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Abstract—In the paper, the analysis of electromagnetic wave
scattering from frequency selective surface is presented. The surface is
composed of periodically arranged posts. The multimodal scattering
matrix of such structure is derived and the transmission and reflection
characteristic for the structure with arbitrary plane wave illumination
are calculated. The exact full-wave theory based on the mode-matching
method is applied to develop an efficient theory to analyze such
structures. The validity and accuracy of the approach are verified by
comparing the results with those obtained from alternative methods.

1. INTRODUCTION

The analysis of plane wave scattering form the frequency selective
surface (FSS) composed of periodic arrangements of scatterers is
conducted in this paper. The constructive elements of this structure
are comparable in size to the operation wavelength and are composed
of conducting and dielectric material.

FSSs when multilayered can be utilized as an electromagnetic
band structure (EBG) in microwave wavelength range or photonic
band structure (PBG) in optical range. Recently, EBGs and PBGs
are of great interest due to their extraordinary properties and
potential applications, e.g., filters, polarizers, substrates for radiating
elements, or optical switches [1–14]. Many numerical techniques
have been utilized to investigate band gap structures. The most
popular are the cylindrical-harmonic expansion method [15], the finite
element method [16], the finite difference method [17], and Fourier
modal method [18]. FSSs can also find application in polarizers
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and polarization rotators to change the polarization state of an
electromagnetic wave [19, 20]. Through the utilization of these devices
the antennas adopted to receive a single linear polarization (vertical or
horizontal) are able to work with both polarizations at the same time.

In this paper, the multimodal scattering matrix of periodic
arrangements of metalo-dielectric scatterers is calculated. For the
analysis we utilize an efficient numerical technique described
in [15, 21, 22], which is based on the transmission matrix (T-matrix)
approach [23] and uses the lattice sums technique [24]. The technique
was previously used to investigate periodic structures employing
infinitely long circular cylinders [15, 25]. Here we develop this approach
to analyze the structures which are periodic in two directions. In
our approach the scattering matrix which relates the incident space-
harmonics to the scattered, both reflected and transmitted ones, is
defined for a double periodic array. The scattering matrix is expressed
in terms of lattice sums characterizing a periodic arrangement of
scatterers and the T-matrix of periodic unit cell of the structure. In
this paper the investigation of cylindrical unit cells employing posts
with regular geometry is presented and analytical methods are utilized
for the calculation of its T-matrix. However, in order to increase the
versatility of the approach the combination of analytical and discrete
methods can be utilized to investigate posts with irregular shapes
enclosed by effective artificial cylinder [26, 27]. One example of such
case is investigated further in the article.

2. FORMULATION OF THE PROBLEM

The structure under investigation is presented in Fig. 1(a). It is
composed of an array of uniformly spaced identical sections situated
in a free space and illuminated by a harmonic wave with arbitrary
direction. The sections are composed of scatterers of height d and are
spaced with distance hx along x axis and with distance hz along z axis
on the plane y = 0. The investigated surface is assumed to be located
in rectangular coordinate system.

The aim of the analysis is to find scattering parameters of
the investigated structure assuming arbitrary incidence angle of the
harmonic wave illuminating FSS. In order to develop the scattering
matrix describing the structure the electromagnetic wave is assumed
to impinge on the surface with incidence angle (θin, φin) from both
sides of the structure. The wave illuminating the surface from the
upper half-space (y > 0) has complex amplitudes a1 for its incoming
part and b1 for its reflected part. The wave in the lower half-space
(y < 0) has therefore complex amplitudes a2 and b2.
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(a) (b)

Figure 1. Investigated structure of periodically spaced cylin-
ders: (a) View of the structure and (b) T-matrix representation of
a single unit cell.

Since the structure is periodic in both x and z directions the fields
consist of set of space harmonics and the z components of the incident
and scattered fields can be described as follows:

F
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where F e = E, F h = H, l = 0,±1, . . . ± L and p = 0,±1, . . . ± P are
integers denoting the order of space harmonics, and
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2lπ
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, (3)
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, (4)

ky,pl =
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where kx,0 = −k0 sin θin cosφin, kz,0 = k0 cos θin, ae
1 = cosα sin θin,

ah
1 = sinα sin θin, and α is an inclination angle of the incoming field

on the incidence plane.
The resulting scattering matrix is defined as follows:[
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where Sij (i, j = 1, 2) are square matrices of (2 · (2L + 1) · (2P + 1))
dimensions, ai and bi (i = 1, 2) are column vectors of complex
amplitudes of (2 · (2L + 1) · (2P + 1)) dimension defined as follows:

a = [a−P , . . . ,aP ]T ,

ap =
[
ae

p(−L), . . . , a
e
pL, ah

p(−L), . . . , a
h
pL

]
, (7)

where e and h denote TM and TE polarization, respectively, and
column vector b is defined analogously.

The scattering nature of any scatterer isolated in the host medium
of an infinite extent can be described by its isolated T-matrix [23]. T-
matrix relates the unknown coefficients of the scattered fields with the
known coefficients of the incident fields. Its elements are obtained by
applying the proper continuity conditions on the surface of scatterer,
and depend on the particles size, shape, composition and orientation,
but not on the nature of the incident or scattered fields.

The scattered field from the periodic structure can be expressed
in terms of T-matrix of the single unit cell and the lattice sums
characterizing the periodic arrangement of the scatterers. The
separation of the analysis of single unit cell greatly simplifies the
analytical and numerical procedure for the array problem. In the
structure investigated in this paper the single unit cell is composed of
scatterers which are periodically arranged along z-axis and enclosed by
artificial effective cylinder as shown in Fig. 1(b). With this assumption
the investigation then boils down to plane wave scattering from a
periodic array of effective cylinders.

In this paper, the procedure, which allows to find the scattering
matrix of the investigated surface, was divided into three stages. First
stage concerns the analysis of periodic arrangements of cylindrical
posts illuminated by a single harmonic wave. The aim of this analysis
is to find coefficients of the reflected and transmitted fields which
are generated in result of the illumination. Second stage concerns
developing previous analysis by considering multiple harmonic wave
illumination in order to obtain a multimodal scattering matrix of the
array. The scattering matrix relates the amplitudes of space harmonics
of incident and scattered fields. In the last stage the analysis of a single,
isolated cylindrical unit cell is conducted. This analysis is performed
in natural basis function of cylinders, that is in cylindrical harmonics.
The aim is to find the isolated T-matrix of the analyzed object. It
is worth noting that the cylindrical unit cell is an effective circular
cylinder which can enclose any scatterer with arbitrary shape. In the
case of regular geometry of the scatterer, in order to find its isolated
T-matrix the analytical methods can be utilized [28], while in the case
of arbitrary shape the discrete or hybrid methods are used [26, 27].
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In this paper, for the sake of brevity, we describe the analysis of
the metalo-dielectric or multilayered dielectric scatterers with circular
cross-sections. The above mentioned stages will be described in the
following subchapters.

2.1. Scattered Field from the Periodic Arrangement of
Cylindrical Posts

As it was mentioned before, the harmonic wave illuminates the periodic
surface form arbitrary direction (θin, φin). For the sake of brevity
the case of a single p′l′-order space harmonic wave illumination will
be described in this chapter. In result the p′l′-order reflection and
transmission coefficients will be derived here (p′ ∈< −P, P >, l′ ∈<
−L,L >). The generalized solution including all space harmonics will
be outlined in Chapter 2.2.

The z components of the incident fields in zero-th cylindrical
coordinate system (ρ0, φ0) are expressed in cylindrical coordinate
system in the following form:

F
e(h)
z, i, p′l′ =

∑
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a
e(h)
p′l′ j−mJm(kρ,p′ρ0)ejm(φ0−αp′l′ )ejkz,p′z, (8)

where kρ,p′ =
√

k2
0 − k2

z,p′ , cos αp′l′ = −kx,l′/kρ,p′ , Im{sinαp′l′} ≥ 0,
m = 0,±1, . . . ± M and Jm(·) is a Bessel function of order m. The
scattered field outside the structure is expressed as a sum of all
cylindrical harmonics originating in each cell and moving outwards.
The z components of the scattered fields from the periodic arrangement
can be expressed in cylindrical coordinate system in the following form:
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where m = 0,±1, . . . ± M , kρ,p =
√
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z,p, H
(1)
m (·) is a Hankel

function of the first kind of order m, cpm are the unknown amplitudes
of the scattered field in zero-th unit cell and ρl =

√
(x− lhx)2 + y2,

cosφl = x−lhx
ρl

, sin φl = y
ρl

.
Using the additional theorem for Hankel functions (Graf’s

formula) given as:
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(10)
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for l = 0, H
(1)
v (xρ0)ejvφ0 , the scattered field in zero-th unit cell can be

expressed as follows:
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The total field in the vicinity of zero-th unit cell is expressed by:
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where δpp′ = 1 for p = p′ and δpp′ = 0 otherwise. Lsm(kρ,ph, kx,0hx) is
(s−m)-th order lattice sum written as follows:

Lsm(kρh, kxh) =
L∑

l=1

H
(1)
s−m(kρhl)

(
ejkxlh + (−1)s−me−jkxlh

)
. (13)

The first term in the right hand side of Equation (12) may be viewed
as an incident field impinging on the zero-th unit cell, whereas the
second is the scattered field from the cell. Rewriting above equations
in matrix form and utilizing the T-matrix description of the object one
obtains the following relation between the unknown amplitudes of the
scattered field c

e(h)
pm and the incident wave a

e(h)
p′l′ :

c = T
(
L · c + P+ · ap′l′

)
, (14)

where c is a column vector of the scattered field unknown coefficients
of (2 · (2P + 1) · (2M + 1)) dimension defined as follows:

c = [c−P , . . . , cP ]T ,

cp =
[
ce
p(−M), . . . , c

e
pM , ch

p(−M), . . . , c
h
pM

]
. (15)

Matrix L is a square matrix of (2 · (2P + 1) · (2M + 1)) dimensions
arranged as follows

L = diag [L−P , . . . ,LP ] , Lp =
[
Lsm 0
0 Lsm

]
, (16)

where Lsm is a square matrix of (2M + 1) dimensions whose elements
are given by lattice sums defined in Equation (13). P is a matrix of
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(2 · (2P + 1) · (2M + 1)) × (2 · (2P + 1) · (2L + 1)) dimensions of the
following form:

P± = diag
[
P±
−P . . .P±

P

]
,

P±
p =

[
P±(e)

p 0
0 P±(h)

p

]
, (17)
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)
,
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p

]
ml
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(

j

η
(j)−me±jmαpl

)
, (18)

and ap′l′ is a column vector of excitation of (2 · (2P + 1) · (2L + 1))
dimension with non-zero element at p′l′ position. Matrix P transforms
pl-order space harmonic into m-th order cylindrical wave. T is a square
matrix of (2 · (2P + 1) · (2M + 1)) dimensions and for conducting and
dielectric periodic cylinder is defined in Chapter 2.3.

Solving Equation (14) one obtains the unknown coefficients of the
scattered field cpm as:

c = T ·P+ · ap′l′ , (19)

where T is called aggregated transmission matrix and is defined as:

T =
(
I−TL

)−1 T. (20)

Since the scattered field defined in Equation (12) is only valid
in the vicinity of zero-th unit cell, it cannot be applied when the
observation point is located far from it. To derive the scattered field
the recurrence formula and Fourier integral representation for Hankel
functions need to be utilized [29].

The reflection and transmission coefficient for p′l′-order space
harmonic can be calculated using following formula:

b1p′l′ = U+ ·T ·P+ · ap′l′ , (21)

b2p′l′ = δp′l′ + U− ·T ·P+ · ap′l′ , (22)

where matrix U± is of (2 · (2P +1) · (2L+1))× (2 · (2P +1) · (2M +1))
dimensions and is of a following form:

U± = diag
[
U±
−P , . . . ,U±

P

]
, (23)

U±
p =

[
U±

p 0
0 U±

p

]
, (24)
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[
U±

p

]
lm

=
2(−j)m

kρ,phx sinαpl
e±jmαpl , (25)

cosαpl = − kx,l

kρ,p
, Im{sinαpl} ≥ 0, (26)

b1p′l′ and b2p′l′ are column vectors consisting of any pl-order space
harmonic reflection and transmission coefficients calculated for the p′l′-
order space harmonic excitation.

2.2. Multimodal Scattering Matrix of the Periodic Surface

In order to calculate multimodal scattering matrix of analyzed periodic
surface the incident field needs to illuminate structure from both
sides and contain all space harmonics (p = 0, ±1, . . . ,±P, l =
0, ±1, . . . , ±L). Following the analysis presented in previous chapter
the elements of scattering matrix can be calculated as follows:

S11 = U+ ·T ·P+
, (27)

S12 = I + U+ ·T ·P−
, (28)

S21 = I + U− ·T ·P+
, (29)

S22 = U− ·T ·P−
. (30)

2.3. T-matrix of An Isolated Scatterer

The investigated posts are periodic in z-direction and are composed of
metallo-dielectric or multilayered dielectric cylindrical sections. The
cross-sections of the analyzed structures are presented in Fig. 2. The
single section of the metallo-dielectric post is composed of two metallic
cylinders of height h1 separated by dielectric one of height h2 and
permittivity εr. The single section of the multilayered dielectric post
is composed of axially stacked N dielectric cylinders with heights
h1, . . . , hN and permittivities εr1, . . . , εrN .

In order to analyze the posts and find their T-matrices we
distinguish two cylindrical regions of investigation. First region is
located within post structure (ρ ≤ R) while the second is defined
outside the post (ρ > R).

The z-components of total electric and magnetic fields in region
II are defined as follows:

EII
z =

∑
p

∑
m

(
de

1,pmJm(kρ,pρ) + de
2,pmH(1)

m (kρ,pρ)
)
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∑
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Figure 2. Single section of isolated cylinder periodic in the z-direction:
(a) Metallo-dielectric cylinder and (b) multilayered dielectric cylinder.

where d̃ = j
η0

d, η0 =
√

µ0/ε0 and d
e(h)
1,pm and d

e(h)
2,pm are incident and

scattered field expansion coefficients, respectively, for e−TM, h−TE.
In region I the z-components of electric and magnetic fields are defined
as follows:

EI
z =

∑
q

∑
m

ge
qmJm(ke

ρ,qρ)ejmϕfe
q (z), (33)

HI
z =

j

η0

∑
q

∑
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gh
qmJm(kh

ρ,qρ)ejmϕfh
q (z), (34)

where q = 0, 1, . . . , Q, g
e(h)
qm are field expansion coefficients, wave

numbers k
e(h)
ρ,q and functions f

e(h)
q (·) are defined in Appendix A.

Utilizing (31)–(34) the ϕ components of electric and magnetic fields
in both regions can be found from the following relations:

Eϕ =
1
k2

ρ

(
jωµ

∂Hz

∂ρ
+

1
ρ

∂2Ez

∂ϕ∂z

)
, (35)

Hϕ =
1
k2

ρ

(
−jωε

∂Ez

∂ρ
+

1
ρ

∂2Hz

∂ϕ∂z

)
. (36)

The aim of the analysis is to determine T-matrix representation
of the isolated object which relates the incident and scattered field
expansion coefficients:

d2 = Td1, (37)

where d1(2) are column vectors of the form di = [di,−P , . . . ,di,P ]T and
di,p = [de

i,p(−M), . . . , d
e
i,pM , dh

i,p(−M), . . . , d
h
i,pM ] for i = 1, 2.
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First step of the analysis consists of formulating field continuity
conditions at the surface of cylinder (interface between region I and II
ρ = R):

EII
z (R, ϕ, z) = EI

z (R, ϕ, z), (38)

EII
ϕ (R, ϕ, z) = EI

ϕ(R, ϕ, z), (39)

HII
z (R,ϕ, z) = HI

z (R, ϕ, z), (40)

HII
ϕ (R,ϕ, z) = HI

ϕ(R,ϕ, z), (41)

where ϕ ∈ [0, 2π] and z ∈ [0, hz]. Applying mode matching technique
to Equations (38)–(41) we obtain the following matrix equations:

Me
d1d1 + Me

d2d2 = Me
gg, (42)

Mh
d1d1 + Mh

d2d2 = Mh
gg. (43)

For the sake of brevity all matrices in above equations are defined in
Appendix B.

In the next step the relation (37) is applied to Equations (42)–(43)
resulting in the formula for the T-matrix of the investigated post:

T =
(
ZMh

d2 −Me
d2

)−1 (
Me

d1 − ZMh
d1

)
, (44)

where:
Z = Me

g(M
h
g )−1. (45)

3. CONVERGENCE

In order to perform the calculation of the structure scattering matrix
the sums introduced in previous chapter need to be properly truncated.
To check the convergence of the presented approach the periodic
structure composed of metallic cylinders is considered. The structure
dimensions are as follows: r = 8mm, z1 = 20 mm, z2 = 10 mm, spacing
hx = hz = 50 mm and the direction of incident plane wave ϕin = 70◦
and θin = 70◦. The frequency dependent scattering parameters
characteristics of this structure for different values of eigenfunctions
numbers M and P are presented in Fig. 3. The superscripts a(b),
where a, b =TE,TM indicate that the obtained solution is calculated
for a mode with b incident mode. In order to more accurately examine
the convergence of the solution the following error criterion is defined:

δS =
||S − Sref ||
||Sref || · 100%, where: || · || =

√√√√√
fmax∫

fmin

| · |2df, (46)
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Figure 3. Convergence of scattering parameters of metallic periodic
structure (hx = hz = 50 mm, z1 = 20 mm and z2 = 10 mm) versus
number of eigenfunctions: P = 0, M = 1 — dotted line, P = 4,
M = 3 — dashed line, P = 10, M = 5 — continuous line.

were Sref are scattering parameters calculated for the highest
considered values of M and P . The results of this investigation are
presented in Table 1.

As can be observed a small number of eigenfunctions (P = 4
and M = 3) is sufficient for this configuration to obtain rough (the
percentage error value of about 1%) but satisfactory results. Assuming
the number of eigenfunctions P = 4 and M = 3, the calculation
of single frequency point takes approximately 0.28 s on a Matlab,
Pentium i7 personal computer, while for P = 10 and M = 5 it takes
approximately 1.65 s. Comparing this to the calculation of commercial
software ANSYS HFSS the time of single frequency point calculation is
47 s with the number of mesh cells 13046. Despite the undeniable fact
of high versatility of commercial software a high speed of the proposed
method makes it ideal for use in optimization procedures.

4. NUMERICAL RESULTS

A few examples of double periodic structures have been analyzed.
The scattering characteristics of these arrays have been calculated.
The results are shown for the case of normal incidence as well as for
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Table 1. Convergence of reflection coefficients S
TE(TE)
11 and S

TM(TM)
11

versus eigenfunctions numbers P and M .

δS
TE(TE)
11 [%] δS

TM(TM)
11 [%]

P
M M

1 2 3 5 1 2 3 5
0 5.29 4.09 4.12 4.12 9.32 9.34 9.34 9.34
2 5.29 4.09 4.12 4.12 1.27 1.38 1.38 1.38
4 2.87 1.12 1.05 1.05 1.20 1.07 1.07 1.07
6 3.04 0.54 0.36 0.36 1.25 1.12 1.12 1.12
8 3.05 0.51 0.32 0.32 0.48 0.29 0.28 0.28
10 3.07 0.40 0.03 - 0.55 0.07 0.01 -

arbitrary angle of incidence. The characteristics are illustrated for
power reflection and transmission coefficients of the fundamental space
harmonics (p = 0, l = 0) versus frequency or for chosen single frequency
versus angle of incidence.

For the calculations of the presented examples the number of space
harmonics L = 4, P = 6 with Q = 2 (for metallic structures) or Q = 6
(for dielectric structures) and number of cylindrical functions M = 7
were chosen which was sufficient to obtain convergence of the solution.

In the first and second example the case of normal incidence on the
periodic structure of metallic posts is considered. The first structure
is composed of infinitely long metallic cylinders of radii r = 8 mm
arranged with period hx = 50 mm. The second structure is composed
of metallic cylinders of radii r = 8mm and heights h1 = 15 mm,
h2 = 20mm and is arranged with period hx = hz = 50 mm. The
power reflection and transmission coefficients are calculated versus
frequency for both examples. The results are presented in Fig. 4(a)
and Fig. 4(b). Comparing both configurations one can see that the
replacement of infinitely long cylinders from first example by periodic
cylinders from second example only slightly affects the response of
TE wave and has significant influence on TM wave. For TM wave
the infinitely long cylinder constitute an inductance while for periodic
cylinder an additional parallel capacitance is formed in the gaps
between cylinders, which gives rise to a resonance visible in STM

21
characteristic in Fig. 4(b). The presented results have been compared
with the results obtained from HFSS commercial software obtaining a
very good agreement.

The double periodic surface can be utilized to change the
polarization state of the transmitted wave (axial ratio AR, polarization
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angle ζ [30]). In the next example a periodic structure composed of thin
metallic cylinders of radii r = 1 mm with different heights and arranged
with period hx = hz = 50 mm is analyzed for normal incidence of the
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Figure 4. Power reflection and transmission coefficients versus
frequency for (a) infinitely long metallic cylinders of r = 8 mm arranged
with period hx = 50 mm and (b) double periodic metallic cylinders
of radii r = 8 mm and heights h1 = 15mm, h2 = 20 mm, arranged
with period hx = hz = 50 mm for normal incidence; solid line — our
approach, dashed line — HFSS.
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Figure 5. Double periodic structure composed of metallic cylinders
of radii r = 1 mm and different heights (solid line h2 = 0.5mm,
dash-dot line h2 = 8 mm, dashed line h2 = 20 mm), arranged with
period hx = hz = 50 mm for normal incidence (a) power reflection and
transmission coefficients versus frequency; (b) polarization parameters
(axial ratio AR, polarization angle ζ) of the transmitted wave versus
frequency.
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Figure 6. Power reflection and transmission coefficients versus angle
of incidence θin for frequency f = 4.8GHz and angle φin = 90◦.
(a) Metallic structure with dimension from Fig. 4(b). (b) Double
periodic dielectric structure with single cell composed of 3 layer
dielectric cylinder of radii r = 8 mm, heights h1 = 15 mm, h2 = 20 mm
and permittivity εr1 = 3, εr2 = 1 and εr3 = 3 arranged with period
hx = hz = 50 mm; Solid line — our approach; Dashed line — HFSS.

wave inclined by α = 45◦ with respect to the cylinder axis. The results
are presented in Fig. 5. As can be seen the TE wave is not affected by
the structure and by adjusting heights of the cylinders one can control
the transmission of the TM wave. For a given height of the posts the
TM wave is completely reflected for the selected frequency, thus the
only transmitted wave is of TE polarization. In result the structure
changes the polarization angle of linearly polarized wave by 45◦.

In the next example the metallic structure from Fig. 4(b) is
analyzed and the power reflection and transmission coefficients are
calculated for frequency f = 4.8GHz versus angle of incidence θin with
angle φin = 90◦. The results are presented in Fig. 6(a). The dielectric
cylinder configuration is considered next. The single cell of the periodic
structure consists of 3 layer dielectric cylinder of radius r = 8 mm,
heights h1 = 15mm, h2 = 20 mm and permittivity εr1 = 3, εr2 = 1 and
εr3 = 3 arranged with period hx = hz = 50mm. The power reflection
and transmission coefficients are calculated versus angle of incidence
φin with angle θin = 90◦. The results are presented in Fig. 6(b).

As can be seen from the presented examples for the metallic
structure and near normal incidence the complete reflection is obtained
for TM wave while TE wave is transmitted through the structure.
In the case of dielectric structure both waves are easily transmitted
through the structure except for angle about ±14◦ from normal
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incidence. Again a very good agreement was obtained between results
from presented approach and HFSS commercial software simulations.

In the next example the double periodic configuration of metallic
cylinders of radii r = 10 mm, heights h1 = 22.5mm, h2 = 15mm,
arranged with period hx = hz = 60 mm is investigated for wave
incidence angles φin = 70◦ and θin = 70◦. The power reflection and
transmission coefficients are calculated versus frequency and presented
in Fig. 7(a). The structure can be utilized for changing the polarization
state of the transmitted wave. As can be observed from Fig. 7(b) by
changing the inclination angle of the incident wave with respect to the
axis of cylinders one can change the linearly polarized wave to the wave
with circular polarization which occurs for α = 82◦ where AR=1 and
ζ is undetermined. The results presented in Fig. 7(b) were calculated
for frequency f0 = 3.59GHz.

The last example presents the investigation of periodic structure
composed of metallic posts with rectangular cross-section as presented
in Fig. 8(a). The posts are of dimension a = 20 mm and b = 2 mm
and are arranged with period hx = 40mm. The analysis of the single
post enclosed by artificial effective cylinder was performed with the use
of FDFD method. In result the T-matrix of such post was obtained
and then utilized in the procedure of calculating scattering parameters.
The power reflection and transmission coefficients are calculated versus
post rotation angle. The results for normal plane wave incidence are
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Figure 7. Double periodic structure composed of metallic cylinders
of radii r = 10mm, heights h1 = 22.5 mm and h2 = 15mm, arranged
with period hx = hz = 60 mm for incidence φin = 70◦ and θin = 70◦.
(a) Power reflection and transmission coefficients versus frequency.
(b) Polarization parameters (axial ratio AR, rotation angle ζ) of the
transmitted wave versus inclination angle α.
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Figure 8. Periodic structure composed of infinitely long metallic
cylinders with rectangular cross-section (a = 20 mm, b = 2mm),
arranged with period hx = 40 mm for incidence φin = 90◦ and θin =
90◦. (a) View of the structure. (b) Power reflection and transmission
coefficients versus posts rotation angle ∆ϕ at f0 = 6.6GHz; Solid line
— our approach; Dashed line — HFSS.

presented in Fig. 8(b). As can be seen the utilization of inhomogeneous
scatterers allows one to control the signal transmission by means of
their rotation in the array. It is worth noting that for this example
the single frequency calculation time takes approximately 1 s (with
4800 mesh cells in unit cell region) while HFSS needs for the same
task 30 s with the number of mesh cells 8290. Additional advantage
of our approach, which is utilized in this example and speeds up the
algorithm, is the possibility of calculating the T-matrix of the post only
once, for an arbitrary post rotation angle, and then use the analytical
formulas to calculate T-matrix for rotated object.

5. CONCLUSION

The analysis of electromagnetic wave scattering from double periodic
frequency selective surface has been presented in this paper. The
multimodal scattering matrix of such structure is derived using
the efficient numerical model based on the transmission matrix
approach and lattice sums technique. The transmission and reflection
characteristic for the structure with arbitrary plane wave illumination
were calculated for several presented examples. The validity and
accuracy of the approach are verified by comparing the results with
those obtained from alternative methods.
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APPENDIX A.

In Equations (33) and (34) wave numbers k
e(h)
ρ,q and functions f

e(h)
q (·)

are defined individually for each considered post from Fig. 2 and take
a following form:
• metallic cylinder (see Fig. 2(a))

fe
q (z) = cos(kz,q(z − z1)), fh

q (z) = sin(kz,q(z − z1)), (A1)

where: z ∈ [z1, z2], z1 = h1, z2 = h1 + h2, kz,q = (qπ)/h2 and

kρ,q =
√

k2
0εr − k2

z,q,

• dielectric cylinder (see Fig. 2(b))

fe
q (z) =

N∑

n=1

(
ge,n
1q cos(ke

z,qnzn) + ge,n
2q sin(ke

z,qnzn)
)

ψn(z), (A2)

fh
q (z) =

N∑

n=1

(
gh,n
1q sin(kh

z,qnzn) + gh,n
2q cos(kh

z,qnzn)
)

ψn(z), (A3)

where k
e(h)
z,qn =

√
k2

0εrn − (ke(h)
ρ,q )2, zn = z − zn, zn = zn−1 + hn,

z0 = 0, N is the number of dielectric layers and function ψn(z) is
defined as follows:

ψn(z) =
{

1 zn ≤ z < zn+1

0 otherwise . (A4)

The wave number k
e(h)
ρ,q and coefficients g

e(h),n
1 , g

e(h),n
2 are unknown

and have to be determined. Satisfying the boundary continuity
conditions:

εnEz(z)|z=z−n = εn+1Ez(z)|z=z+
n
, (A5)

∂Ez(z)
∂z

|z=z−n =
∂Ez(z)

∂z
|z=z+

n
, (A6)

µnHz(z)|z=z−n = µn+1Hz(z)|z=z+
n
, (A7)

∂Hz(z)
∂z

|z=z−n =
∂Hz(z)

∂z
|z=z+

n
, (A8)
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for each n = 1, . . . , N we are obtaining the transfer matrix
Te(h)

q [31] defined as:

Te(h)
q =

N∏

n=1

Te(h)
n , (A9)

where

Te
qn =

[
cos(ke

zqnhn) −ke
z,qn

εn
sin(ke

z,qnhn)
εn

ke
z,qn

sin(ke
z,qnhn) cos(ke

z,qnhn)

]
, (A10)

Th
qn =

[
cos(ke

z,qnhn) 1
ke

z,qn
sin(ke

z,qnhn)
−ke

zqn sin(ke
z,qnhn) cos(ke

z,qnhn)

]
. (A11)

Now, by applying Floquet theorem we are obtaining the following
system of homogeneous equations:(

Te(h)
q − e(jk0 cos θ0hz)I

)
ge(h)

q = 0, (A12)

where I is the unit matrix of size 2× 2, ge
q = [β1g

e
1q, εr1g

e
2q]

T and

gh
q = [gh

1q, β1g
h
2q]

T . The wavenumbers k
e(h)
ρ,q are the roots of the

equation:
det

(
Te(h)

q − e(jk0 cos θ0hz)I
)

= 0, (A13)

Finally, solving (A12) for each k
e(h)
ρ,q the column vectors ge(h)

q are
obtained.

APPENDIX B.

In Equation (44) matrices ME(H)
d1 , ME(H)

d2 and ME(H)
g take a general

form:
ME(H)

α = diag[ME(H)
α,−M , . . . ,ME(H)

α,M ],

where α = {d1, d2, g},

ME
α,m =

[
IEe

z
α MEe

z
α,m 0

I
Ee

ϕ
α M

Ee
ϕ

α,m I
Eh

ϕ
α M

Eh
ϕ

α,m

]
, MH

α,m =

[
I
He

ϕ
α M

He
ϕ

α,m I
Hh

ϕ
α M

Hh
ϕ

α,m

0 IHh
z

α MHh
z

α,m

]
,

matrices of electric and magnetic fields take form:
[
MEe

z
α,m

]
pp

= Zm(kρpR),
[
MHh

z
α,m

]
pp

= j/η0Zm(kρpR),

[
M

Ee
ϕ

α,m

]
pp

=
jm

k2
ρpR

Zm(kρpR),
[
M

Eh
ϕ

α,m

]

pp

=
−ωµ0

η0kρp
Z ′m(kρpR),

[
M

He
ϕ

α,m

]
pp

=
−jωε0

kρp
Z ′m(kρpR),

[
M

Hh
ϕ

α,m

]

pp

=
−m

η0k2
ρpR

Zm(kρpR)
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and matrices of integrals are defined as follows:[
IEe

z

B1(B2)

]
pp

=
[
I
Eh

ϕ

B1(B2)

]

pp

= hz,

[
I
Eh

ϕ

B1(B2)

]

pp

= jkzphz,

[
IHh

z

B1(B2)

]
qp

=

hz∫

0

fh
q (z)ejkzpzdz,

[
I
Hh

ϕ

B1(B2)

]

qp

=

hz∫

0

jkzpf
h
q (z)ejkzpzdz,

[
IEe

z
A

]
pq

=

hz∫

0

fe
q (z)e−jkzpzdz,

[
I
Eh

ϕ

A

]

pq

=

hz∫

0

fh
q (z)e−jkzpzdz,

[
I
Eh

ϕ

A

]

pq

=

hz∫

0

∂fe
q (z)
∂z

e−jkzpzdz,

[
I
Hh

ϕ

A

]

qq′
=

hz∫

0

fe
q (z)fh

q′(z)dz,

[
I
He

ϕ

A

]
qq′

=

hz∫

0

εr(z)fe
q (z)fe

q′(z)dz,
[
IHh

z
A

]
qq′

=

hz∫

0

fh
q (z)fh

q′(z)dz.
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