
results are compared with the numerical results obtained from the
finite element method, hence verifying the validity of the proposed
analytical field calculation.

1. INTRODUCTION

There is no doubt that mechanical gears were one of the most
important inventions, which can scale up and down the torque and
speed to satisfy various application needs. With ever increasing
demand on the transmission efficiency and reliability, mechanical gears
are being challenged by a new class of transmission devices — magnetic
gears. These magnetic gears employ magnetic attraction for torque
transmission, hence eliminating the transmission loss and wear-and-
tear problem [1, 2]. Moreover, the magnetic gears can readily be
integrated into the permanent magnet (PM) machines to form a special
class of PM machines — the magnetic-geared PM machines. They
can enable high-speed rotating-field design to increase the torque
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density while offering low-speed output rotation for in-wheel direct-
drive electric vehicles [3]. Also, they can perform online power splitting
of the engine power for electric variable transmission, hence offering the
optimal operation line for hybrid electric vehicles [4].

In order to handle linear motion, both the mechanical gears
and magnetic gears generally need to couple with a rotary-to-linear
mechanism which is bulky, heavy and inefficient. In recent years, the
concept of magnetic gears has been extended to the linear morphology,
namely the linear tubular magnetic gear as shown in Figure 1 [5, 6].
With the use of linear magnetic gears, the linear motion can be directly
handled without using any rotary-to-linear mechanism, such as the
linear free-piston generator for range-extended electric vehicles [7] and
the linear generator for wave energy harvesting [8].

In order to design and analyze the magnetic gear performances,
the finite element method (FEM) has been widely adopted [9–11].
The finite element method is an excellent tool for numerical field
calculation, but it provides little information on the relationship of
the machine geometry and its performance, and usually needs lengthy
computation [11]. To complement the FEM, the analytical calculation
for field analysis of machines including magnetic gears is highly
desirable [12–14]. However, the available analytical calculation method
for magnetic gears is developed for the coaxial topology [12]. Also,
because each airspace in the corresponding field-modulation region
needs to be modeled separately, the resulting analytical expression is
very complicated.

The purpose of this paper is to propose an analytical calculation
method for linear tubular magnetic gears. The key is to adopt the

(a) (b)

Figure 1. Linear tubular magnetic gear. (a) Front view. (b) Side
view.
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concept of anisotropic magnetic permeability to model the whole field-
modulation region, rather than to handle each airspace separately.
Firstly, the linear tubular magnetic gear will be analytically modeled.
Then, the corresponding magnetic field solution will be derived.
Consequently, the magnetic field distributions will be calculated by
using the proposed approach, and finally verified by comparing with
the FEM results.

2. ANALYTICAL MODEL

In the linear tubular magnetic gear, the magnetic fields are only
produced by PMs and no current source is involved. Thus the magnetic
scalar potential ψ is adopted for the magnetic field calculation. In
order to facilitate the analytical modeling, the following assumptions
are made:
(1) The permeability of back irons of two movers is assumed to be

infinite.
(2) The relative recoil permeability of PMs is assumed to be linear.
(3) The axial length is infinite so that the field distribution is axially

symmetric and periodic.
(4) The field-modulation region is considered to be composed of

anisotropic magnetic material in which the permeabilities along
the r-direction and the z-direction are different.
Figure 2 shows the model of the linear tubular magnetic gear. The

field-modulation region consists of field-modulation rings and airspaces
interleaving one another. From the point of view of the magnetic
circuit, it can be decomposed into the r and z directions. Namely, in
the r-direction, the field-modulation ring reluctance Rfm and airspace
reluctance Ras are connected in parallel, whereas in the z-direction, the
two reluctance are connected in series. Therefore, the permeabilities
along the two directions can be expressed as:

µfm r = µ0

(
1− bt

τt

)
+ µic

bt

τt
(1)

µfm z =
µ0µicτt

µicτt + bt(µ0 − µic)
(2)

where µ0 is the airspace permeability, µic is the iron core permeability,
bt is the width of the field-modulation rings, and τt is the pole-pitch of
the field-modulation ring.

In order to ease the modeling, PMs on the high-speed mover
and the low-speed mover are handled individually. Then, by using
the superposition law, the resultant magnetic field distribution can be
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(b) (c)

(a)

Figure 2. Linear tubular magnetic gear model. (a) Schematic
diagram. (b) Equivalent magnetic circuit of field-modulation region
along r-direction. (c) Equivalent magnetic circuit of field-modulation
region along z-direction.

obtained. Firstly, PMs on the high-speed mover are considered while
PMs on the low-speed mover are considered as airspace. Taking the
above-mentioned assumptions, the calculation areas can be divided
into four regions, namely the high-speed mover PM region I, the inner
air-gap region II, the field-modulation region III, and the outer airspace
region IV, as shown in Figure 3. The field density B̄ and field intensity
H̄ in each region can be deduced accordingly.

In region I, where PMs are involved, it yields:
B̄ = µ0

(
µrmH̄ + M̄

)
(3)

where µrm is the relative recoil permeability of PMs, and M̄ is the
residual magnetization vector.

In region III, where the material is anisotropic along the r and z
directions, it yields:

B̄r = µfm rH̄r (4)
B̄z = µfm zH̄z (5)

In regions II and IV, they are simply governed by:
B̄ = µ0H̄ (6)
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Figure 3. Field regions and boundaries.

Due to the symmetry of the tubular structure, the 3-D problem
can be reduced to a 2-D problem in which only the radial and axial
components exist. The governing field equations in the four regions can
be derived by using the Laplace’s and Poisson’s equations accordingly.

In region I, the governing equation can be expressed as:

∂2ψI

∂r2
+

1
r

∂ψI

∂r
+

∂2ψI

∂z2
=

1
rµrm

∂

∂r
(rMr) (7)

where Mr is the radial component of the residual magnetization vector.
In regions II and IV, the governing equation can be written as:

∂2ψII, IV

∂r2
+

1
r

∂ψII, IV

∂r
+

∂2ψII, IV

∂z2
= 0 (8)

In region III, the governing equation can be deduced as:

µfm r

(
∂2ψIII

∂r2
+

1
r

∂ψIII

∂r

)
+ µfm z

∂2ψIII

∂z2
= 0 (9)

In order to solve the above equations, the boundary conditions
need to be identified. As shown in Figure 3, there are five boundaries
formed by the four regions where ri, rm, rfi, rfo and ro are the
radii of the high-speed mover yoke, the surface of PMs on the high-
speed mover, the inner surface of the field-modulation region, the outer
surface of the field-modulation region and the low-speed mover yoke
respectively.

When r = ri, it yields:

HI
z(ri, z) = 0 (10)
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When r = rm, it yields:

HI
z(rm, z) = HII

z (rm, z) (11)

BI
r(rm, z) = BII

r (rm, z) (12)

When r = rfi, it yields:

HII
z (rfi, z) = HIII

z (rfi, z) (13)

BII
r (rfi, z) = BIII

r (rfi, z) (14)

When r = rfo, it yields:

HIII
z (rfo, z) = HIV

z (rfo, z) (15)

BIII
r (rfo, z) = BIV

r (rfo, z) (16)

When r = ro, it yields:

HIV
z (ro, z) = 0 (17)

It should be noted that since the axial length of the linear tubular
magnetic gear is assumed to be infinite, all the boundary conditions
are only radially dependent.

3. MAGNETIC FIELD SOLUTION

By using the separation of variables, the magnetic field equations
in regions II, III and IV governed by the Laplace’s equation can be
decomposed into a Helmholtz equation and a Bessel equation. Then,
by solving the two equations, a general solution can be obtained.

3.1. Field Solution in Regions without PMs

In region II, the solution of ψ can be expressed as:

ψII=
+∞∑

n=1

[
aII

n I0(knr)+ bII
n K0(knr)

]×[
cII
n sin(knz)+ dII

n cos(knz)
]

(18)

where I0(·) and K0(·) are the modified Bessel functions of the first kind
and the second kind of order zero, respectively.

In region III, the solution of ψ can be written as:

ψIII =
+∞∑

n=1

[
aIII

n I0(pnr) + bIII
n K0(pnr)

]

× [
cIII
n sin(knz) + dIII

n cos(knz)
]

(19)
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where
pn =

√
µfm z√
µfm r

kn (20)

In region IV, the solution of ψ can be deduced as:

ψIV =
+∞∑

n=1

[
aIV

n I0(knr) + bIV
n K0(knr)

]

× [
cIV
n sin(knz) + dIV

n cos(knz)
]

(21)

3.2. Field Solution in Region with PMs

For region I, the magnetic field equation is governed by the Poisson’s
equation. Its solution consists of a general solution and a particular
solution. The general solution has the same form as the other three
regions:

ψI
o =

+∞∑

n=1

[
aI

nI0(knr) + bI
nK0(knr)

]× [
cI
n sin(knz) + dI

n cos(knz)
]

(22)

The special solution depends on the magnetization distribution
of PMs. Figure 4 depicts the PM magnetization distribution Mr on
the high-speed mover. Since the PMs are radially magnetized, the
magnetization function is only z-dependent. In general, it can be
expressed as [14]:

Mr =
R1

(
R2 + r2

)

r

+∞∑

n=1

Mn sin(ωnz) (23)

where

R1 =
1

ri + rm
(24)

Mr

M0

z

τ

Figure 4. PM magnetization distribution.
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R2 = rirm (25)

ωn =
2n− 1

τ
π (26)

Mn =
4Bres

µ0

1
(2n− 1)π

(27)

where ri and rm are the radii of the high-speed mover and the PMs on
the high-speed mover respectively, and Bres is the residual flux density
of PMs. Thus, by using the separation of variables, the particular
solution can be deduced as:

ψI
p = −2R1

µrm

+∞∑

n=1

Mn

ω2
n

sin(ωnz) = −2R0

+∞∑

n=1

Mn

ω2
n

sin(ωnz) (28)

3.3. Boundary Conditions

Based on the boundary conditions of each region, the coefficients of
the above equations can be determined accordingly.

Firstly, on the surface of the high-speed mover back iron,
from (10), it yields:

[
AI

nI0(knri) + BI
nK0(knri)

]
cos(knz)− 2R0

Mn

ω2
n

cos(ωnz) = 0 (29)

Thus, it further yields:
kn = ωn (30)

AI
n =

2R0Mn

I0(ωnri)ω2
n

− F (ωn, ωn, ri, 0)BI
n (31)

Secondly, on the surface of the low-speed mover back iron,
from (17), it yields:

AIV
n I0(ωnro) + BIV

n K0(ωnro) = 0 (32)
Thirdly, on the surface of the PMs on the high-speed mover,

from (11) and (12), it yields:

AI
nI0(ωnrm) + BI

nK0(ωnrm)− 2R0
Mn

ω2
n

= AII
n I0(ωnrm) + BII

n K0(ωnrm) (33)

µrm[AI
nI1(ωnrm)−BI

nK1(ωnrm)] +
Mn

ωn

= AII
n I1(ωnrm)−BII

n K1(ωnrm) (34)
where I1(·) and K1(·) are the modified Bessel functions of the first kind
and the second kind of order one, respectively.
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Fourthly, on the inner surface of the field-modulation region,
from (13) and (14), it yields:

AII
n I0(ωnrfi) + BII

n K0(ωnrfi)

= AIII
n I0(pnrfi) + BIII

n K0(pnrfi) (35)

µ0ωn

[
AII

n I1(ωnrfi)−BII
n K1(ωnrfi)

]

= µfm rpn

[
AIII

n I1(pnrfi)−BIII
n K1(pnrfi)

]
(36)

Finally, on the outer surface of the field-modulation region,
from (15) and (16), it yields:

AIII
n I0(pnrfo) + BIII

n K0(pnrfo)

= AIV
n I0(ωnrfo) + BIV

n K0(ωnrfo) (37)

µfm rpn[AIII
n I1(pnrfo)−BIII

n K1(pnrfo)]

= µ0ωn

[
AIV

n I1(ωnrfo)−BIV
n K1(ωnrfo)

]
(38)

By solving (29)–(38), the coefficients can be determined. The
corresponding details are given in the Appendix. With these solutions,
the magnetic scalar potential expression in each region can be
expressed in a Fourier series. Namely, in the inner air-gap, it is given
by:

ψII =
+∞∑

n=1

[
AII

n I0(ωnr) + BII
n K0(ωnr)

]× sin(ωnz) (39)

Meanwhile, in the outer air-gap, it is given by:

ψIV =
+∞∑

n=1

[
AIV

n I0(ωnr) + BIV
n K0(ωnr)

]× sin(ωnz) (40)

where AII
n , BII

n , AIV
n , and BIV

n are the coefficients determined by the
boundary conditions which are given in Appendix A.

4. CALCULATION RESULTS AND VERIFICATION

In order to verify the proposed calculation, a practical linear tubular
magnetic gear is adopted for exemplification. Table 1 lists its key data.

According to (39) and (40), the magnetic scalar potential
distributions at both the inner and outer air-gaps can be calculated as
shown in Figure 5 in which the effects due to PMs on the high-speed
and low-speed movers are determined separately. In order to determine
the performance of the linear tubular magnetic gear, the magnetic flux
density distributions at the inner and outer air-gaps can be deduced
from the corresponding magnetic scalar potential distributions.
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Table 1. Key data of linear tubular magnetic gear.

High-speed mover yoke radius 16 mm
High-speed mover PM pole-pitch 12mm
Low-speed mover PM pole-pitch 6 mm
PM height 4 mm
Air-gap length 1 mm
Field-modulation ring height 6 mm
Field-modulation ring width 4mm
Field-modulation ring pitch 8 mm
Field-modulation ring relative permeability 4000
PM relative permeability 1.09
PM remanence 1.23T
PM coercivity 890 kA/m

(a) (b)
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Figure 5. Magnetic scalar potentials at inner and outer air-gaps. (a)
Due to PMs on high-speed mover. (b) Due to PMs on low-speed mover.

Firstly, when the PMs on the high-speed mover are considered
while those on the low-speed mover are ignored, the magnetic flux
density distributions in the inner air-gap are given by:

BII
r = µ0

+∞∑

n=1

ωn

[−AII
n I1(ωnr) + BII

n K1(ωnr)
]× sin(ωnz) (41)

BII
z = −µ0

+∞∑

n=1

ωn

[
AII

n I0(ωnr) + BII
n K0(ωnr)

]× cos(ωnz) (42)

Similarly, the magnetic flux density distributions in the outer air-gap
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are given by:

BIV
r = µ0

+∞∑

n=1

ωn

[−AIV
n I1(ωnr) + BIV

n K1(ωnr)
]× sin(ωnz) (43)

BIV
z = −µ0

+∞∑

n=1

ωn

[
AIV

n I0(ωnr) + BIV
n K0(ωnr)

]× cos(ωnz) (44)

Consequently, the corresponding air-gap flux density distributions are
calculated as depicted in Figure 6 in which the radial and tangential
components are separately plotted. In order to verify the analytical
calculation, the air-gap flux density distributions are also numerically
computed by using the FEM. By comparing the analytical results with
the FEM results, it can verify that the proposed analytical calculation
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Figure 6. Magnetic flux density distributions due to PMs on high-
speed mover. (a) Radial component in inner air-gap. (b) Tangential
component in inner air-gap. (c) Radial component in outer air-gap.
(d) Tangential component in outer air-gap.
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Figure 7. Magnetic flux density distributions due to PMs on low-
speed mover. (a) Radial component in inner air-gap. (b) Tangential
component in inner air-gap. (c) Radial component in outer air-gap.
(d) Tangential component in outer air-gap.

can provide the same level of accuracy as the FEM. It should be noted
that the analytical calculation takes the definite advantages that it
can provide insight of the relationship between the machine geometry
and its performance, and can avoid lengthy computation for design
optimization.

Secondly, when the PMs on the high-speed mover are ignored
while that on the low-speed mover are considered, the corresponding
air-gap flux density distributions are calculated as depicted in Figure 7
which are obtained based on the same approach. Again, by comparing
the analytical results with the FEM results, it can further verify
that the proposed analytical calculation can provide the same level
of accuracy as the FEM.

Finally, by applying the superposition law, the analytically
calculated magnetic flux density distributions in the two air-gaps due
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Figure 8. Magnetic flux density distributions due to PMs on both
movers. (a) Radial component in inner air-gap. (b) Tangential
component in inner air-gap. (c) Radial component in outer air-gap.
(d) Tangential component in outer air-gap.

to PMs on both movers can be deduced from Figures 6 and 7. As shown
in Figure 8, the analytical distributions are well verified by comparison
with the numerical distributions obtained from using the FEM.

5. CONCLUSIONS

In this paper, an analytical approach for calculation of magnetic field
distributions in linear tubular magnetic gears has been proposed.
Compared with conventional analytical approaches, the concept of
anisotropic magnetic permeability is firstly utilized to model the field-
modulation region. Thus the proposed analytical expression can be
much simplified and the analytical calculation can be greatly reduced.
Based on a practical linear tubular magnetic gear, the validity and
accuracy of the proposed analytical calculation are well verified by



168 Li and Chau

comparing the calculation results with that obtained from using the
FEM.
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APPENDIX A.

Let

E(f1, f2, r, n) =
In(f1r)
In(f2r)

F (f1, f2, r, n) =
Kn(f1r)
In(f2r)

G(f1, f2, r, n) =
Kn(f1r)
Kn(f2r)

H(f1, f2, r, n) =
In(f1r)
Kn(f2r)

c0 =
µ0√

µfm rµfm z

S =

[
G(ωn, pn, rfo, 0)− c0G(ωn, pn, rfo, 1)
−F (ωn, ωn, ro, 0) bH(ωn, pn, rfo, 0) + c0H(ωn, pn, rfo, 1)c

]

H(pn, pn, rfo, 0) + H(pn, pn, rfo, 1)

T =

[
F (ωn, pn, rfo, 0) + c0F (ωn, pn, rfo, 1)
−F (ωn, ωn, ro, 0) bE(ωn, pn, rfo, 0)− c0E(ωn, pn, rfo, 1)c

]

F (pn, pn, rfo, 0) + F (pn, pn, rfo, 1)

U =

[
S bc0H(pn, ωn, rfi, 0) + H(pn, ωn, rfi, 1)c
+T bc0G(pn, ωn, rfi, 0)−G(pn, ωn, rfi, 1)c

]

c0 [H(ωn, ωn, rfi, 0) + H(ωn, ωn, rfi, 1)]

V =

[
S bc0E(pn, ωn, rfi, 0)− E(pn, ωn, rfi, 1)c
+T bc0F (pn, ωn, rfi, 0) + F (pn, ωn, rfi, 1)c

]

c0 [F (ωn, ωn, rfi, 0) + F (ωn, ωn, rfi, 1)]
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W =
U [µrmH(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)] + V (µrm − 1)

µrm [H(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)]

X =
U (µrm − 1) + V [µrmF (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]

µrm [F (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]

aIV
n = −F (ωn, ωn, ro, 0)

Then, it yields:

BIV
n =

2R0Mn

[W + XF (ωn, ωn, ri, 0)] I0(ωnri)ω2
n

− 2R0Mn[
ω2

nK0(ωnrm) [H(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)]
[W + XF (ωn, ωn, ri, 0)]

]

+
Mn[

µrmωnK1(ωnrm) [H(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)]
[W + XF (ωn, ωn, ri, 0)]

]

− 2R0MnF (ωn, ωn, ri, 0)[
ω2

nI0(ωnrm) [F (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]
[W + XF (ωn, ωn, ri, 0)]

]

− MnF (ωn, ωn, ri, 0)[
µrmωnI1(ωnrm) [F (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]
[W + XF (ωn, ωn, ri, 0)]

]

AIV
n = aIV

n BIV
n

AIII
n = SBIV

n

BIII
n = TBIV

n

AII
n = UBIV

n

BII
n = V BIV

n

AI
n = WBIV

n +
2R0Mn

ω2
nK0(ωnrm) [H(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)]

− Mn

µrmωnK1(ωnrm) [H(ωn, ωn, rm, 0) + H(ωn, ωn, rm, 1)]

BI
n = XBIV

n +
2R0Mn

ω2
nI0(ωnrm) [F (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]

+
Mn

µrmωnI1(ωnrm) [F (ωn, ωn, rm, 0) + F (ωn, ωn, rm, 1)]
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