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Abstract—This study introduces an extended optimal filtering
technique for adaptive-on-transmit radar based on the transmission of
pseudorandom noise waveforms as a method to simultaneously achieve
low sidelobe level and spectral purity without degrading the main peak
of the cross-correlation function. The proposed method is an extended
version of the classical optimal filtering technique, resulting in longer
codes with three simultaneously improved features that usually work
in trade-off: 1) the cross-correlation function (CCF) sidelobe level is
reduced in direct proportion to the filter length, K ; 2) the out-of-
band spectral suppression is at least 40 dB for pseudorandom binary
sequences (PRBS); and 3) the frequency spectrum tail presents a decay
given by K−4, offering larger out-of-band frequency suppression. The
proposed technique provides skew-symmetry to the input signal and
is tested on PRBS, Barker, and Golay pair of complementary codes.
The proposed codes are also demonstrated to be Doppler resistant and
offer better multipath capability.

1. INTRODUCTION

The search for new codes with a given performance metrics is a common
practice for many applications including radar applications. Often
in this process, the objective is to improve upon a specific feature
of the code. For example, a CCF with lower sidelobe levels can be
achieved using codes with comparatively larger lengths. In order to
obtain higher lengths some properties of well-known codes, such as the
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skew symmetry [1], can be explored to reduce the search effort. An
alternative choice would consist of designing a completely new code
instead of making use of the property of an existing code. However,
this option can lead to a larger research effort, sometimes required
of introducing deep changes in the involved hardware structures. In
this paper, we discuss a way to provide a skew-symmetry to a binary
code of any length. This solution can be combined with a transmitter
able to modify the transmitting signal, becoming the set in a powerful
adaptive transmitter system.

In radar applications, adaptive-on-transmit (AT) techniques are
used at the transmitting end as a way to combat the adverse effects
of the dynamically changing propagation environment. One of these
AT techniques consists of manipulating one initial waveform, usually
binary coded sequences, to achieve a new transmitted sequence having
some desired characteristics. Two of the desired characteristics are
that: (1) the sidelobe level (SLL) of the cross-correlation between
the transmitted and the received waveform is minimal, and (2) the
spectrum of the transmitted sequence should be either fully band-
limited and/or provide sufficient out-of-band suppression (OBS). This
latter parameter is measured as the amplitude of the first sidelobe
present in the frequency spectrum magnitude of the transmitted code.
It is desirable to maintain an OBS value as low as possible.

A typical AT technique is given in the form of a waveform-filter
pair [2, 3], as in Fig. 1. According to this technique, an input digital
binary code sM is transformed into a new code qK via a matrix
transformation A. This matrix acts on some aimed features of the
original code sM , such as the SLL noise, so the performance of this
method can be seen as a filter. The resulting output qK , termed
reference code in [2, 3] is a new code having the same length as the
filter K > M .

However, AT techniques can work only on one feature of the
transmitted waveform, and as a result other attributes can be
negatively impacted. This is also the case for the waveform-filter pair

Figure 1. Functional diagram of waveform-filter pair.
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method. If this technique is applied to a binary sequence, specifically,
the pseudorandom binary sequence (PRBS) to reduce the SLL below
a certain threshold, the OBS is negatively impacted. That is, the
spectral purity of the transmitted signal will be compromised due to
work in trade-off with the SLL.

In this paper, we report an improved method to obtain a
waveform-filter pair suitable as an AT approach. This method makes
use of skew-symmetry property such that better performing codes are
obtained from an input binary code of any length. The outcome is
a longer transmitted code, herein named as extended optimal code,
which can achieve simultaneously both lower aperiodic CCF SLL, and
spectrally clean waveforms with an increased OBS level, which becomes
a positive feature, directly proportional to the filter/code length K ′ ≥
2 ·M . The main CCF peak, however, remains unaffected, and thereby
enhances the dynamic range of the system as well as its ability to detect
weaker returns. The outcome is a sidelobe spread-out measured in
terms of integrated sidelobe level (ISL); the secondary sidelobes energy
is distributed over a larger delay range. As a result, we find more
samples of the CCF delay range with secondary sidelobes presence but
with an amplitude level considerably reduced. The proposed extended
technique indicates Doppler tolerance, and so an opposite tendency for
the waveforms designed to achieve minimum CCF SLL.

The waveform-filter method presented herein has its roots in the
classical optimal filter method [2, 3] which takes an input a binary code
to transform it in an outcoming signal with reduced SSL. However, we
demonstrate that this transformation only works properly with skew-
symmetrical codes. Even for this case, the filtering proposed does
not achieve an optimal performance in terms of equal distribution
of secondary sidelobes energy or CCF ISL, nor an optimal frequency
spectrum.

We show in Subsection 2.1 that this classical version presents an
unbalanced distribution of the CCF SLL peaks. This fact was observed
for the cases of PRBS and complementary codes [4], particularly
with the Golay code pairs. Even though a modification to the
classical optimal filter method is introduced to solve this limitation,
the aimed trade-off between CCF SLL and OBS is not achieved.
As a novel solution, we designed an extended version that achieves
simultaneous improvement on both attributes for any kind of binary
coded sequences. Subsequently, we refer our proposed method as
the “extended version”. Additionally, keeping the terminology used
by Greip in [2], we apply the label “optimal” to indicate the finest
simultaneous performance in terms of CCF SSL reduction, equal CCF
ISL distribution and reduced OBS in the frequency spectrum.
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Extended codes, as proposed here, possess narrowband features
in the related frequency spectrum. This property impacts other
important features, such as low probability of detection and intercept
(LPD/LPI), immunity to external electromagnetic interference (EMI),
spectral efficiency, and immunity to jamming.

In Section 2, we briefly discuss theoretical preliminaries related
to classical optimal filters and their modified form. In Section 3,
the extended version is discussed. This section highlights the
commonalities and differences with the classical version. The
performance analysis for Barker, PRBS and Golay codes is presented
in Subsections 3.1, 3.2 and 3.3, respectively. This performance
is compared to the given by other windowing techniques in
Subsection 3.4. It is demonstrated in Section 4, that the proposed
extended technique is Doppler resistant. Section 4 also discusses the
multipath capabilities of the proposed extended codes. In Section 5,
we briefly discuss the theoretical background, regarding concepts about
the use of AT techniques, noise level mitigation as well as interest of the
waveform-filter pairs. An overall scope about the possible application
of the extended codes is also depicted in Section 5. Finally, conclusions
are offered in Section 6.

2. BRIEF THEORETICAL BACKGROUND TO CLASSI-
CAL OPTIMAL AND MODIFIED OPTIMAL FILTERS

2.1. Classical Optimal Filters

The optimal filtering technique [2, 3] can be applied to find an optimal
code q = {qK} for a transmitted binary signal, s = {sM}. The
target feature is that the cross-correlation between the original and
the new code offers minimal CCF SLL. This technique works well
with codes having some symmetrical or repetitive behaviour, such as
the Barker codes. However, it results in increased CCF SLL levels
for codes with non-repetitive behaviour in the CCF shape and/or in
the binary pattern, such as PRBS and/or Golay complementary code
pairs, this latter with skew-symmetrical pattern [5]. A skew-symmetric
binary sequence is formed by interleaving an odd length symmetric
sequence with an even length asymmetric sequence. This means that a
skew-symmetric binary sequence (a0, a1, . . . , aN ) meets the condition
[(aj ·aj+k)+(aN+1−j−k ·aN+1−j) = 0], for odd k, implying that all even
length autocorrelation sums are 0. All odd-length Barker sequences are
skew-symmetrical. Skew-symmetrical sequences are known to attain
the optimal merit factor value [6–8].

As an example, we compare in Fig. 2, the ideal auto-correlation
function (ACF) corresponding to the M = 13 bit Barker code
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together with the CCF achieved using the classical optimal filtering
technique [2, 3]. For the latter, we generated an optimal code qK,M ,
with length K = 2 · M + 1 = 27. The original Barker code used in
this example was s13 = {−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1}
and the new code obtained with the classical filtering technique q27,13

is indicated in Appendix A.
In Fig. 3 we show the spectrum S(f) corresponding to both

codes, s13 and q27,13. In Fig. 2, the resulting CCF for q27,13 offers an
improvement of 0.6 dB in ISL compared to the ACF of the original
Barker code s13. However, OBS using classical filtering technique
worsens, as shown in Fig. 3.

If the same classical optimal filtering technique is applied to the
M = 15 PRBS s15 = {−1,−1,−1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1}, a
slight improvement of 1 dB is seen in the ISL level, while the OBS
increases by 1 dB. The classical filtering technique also resulted in
a non-symmetric CCF, as shown in Fig. 4. The magnitude of the
frequency spectrum S(f) corresponding to both s15 and q31,15 is plotted
in Fig. 5.

In a similar manner, we have obtained Fig. 6 and Fig. 7, for the
pair of Golay complementary sequences sa16 = {1, 1, 1,−1, 1, 1,−1, 1, 1,
1, 1,−1,−1,−1, 1,−1} and sb16 = {1, 1, 1,−1, 1, 1,−1, 1,−1,−1,−1, 1,
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Figure 2. ACF corresponding to Barker case.
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Figure 3. S(f) magnitude corresponding to Barker case.
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Figure 4. ACF corresponding to PRBS case.
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Figure 5. S(f) magnitude corresponding to PRBS case.
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Figure 6. ACF corresponding to Golay case.
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Figure 7. S(f) magnitude corresponding to Golay case.

1, 1,−1, 1}. In Figs. 2–7, the third plot is related to the extended op-
timal filtering technique proposed in this paper, as detailed in Subsec-
tion 3.2. We should notice that K = 2M for the Golay case since each
original single sequence of the pair is even length, whereas K = 2M + 1
for the Barker and PRBS cases due to the odd length of these codes.

The classical optimal filtering technique [2, 3] is used to obtain the
code q = {qK} by minimizing the energy E in (3) of the correlation
between q and the original signal s = {sM} with K ≥ M :

y = q∗ · Λ (1)

Λ =




sK . . . s2 s1 0 . . . 0
0 sK . . . s2 s1 0 0

. . .
0 . . . 0 sK . . . s2 s1




Kx(2·K−1)

(2)

E = y · yH = q∗ · (Λ · ΛH
) · qT = q∗ ·A · qT (3)

The solution vector q that minimizes the energy E must satisfy
two constraints: the matrix AK×K = Λ·ΛH cannot be singular, and the
zero-delay peak should remain unaffected to avoid the CCF distortion.
Therefore, (3) is solved subject to the constraint indicated in (4)

s · qH = s · sH , (4)
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resulting in the optimal code vector qK in (5),

qK =
s ·A−1 · (s · sH

)

s ·A−1 · sH
, (5)

with length K ≥ M . We can notice that the transformation by (5)
turns the originally binary code sM into a multilevel or m-ary code.
More specifically, the final achieved code q results to be K-ary.

The reduction in the SLL is proportional to the length K; an
obvious fact that larger codes yields lower SLL. As we illustrated
in Figs. 2, 4 and 6, for this classical version of the optimal filtering
technique, the CCF for the code qK presents an unequal distribution
of the SL energy. We discuss a possible solution to this problem in the
following subsection.

2.2. Modification of Classical Optimal Filters

It may be noted in (5) that if K > M , then the original sequence
{s = sM} with length M must be filled with (K − M) zeros, such
that the elements of s, {sM+1, sM+2, . . . , sK} = 0. If the null elements,
{sM+1, sM+2, . . . , sK} are placed as indicated above, it produces an
asymmetrical CCF in terms of unequal distribution of the sidelobes,
resulting in large sidelobes located close to the main peak. This would
result in masking the weaker returns from a target located next to
a stronger target or a stronger clutter. Therefore, we propose the
distribution of the (K −M) null elements in (6) so that symmetrical
and spread-out sidelobe distribution of the resultant CCF is achieved.
The original code s with length M turns into an intermediate code s′
with length K, as indicated in (6):

s′ = {Ō(K−M)/2
sM . . . s1 Ō(K−M)/2

}
K

(6)

where Ō
(K−M)/2

denotes a vector of (K −M)/2 null elements.
However, this code is not optimum in terms of simultaneous SLL

and OBS capabilities, even when the length K is very large.

3. PROPOSED EXTENDED OPTIMAL FILTERING
TECHNIQUE

The code qK in (5) results in a symmetrical matrix if it is applied
to codes sM with some kind of symmetry or repetitive pattern, such
as the Barker codes, as explained in Subsection 2.1 above. For a
transmit sequence sM with non-repetitive behaviour, such as PRBS,
a redistribution of (K −M) null elements as indicated in (6) must be
adopted to achieve the symmetry. We propose a transformation of the
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original code {s = sM}, into a new intermediate code s′′, {s′′2M}, as
indicated in (7):

s′′ = {s1 − sM s2 − sM−1 s3 − sM−2 . . . sM − s1} 2M (7)

A skew-symmetrical binary sequence s′′ is achieved by the transfor-
mation proposed in (7). We also require a similar distribution of the
(K − 2M) null elements as in (6), so the final intermediate code s′′ is
given as in (8):

s′′=
{
Ō(K−2M)/2 s1 −sM s2 −sM−1 s3 −sM−2. . . sM −s1 Ō(K−2M)/2

}
2M

(8)

If we now apply the optimal filter process to this new code s′′ (8),
we obtain an extended code q′K′ with a length K ′ = 2 ·K ≥ 2 ·M that
follows the same expression given in (5), but with s′′ (8) replacing
s in (5). In the following subsections, we used this technique for
three types of binary codes, namely PRBS, Golay, and Barker codes.
We can notice that K ′ is an entire multiple of the original length M
for the Barker, PRBS and Golay cases due to the even length of the
corresponding intermediate sequence s′′.

We also observe that the arrangement proposed in (8) maintains
the skew-symmetry of the extended code. For this reason the CCF
undergoes a remarkable improvement in terms of SSL and ISL, as
demonstrated below.

3.1. Application of Extended Optimal Filters to Barker
Codes

It may be observed in Fig. 2 and Fig. 3 that the improvement in terms
of both ISL and OBS is also noteworthy when the proposed technique is
used on the 13-bit Barker code s13 (given in Subsection 2.1), resulting
in the extended code tagged q′104,13 (given in Appendix A).

The ISL improvement ∆ISL, the OBS improvement ∆OBS, and the
spectral decay can be shown to follow (9)–(11):

∆ISL = 10 · log10

(
K ′

2M

)
[dB] (9)

∆OBS = 10 · log10

(
K ′3

4M2

)
[dB] (10)

S (f)q′
K′,M′

= 20 · log10

(
10M

K ′2 · 1
f

)
[dB] (11)

The parameter ∆OBS indicates the ratio between the levels of the
first spectral sidelobe corresponding to codes sM and q′K′,M , evaluated
at 1.5/Tc, Tc being the chip period.
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3.2. Applications of Extended Optimal Filters to PRBS

We have used the extended optimal filtering in (7) with the same
original PRBS code s15 given in Subsection 2.1, for K ′ = 8·M , M = 15,
to produce the extended code q′120,15 (given in Appendix B). The CCF
and the S(f) corresponding to the extended code q′120,15 are shown in
the third plot of Figs. 4 and 5. It may be noted in Fig. 4 that the
proposed technique has resulted in a CCF with symmetrical pattern.
We may also observe that the new code simultaneously optimizes
both CCF SLL and frequency spectrum S(f) corresponding to q′120,15,
thereby providing significant OBS. Furthermore, the improvement in
the ISL reduction is equivalent to an extension of the original signal
length s from M to 8M .

Simulations have been performed for different values of M within
the range [15, 213 − 1] and K ′ = r · 2 ·M, r = 1, 2, . . .. We noted that
the ISL improvement ∆ISL follows (12), while the OBS improvement
∆OBS follows (13):

∆ISL = ISLs − ISLq′ = 10 · log10

(
K ′

M

)
[dB] (12)

∆OBS = OBSs −OBSq′ = 10 · log10

(
K ′3

2M2

)
[dB] (13)

The value ∆ISL tends asymptotically to −50 dB after K ≥ 32M .
For S(f), the ∆OBS is about 35.5 dB for K ′ = 8 · M , ensuring
a minimum OBS improvement of 25 dB when compared to that of
K ′ = 2 ·M . The S(f) tail decay for the extended code q′K′,M can be
evaluated using (14):

S (f)q′
K′,M′

= 20 · log10

(
3M

K ′2 ·
1
f

)
[dB] (14)

The main advantage derived from the use of the extended optimal
filter is that both ISL and OBS are reduced in direct proportion to
the ratio K ′/M without distorting the main CCF peak. The effect on
both ISL and OBS is due to the time spreading effect of the optimal
filters on the original signal. The extended code q′K′,M has the same
energy as in s′2M , resulting in an unaltered main CCF peak as in (4),
and distributing the SL energy by a time spreading factor K ′/M .

From (9)–(11) we observe that ∆ISL and ∆OBS are lower than
that of obtained for the PRBS case given in (12)–(13). However, the
frequency spectral tail decay is steeper.
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3.3. Applications of Extended Optimal Filters to Golay
Code Pairs

For the Golay case, the ISL level, corresponding to a perfect code,
is null. So, we can only band-limit its spectrum to comply with
emission regulations or to decrease and/or eliminate the detection and
intercept probability. The technique proposed for the PRBS case in
Subsection 3.2 is also valid for Golay complementary code pairs. The
expressions for ∆OBS and the spectrum decay for the Golay single
sequences can be shown to follow (15)–(16):

∆OBS = 10 · log10

(
K ′3

8M2

)
[dB] (15)

S (f)q′
K′,M′

= 20 · log10

(
8M

K ′2 ·
1
f

)
[dB] (16)

The CCF and S(f) corresponding to the Golay extended optimal
filter are shown in Fig. 6 and Fig. 7, respectively. For these plots, we
have used the same original Golay pair of codes sa16, sb16 indicated
in Subsection 2.1, to produce the extended code q′128,16 (given in
Appendix C).

3.4. Comparison of Extended Optimal Codes to Other
Windowing Techniques

In Table 1, we compare the CCF main peak loss, the sidelobe
reduction ∆ISL, and the OBS, ∆OBS achieved using classical windowing
techniques, and the extended optimal filters presented in this paper.
It may be observed that, in terms of OBS, the best performance
corresponds to the Blackman window. However, the extended codes

Table 1. Comparison of various filtering and windowing techniques.

Sequence PRBS (M=15) / Golay (M=16) / Barker (M=13)

Parameter ACF peak 

attenuation [dB] OBS [dB] ISL [dB]

Window 

type

Rectangular 0 / 0 / 0 -2.04 0 / 0 / 0 

Hamming 0.73 /1.36 / 0.73 25.5 -2.93 / 0 / 2.67 

Hanning 0.67 / 1.78 / 0.67 16.5  -2.76 / 0 / 2.46 

Blackman 0.57 / 2.39 / 0.57 41.5 -3.07 / 0 / 2.73 

Kaiser (  =2) 2.76  / 4.41 / 2.76 30.5 -2.97 / 0 / 2.67 

Classical optimal qK=8M+1,M 0 / 0 / 0 1 / 1 / -1 3.32 / -156.29 / 0.9 

Extended optimal q’K’=8M,M 0 / 0 / 0 35.5 / 30 / 37 9 / -154.23 / 6 

β
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proposed in this paper offer simultaneous improvement in ∆ISL and
∆OBS while retaining the main CCF peak unaltered.

4. DOPPLER AND MULTIPATH CAPABILITY OF
EXTENDED OPTIMAL CODES

In Fig. 8, we show the AF magnitude |χ(τ ; ν)| corresponding to the
PRBS extended code q′120,15. An accurate performance in both range
and Doppler shift may be noted. The spreading of the SL energy by
the spreading factor K ′/M is the key for this improved performance.

Additionally, the multipath detection capability of the original
signal sM is not affected by its transformation into the extended code
q′K′,M . In Fig. 9, we have depicted an example of multipath resolution
corresponding to the extended code q′120,15 obtained from the same
original PRBS code s15 given in Subsection 2.1, for K ′ = 8·M , M = 15.
Four multipath components were placed at delays 2·Tc, 4·Tc, 6·Tc and
8·Tc, with amplitudes of 0.75V, 0.5V, 0.25V and 0.125V respectively.
The result shows that the new code q′K′,M offers a multipath detection
as good as the original signal sM , and this is even better in the case
of low level amplitude echoes that can be undetected for the original
signal due to the large intrinsic ISL value present in the PRBS.
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5. SIMULATIONS RESULTS

Following we summarize the simulations done in previous sections. The
original Barker sequence s13 with length M = 13 has derived in the
optimal code q27,13 (with length K = 2 ·M +1) and q′104,13 (with length
K ′ = 8 ·M). In Appendix A, we detail the three codes, s13, q27,13 and
q′104,13. In a comparative way, the CCF’s corresponding to these three
codes have been shown in Fig. 2. The frequency spectra S(f) of the
three sequences are comparatively shown in Fig. 3.

In a similar way, for a PRBS code s15 with length M = 15, we
have obtained the optimal code q31,15 (with length K = 2 · M + 1)
and the extended code q′120,15 (with length K ′ = 8 ·M), as indicated
in Appendix B. The CCF’s corresponding to the three sequences s13,
q31,15 and q′120,15 have been jointly plotted in Fig. 4, and their frequency
spectra S(f) are shown in Fig. 5.

In a similar way, for a pair of Golay codes sa and sb, each with
length M = 16, we have obtained the optimal codes qa32,16 and qb32,16

(with length K = 2 ·M) and the extended codes qa′128,16 and qb′128,16

(with length K ′ = 8 · M). The codes derivation can be followed in
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Appendix C. The corresponding CCF’s and S(f) are shown in Fig. 6
and Fig. 7, respectively.

Finally, we have also simulated the performance of the presented
approach in terms of multipath and Doppler resolution, just for the
case of PRBS extended code q′120,15 (with length K ′ = 8 ·M), as per
Fig. 8 and Fig. 9, respectively.

6. APPLICABILITY

In radar applications, appropriate transmit waveforms are of vital
importance for applications such as target detection, non-ambiguous
estimation of range and range-rate, accuracy, resolution, and clutter
rejection. Therefore, the radar designer has to carefully examine
and choose the transmit waveforms to achieve the desired objectives
of the intended system. In general, the optimal design, involving
both hardware and software components, usually performs optimally
under specific operational conditions for which the system was
designed. The performance of such a system may degrade if the
operational environment undergoes an adverse change. Examples
of such environmental degradation could include, among others, the
increasing noise level, the changing propagation channel, jamming
or interference(s), the nature of the targets, and so on. The radar
system should, therefore, be capable of dynamically adjusting system
parameters to optimize its performance. Adaptive techniques such as
antenna beamforming or space-time adaptive processing [9, 10], mainly
at the receiver end, have been tried to mitigate these effects.

At the transmitter end, the adaptive-on-transmit (AT) method-
ologies based on the waveform design constitute the biggest family of
AT approaches. The concept of AT is not new, having been considered
at various stages in the past [11–17]. Technological advances over the
last couple of decades in generating and manipulating digital wave-
forms have provided further impetus to real-time AT waveforms. AT
methodologies can be further subdivided into waveform selection and
waveform design. In the first case, the parameters of the transmitted
signal can be adaptively selected from a predefined set. In the sec-
ond case, the parameters are dynamically estimated according to the
changing operational environment, thereby demanding large compu-
tational power. Both AT techniques, selection or design, are further
constrained by the system hardware limitations. The trade-off between
the system capabilities and the waveform-based AT approach makes it
much harder to design an optimal performing system under all opera-
tional conditions.

Waveform-filter pair [18] is another AT technique used to overcome
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the constraint imposed upon the waveform selection and/or design
technique. This technique has an additional advantage in terms of the
sidelobe reduction in the CCF for systems utilizing noise-like or pseudo-
noise binary sequences, such as Barker codes, Minimum Peak Sidelobe
(MPS) codes, and PRBS (also called maximal length sequences or
m-sequences). PRBS waveforms are preferred for advantages over
other binary codes and deterministic waveforms. These include low
probability of detection (LPD) and intercept (LPI), better immunity
to external electromagnetic interference (EMI), improved spectral
efficiency, and immunity to jamming.

However, the use of PRBS, gives rise to high correlation SLL,
also called code self noise [19]. This latter is a well known problem in
radar and communication systems that use binary sequences [20]. The
longest known Barker code is a length 13 code with corresponding peak
sidelobe ratio (PSL) of −22.3 dB [3, 21]. One of the best known MPS
codes is of length 105 with corresponding PSL of −26.44 dB [3, 21].
PRBS provide a PSL that approach 10 · log10(1/M), M being the code
length [21]. The code self-noise makes it harder to detect the weaker
echoes from smaller targets, thereby limiting the dynamic range of
the radar system utilizing such waveforms. Different techniques have
been proposed to minimize the SLL; these include windowing [22, 23],
coding [24–27], mismatched filtering [28–34], and others [35, 36],
including waveform design [37–42]. In this latter group, we can include
the Golay code pairs with null levels of SSL and ISL; however, despite
of the advantages provided by the use of these code pairs, its use
requires the transmission and reception of two single sequences instead
of one [40] slowing down the response time of the systems.

Overall system performance can attain real-time enhanced
detection performance by dynamically adapting the parameters of the
transmitted waveforms such that SLL reduction is achieved. Adaptive
sidelobe mitigation technique is however linked to the length M of
the sequence. Although, varying the sequence length M to reduce the
SLL can be seen as an effective AT technique, subject to hardware
constraints, it usually works in trade-off with the spectral purity of the
transmitted waveform. In general, binary sequences have significant
out-of-band spectral leakage and are not spectrally clean or fully band-
limited. Spectrally clean transmitted waveform is an important design
issue, if emission control levels must be respected. It also influences
other system operational features, such as LPD and LPI.

Theoretically, the extended optimal filtering technique herein
proposed can provide simultaneously both lower aperiodic CCF
sidelobe levels and spectrally clean waveforms. The main CCF peak
remains unaffected, resulting in a larger dynamic range of the system
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and better ability to detect weaker returns. The proposed technique
has also shown to be Doppler resistant, and with a reliable multipath
capability.

It can be used in real-time adaptive-on-transmit systems
to mitigate the sidelobe noise due to the dynamically changing
operational environment. It would only require to enlarge the code
length K ′ to achieve the desired specifications. So, at the receiver
end, even in presence of adverse conditions, the received signal
enables an optimum information retrieval. Despite of the longer time
needed to transmit the resulting code, this fact does not necessarily
lead to require generating or receiving hardware which additional
improved specifications other than a larger memory buffer with is a
not significant feature in the hardware existing at present. However,
the additional transmitting time required could lead to larger system
overhead which can affect the overall system performance in such a way
that must be evaluated from the point of view of the specific advantage
provided by the new code, such as the OBS or SSL improvement.

Extended codes, as herein proposed, possess narrowband features
in its frequency spectrum. The no-lobule shape frequency spectrum
S(f) achieved by the extended codes impacts positively other features
such as the low probability of detection (LPD) and intercept (LPI),
better immunity to external electromagnetic interference (EMI),
improved spectral efficiency, and immunity to jamming. The
like-narrowband property would allow its use in spectrum sharing
applications. In this scenario the extended codes can help to reduce
the mutual interference between users.

Due to the above features, they could be applicable in
communications with large number of interferers and jammers, either
natural or man-made, for both military and non-military applications.
For instance, it would be possible to deploy a communication system
in any portion of the spectrum due to the small frequency bandwidth
required, thereby avoiding interference with pre-existing systems
(multifrequency allocation). The extended codes could significantly
improve the safety level of critical communications.

Furthermore, the ability to use the extended codes with minimum
SL would greatly enhance the radar image quality within a given
medium, especially in ultrawideband (UWB) systems.

7. CONCLUSIONS

A design method to obtain extended optimal codes with optimal
performance in terms of CCF SLL, ISL and OBS is proposed. The
method is derived from the classical optimal filtering technique. It
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requires two steps to modify the input signal in order to achieve an
optimal output waveform in both CCF and frequency spectrum. The
first arrangement only achieves an improvement in terms of equal
distribution and amplitude level of the CCF sidelobes, i.e., CCF SSL
and CCF ISL. In the second step, named extended codes, we propose
to provide skew-symmetry to the original input binary code as a
modification suitable to achieve a simultaneous improvement in terms
of equal distribution of the CCF secondary sidelobes and OBS.

The extended codes proposed in this paper offer simultaneous
improvement in ∆ISL and ∆OBS, while retaining the main CCF peak
unaltered. Such extended codes can be applied to any symmetric
(such as Barker) or non-symmetric codes, such as PRBS and Golay
complementary codes. These codes would be suitable for AT system
to respond to the changing operational environment by extending the
length K ′ of the code. The parameter K ′ has been found to be closely
related to the value of both CCF sidelobes and out-of-band spectral
purity. This latter feature is of importance in scenarios necessitating
strict OBS requirements. The proposed technique has also been
shown to have accurate range-Doppler and multipath capabilities.
The like-narrowband shape of the frequency spectrum S(f) related
to the proposed extended codes impacts positively such important
features as multiuser interference, and broadens the application field.
This property would also contribute to reduce the interference with
existing systems on a given frequency band of interest, providing so an
interesting multi-frequency allocation feature.
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APPENDIX A.

We provide here the original Barker sequence s13 with length M = 13,
the intermediate code s27 with the (K−M) null elements, and the final
optimal code q104,13 as per Subsection 3.1 with length K = 2M + 1:

s13 = {−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1}.
s27 = {−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0}.
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q27,13 = {−0.7979,−1.1068,−0.8133,−1.1016,−0.8232, 1.1079,
1.3694,−1.0835,−0.8408, 1.1258,−0.8486, 1.1307,−0.8505,
0.0294, 0.1854,−0.0628, 0.1176,−0.1546, 0.049,−0.0623,
0.1631,−0.1525, 0.0931,−0.0587, 0.0224, 0.0355,−0.0485}.

Following, we show the modification of the classical optimal code
by redistributing the (K-M) zeros as indicated in (6), achieving a code
qK,M with the same length K = 2M + 1 corresponding to the same
original Barker sequence s13:

s′27 = {0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1,

0, 0, 0, 0, 0, 0, 0}.
q27,13 = {−0.072, 0.0642,−0.1628, 0.1351,−0.0699,

0.2049, 0.0234,−0.8214, 1.1201,−0.8385, 1.1143,−0.8497,

−1.0888, 1.3344, 1.0888,−0.8497,−1.1143,−0.8385,
−1.1201,−0.8214,−0.0234, 0.2049, 0.0699, 0.1351, 0.1628,

0.0642, 0.072}.
Extended optimal code with length K ′ = 8M and intermediate

code s′′104 corresponding to an original Barker sequence with length
M = 13:

s′′104 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1,−1,−1, 1,−1,−1,−1,

1, 1, 1, 1,−1,−1,−1,−1, 1, 1, 1,−1, 1, 1, 1,−1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0}.
q′104,13 = {−0.036,−0.1016,−0.1367,−0.2022,−0.2257,−0.2876,

−0.2929,−0.3548,−0.3541,−0.4122,−0.4036,−0.4617,

−0.4254,−0.4796,−0.4733,−0.5276,−0.6267,−0.6771,

−0.8561,−0.9065,−1.1434,−1.1898,−1.5524,−1.5988,

−1.9739,−2.0164,−2.1937,−2.2362,−2.3864,−2.4304,

−2.7881,−2.832,−3.1224,−3.1676,−3.3342,−3.3794,
−3.8074,−3.8536,−3.8263,−3.8725,−2.2466,−2.2934,

−0.0693,−0.1161, 1.5372, 1.4899, 3.6928, 3.6455,

5.3033, 5.2558, 3.0332, 2.9858, 0.252, 0.2045, 2.3322, 2.2848,
3.9425, 3.8953, 1.5979, 1.5506, 3.2039, 3.1571, 0.8393,
0.7925, 2.4184, 2.3722, 2.2527, 2.2066, 1.7785, 1.7333,
1.8095, 1.7643, 1.474, 1.43, 1.6996, 1.6556, 1.5054, 1.4629,
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1.5554, 1.5129, 1.1378, 1.0914, 1.3611, 1.3147, 1.0778,

1.0274, 1.1057, 1.0554, 0.9562, 0.902, 0.7871, 0.7328, 0.7692,
0.7111, 0.5863, 0.5282, 0.5289, 0.467, 0.3485, 0.2866, 0.2631,
0.1976, 0.1016, 0.036}.

APPENDIX B.

We provide here the original PRBS sequence s15 with length M = 15,
the intermediate code s′′120 and the final extended optimal code q′120,15

as per Subsection 3.2:
s15 = {−1,−1,−1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1}.

s′′120 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1,

−1, 1,−1,−1, 1,−1,−1, 1, 1, 1,−1,−1,−1, 1, 1,−1, 1, 1,−1,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.
q′120,15 = {0.2432, 0.3157, 0.6606, 0.7388, 1.209, 1.5008, 1.5672, 1.1303,

1.6674, 1.7232, 1.6562, 1.7081, 1.5192, 1.5629, 1.3528, 1.4068,
1.1764, 1.2257, 1.1076, 1.1696, 1.3113, 1.3808, 1.8721, 1.9566,
2.5712, 2.6754, 3.2015, 3.3138, 3.9284, 4.0427, 4.6366, 4.735,

4.7691, 4.8566, 4.3393, 4.4152, 3.9287, 4.0031, 3.7252, 3.805,

3.6443, 3.7321, 3.663, 3.7636, 3.6009, 3.7107, 4.6850, 4.8051,
6.9989, 7.1235, 7.7206, 7.8451, 6.3859, 6.5034, 8.2403, 8.3452,
10.2166,0.3091,7.9548, 8.0390, 4.8865, 4.9707,7.4044,7.4969,

6.0033, 6.1082, 9.3527, 9.4702, 7.7408, 7.8653, 5.8293, 5.9539,
3.5925, 3.7126, 1.3510, 1.4608, 2.6336, 2.7342, 2.4817, 2.5696,
4.1858, 4.2656, 3.3185, 3.3929, 3.1594, 3.2354, 2.9006, 2.9881,
2.8108, 2.9091, 3.5699, 3.6841, 2.7199, 2.8322, 2.3232, 2.4274,
0.7705, 0.8551, 0.3039, 0.3733, 0.2204, 0.2825, 0.5756, 0.6249,
1.2437, 1.2977, 1.1430, 1.1868, 1.2848, 1.3367, 0.9138, 0.9696,
0.9669, 1.0333, 0.8709, 0.9495, 0.6953, 0.7736, 0.4435, 0.516}.

APPENDIX C.

For the first item of the pair, we provide here the original Golay single
code with length M = 16sa16, the intermediate code sa′′128 and the
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final extended optimal code qa′128,16 as per Subsection 3.3:

sa16 = {1, 1, 1,−1, 1, 1,−1, 1, 1, 1, 1,−1,−1,−1, 1,−1}.

sa′′128 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,1,1, 1,−1,

1, 1,−1,1, 1, 1, 1,−1,−1,−1, 1,−1,1,−1, 1, 1, 1,−1,−1,

−1,−1,1,−1,−1,1,−1,−1,−1,0, 0, 0, 0, 0,0,0, 0,0,0,0,0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

qa′128,16 = {0.0715, 0.1122, 0.1784, 0.6056, 0.6705, 0.5371, 0.5957, 0.4116,
0.4732, 0.5645, 0.6197, 0.9807, 1.0346, 0.9254, 0.9746, 0.4663,
0.5172, 1.0429, 1.0766, 1.3601, 1.3941, 0.5612, 0.6243, 0.8288,
0.8915, 1.5213, 1.5874, 1.2947, 1.3567, 0.9278, 0.9988, 0.844,

0.9105, 1.92, 1.9852, 1.4400, 1.5031, 0.1419, 0.2087, 1.6725,
1.7234, 1.7163, 1.7679, 0.0875, 0.1473, 0.6172, 0.6817, 0.9326,
0.9959, 0.8650, 0.9263,−0.4344,−0.3665,−1.4354,−1.3691,
0.8729, 0.9367,−1.3102,−1.2461,−3.4701,−3.4018,

−0.3895,−0.3314,−2.3134,−2.2561,−5.4731,−5.415,

−7.2884,−7.2201,−9.4046,−9.3406,−6.0982,−6.0344,
−4.7647,−4.6984,−1.7089,−1.6411,−3.0981,
−3.0367,−1.5378,−1.4745,−2.1241,−2.0596,−0.0782,
−0.0183,−0.8927,−0.8411,−1.3796,−1.3287,−3.313,

−3.2461,−4.0801,−4.0171,−3.8085,−3.7432,−3.2350,
−3.1685,−2.2291,−2.1581,−2.5700,−2.5080,−1.7116,
−1.6454,−1.6933,−1.6307,−0.2715,−0.2084,−0.4355,
−0.4015,−0.1429,−0.1092,−1.0271,−0.9763,
−1.0910,−1.0418,−1.4362,−1.3823,−1.1067,−1.0515,
−1.0733,−1.0117,−1.0295,−0.9709,−0.8752,−0.8103,
−0.6686,−0.6024,−0.0715}.

And, for the second item of the pair, we provide the original Golay
single code with length M = 16sb16, the intermediate code sb′′128 and
the final extended optimal code qb′128,16 as per Subsection 3.3:

sb16 = {1, 1, 1,−1, 1, 1,−1, 1,−1,−1,−1, 1, 1, 1,−1, 1}.
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sb′′128 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 1, 1,

1,−1,−1,−1, 1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1,−1,

1,−1, 1, 1, 1,−1,−1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.
qb′128,16 = { 0.0602,−0.3375,−0.2721,−0.131,−0.0665,−0.0348,

0.0331, 0.0241, 0.094, 0.2475, 0.3232, 0.6192, 0.6939, 1.2154,
1.2931, 1.2046, 1.2814, 2.3255, 2.4165, 2.7328, 2.8248,
3.1772, 3.2444, 4.6029, 4.6669, 4.8402, 4.9003, 5.6935,
5.7535, 6.2874, 6.3403, 7.2595, 7.3076, 6.9127, 6.9603,
7.1529, 7.2004, 8.1487, 8.1975, 6.1985, 6.2345, 6.8583,
6.8929, 6.0038, 6.0463, 4.1784, 4.2247, 3.5601, 3.6074,
2.2164, 2.2612, 0.7904, 0.8413,−2.0235,−1.9695,−0.7076,
−0.6502,−3.7695,−3.7145,−5.9101,−5.8560,−3.8639,
−3.8022,−7.008,−6.944,−4.8452,−4.7835,−1.7892,
−1.7351, 0.6053, 0.6604,−1.5896,−1.5322,−3.6514,
−3.5974,−4.6819,−4.631,−3.1661,−3.1212,−3.2674,
−3.2202,−3.3602,−3.3138,−2.8626,−2.8201,−1.0557,
−1.0211,−1.0429,−1.007,−2.3534,−2.3046,−3.6798,
−3.6324,−2.9753,−2.9278,−1.9377,−1.8896,−1.611,

−1.5582,−1.9885,−1.9284,−1.5103,−1.4502,−0.8197,
−0.7557,−0.8296,−0.7624,−1.5362,−1.4442,−1.6027,
−1.5116,−0.9606,−0.8838,−0.2491,−0.1714,−0.2594,
−0.1847,−0.4145,−0.3388,−0.2393,−0.1694, 0.1409,
0.2089, 0.0756, 0.1401,−0.1551,−0.0896,−0.0602}.
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wideband radio channel swept time cross-correlation sounders
by using golay sequences,” IEEE Transactions on Vehicular
Technology, Vol. 56, No. 1, January 2007.

41. Zakeri, B. G., M. Zahabi, and S. Alighale, “Sidelobes level
improvement by using a new scheme used in microwave pulse
compression radars,” Progress In Electromagnetics Research



66 Alejos, Dawood, and Sanchez

Letters, Vol. 30, 81–90, 2012.
42. Lee, H. and Y.-H. Kim, “Weather radar network with pulse

compression of arbitrary nonlinear waveforms: Ka-band test-bed
and initial observations,” Progress In Electromagnetics Research
B, Vol. 25, 75–92, 2010.


