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Abstract—In this paper, we have investigated the marginal moment
generating function (MMGF) for the correlated Nakagami-m fading
channel by using maximal-ratio combining (MRC) diversity scheme at
receiver for the computation of channel capacity for various adaptive
transmission schemes such as: 1) optimal simultaneous power and rate
adaptation, 2) optimal rate adaptation with constant transmit power,
3) channel inversion with fixed rate, and 4) truncated channel inversion
with fixed rate. The effects of diversity receiver as well as correlation
coefficients on all these transmission schemes are discussed and the
channel capacity obtained using this proposed approach for all schemes
is compared with reported literature.

1. INTRODUCTION

Recently, the demand of wireless communication is growing explosively,
therefore it is very important to determine the capacity limits of fading
channels. In general, the capacity in fading channel is a complex
expression in terms of the channel variation in time and/or frequency
depending upon the transmitter and/or receiver knowledge of the
channel side information [1–4]. Earlier, the channel capacity has been
studied by various researchers for several fading environments [5–16].
In [5], Goldsmith and Varaiya have examined the capacity of Rayleigh
fading channels under different adaptive transmission techniques.
In [6], Lee has derived an expression for the channel capacity for
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Rayleigh fading channel. In [7], Gunther has extended the results
presented in [6] by deriving the capacity of Rayleigh fading channels
under diversity scheme. In [8], Alouini and Goldsmith have derived
the capacity of Rayleigh fading channels under different diversities as
well as rate adaptation and transmit power schemes. Other fading
channels like Nakagami, Weibull, Rician, and Hoyt fading channels
were studied in [9, 10]. In [11], Khatalin and Fonseka have discussed
the channel capacity for correlated Nakagami-m fading channel using
dual-diversity. In [12], the channel capacity under different diversity
schemes and different rate adaptation and transmit power schemes for
the correlated Rayleigh fading channel have been derived. In [13], the
characteristics function (CF) is developed for computing the ergodic
channel capacity. In [14, 15], the moment generating function based
(MGF) approach is proposed for the computation of channel capacity
with optimal rate adaptation (CORA) scheme only by using numerical
techniques. In [16], a novel MGF based approach is developed for
evaluation of the channel capacity for various rate adaptations and
transmit power schemes. In [16], the integral is evaluated by using
mainly two types of numerical technique and both the numerical
techniques are lengthy and much more complex. In [17], the channel
capacity limitation for the fading channel is discussed.

In this paper, we have presented a marginal moment generating
function (MMGF) based channel capacity analysis over correlated
Nakagami-m fading channel with M -branch MRC diversity. The main
contribution of this paper consists of the evaluation of MMGF function
and the derived MMGF function is used to obtain a closed-form
mathematical expression for the channel capacity with optimal rate
and power adaptation (COPRA), Truncated CIFR (CTCIFR) approach
and MGF is used to derive expression of the channel inversion with
fixed rate (CCIFR), channel capacity under optimal rate adaptation
(CORA) because MGF is a special case of MMGF by using lower limit
equal to zero then MMGF is converted into MGF as shown in next
section. The derived expressions are in terms of well known Meijer G
function and other special functions, which can be easily implemented
by using Maple or Mathematica software. The remainder of the paper
is organized as follows. Section 2 describes the system model. In
Section 3, MMGF is evaluated. The channel capacity evaluation under
different policies is performed in the Section 4. Numerical results are
discussed in the Section 5. Finally, the Section 6 concludes the work.
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2. CHANNEL MODEL

Consider an M -branch maximal ratio combing (MRC) diversity
receiver. The received base-band signal on ith branch can be written
as:

ri(t) = s(t) Hie
jφ

k + ni(t), i = 1, 2, . . . , M (1)

where s(t) is the transmitted signal and nk(t) is the identically
distributed white Gaussian noise with zero-mean. φk is the uniformly
distributed over range [0, 2π) and Hi is the Nakagami-m distributed
signal envelop with a probability distribution function as given in [1]

fHi(Hi) =
2

Γ(mk)
·
(

mi

Ωi

)mi

·H2mi−1
i ·e−(mi/Ωi)H

2
i i = 1, 2, . . . , M (2)

where Γ (·) is the Gamma function and Ωi = H̄2
i is the average power

on kth branch. mi ≥ 1/2 is the fading parameter, which is discussed
in detail in [1]. mi = 1 and mi = ∞ corresponds to the Rayleigh
and non-fading channel [1], respectively. The smaller value of the mi

represents the more fading in the channel. We have also considered
that the average power of signal (Ωi) as well as the fading parameters
(mi) in each M -channel MRC diversity system, which is identical. The
assumption of identical power is reasonable if the diversity channels are
closely spaced and the gain of each channel is such that all the noise
power is same in each [18]. The instantaneous signal-to-noise ratio
(SNR) at output of MRC diversity is given by [18–20]:

γt =
ES

N◦

M∑

i=1

|Hi|2 =
M∑

i=1

γi (3)

where ES is the average symbol energy, and N0 is the single sided
power spectral density of the Gaussian noise. When the receiving
antennas are closely spaced then receiving signals are also correlated,
hence the SNR of received signals γ1,γ2 . . . γM cannot be considered as
independent random variables. The correlation coefficient between two
receiving antenna is (by assuming equal correlation between antennas
ρ) given as [1]:

ρ = Cov(γi, γj)
/√

Var(γi)Var(γj) 0 ≤ ρ < 1 (4)

where j = 1 . . . M . Cov(γi, γj) is the covariance of γi and γj . Var(·) is
the variance. The probability density function of γt for the correlated
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Nakagami fading is given as [21]:

fγ(γt) =

(
γt m
γ̄t

)M m−1
exp

(
−γtm

γ̄t (1−ρ)

)
1F1

(
m, Mm, M m ρ γt

γ̄t(1−ρ)(1−ρ+Mρ)

)
( γ̄t

m

)
(1− ρ)m(M−1) (1− ρ + Mρ)m Γ(M m)

γt > 0 (5)

where γ̄t is average SNR, and 1F1 (·) is the confluent hyper geometric
function as given in [22, 23]. On the other hand, recent advances
on performance analysis of the digital communication systems in
fading channel has recognized the potential importance of the moment
generating function (MGF) as a powerful tool for simplifying the
analysis of diversity communication systems. This has led to
simple expressions for average bit-error-rate and symbol-error-rate in
variety of digital signalling schemes in the fading channels, including
multichannel reception with correlated diversity. If we consider:

A =
(

m
γ̄t

)Mm
, B = m

γ̄t(1−ρ) , C = M m ρ
γ̄t(1−ρ)(1−ρ+Mρ) and D = (1 −

ρ)m(M−1) (1− ρ + Mρ)m Γ(M m).
Then Equation (5) can be written as:

fγ(γt) =
A

D
e−B γt

1F1 (m, Mm,Cγt) (γt)
Mm−1 (6)

3. MARGINAL MOMENT GENERATING FUNCTION
EVALUATION

In this section, the MMGF of the SNR of M -branch MRC diversity is
evaluated and further it is used to obtain the channel capacity. The
MMGF is defined as [24]:

M̂(s, a) =

∞∫

a

e−sγfγ(γ)dγ (7)

By substituting the value of fγ(γt) from the Equation (6), we get:

M̂(s, γ0) =
A

D

∞∫

γ◦

(γt)Mm−1e−B γt
1F1 (m, Mm,Cγt) e−sγtdγt (8)

By expanding 1F1 (·) from [22 Equation (9.14.1)] and putting in the
Equation (8), we get:

M̂(s, a) =
A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!
I1 (9)
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where

I1 =

∞∫

γ◦

(γt)k+Mm−1e−(s+B )γtdγt (10)

From [22 Equation (3.381.3)], the Equation (10) can be written as:

I1 = (B + s)−(k+mM) Γ(k + mM, a (B + s)) (11)

By putting the result of I1 from the Equation (11) into Equation (9),
we get:

M̂(s, a)=
A

D

∞∑

k=0

Γ(k+m)Γ(Mm)
Γ(m)Γ(k+Mm)

(C)k

k!
Γ(k + mM, a(B+s))

(B+s)(k+mM)
(12)

By putting a = 0 in Equation (12), the MMGF changs to MGF:

M(s) =
A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!
Γ(k + mM, 0)

(B + s)(k+mM)

=
A

D
Γ(Mm)

∞∑

k=0

Γ(k + m)

Γ(m) (B + s)(mM)

1
k!

(
C

B + s

)k

M(s) =
A

D
Γ(Mm)×

∞∑

k=0

Γ(k + m)
Γ(m)

1
k!

(C)k 1

(B + s)Mm+k
(13)

By using [22 Equation (9.140.1)], Equation (13) can be expressed as:

M(s) =
A

D

Γ(Mm)

(B + s)Mm
× 2F1

(
m, Mm; Mm;

C

B + s

)
(14)

where 2F1 (·) is the Gauss hypergeometric function [25]. By using [25
Equation (15.1.8)], Equation (14) can also be expressed as:

M(s) =
(

1 +
γ̄t(1− ρ + Mρ) s

m

)−m (
1 +

γ̄t(1− ρ) s

m

)−m(M−1)

(15)

MGF in Equation (15) is further used to obtain the channel capacity
under various adaptive schemes.

4. MARGINAL MGF BASED CHANNEL CAPACITY
ANALYSIS

The channel capacity has been regarded as the fundamental
information theoretic performance measure to predict the maximum
information rate of a communication system. It is extensively used
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as the basic tool for the analysis and design of new and more
efficient techniques to improve the spectral efficiency of modern
wireless communication systems and to gain insight into how to
counteract the detrimental effects of the multipath fading propagation
via opportunistic and adaptive communication methods. The main
reason for the analysis of the spectral efficiency over fading channels
is represented by the fact that most framework described in various
literature make use of the so-called PDF based approach of the received
SNR has to be used, which is a task that might be very cumbersome for
most system setups and often require to manage expression including
series. It is also well known that a prior knowledge of channel state
information at the transmitter may be exploited to improve the channel
capacity, such that in the low SNR regime, the maximum achievable
data rate of a fading channel might be much larger than that of without
fading.

4.1. Optimal Rate Adaptation

When the transmitter power remains constant and channel state
information (CSI) being available at the receiver side only. The channel
capacity with optimal rate adaptation (CORA) in terms of the MGF
based approach can be expressed as [18]:

CORA =
1

ln(2)

∞∫

0

Ei(−s) M
(1)
γ (s) ds (16)

where Ei (·) denotes the exponential integral function as defined in [23,]
and M

(1)
γ (s) is the first derivative of the MGF. The integral in

Equation (16) is called as Ei-transform. Moreover, in those scenarios
where very complicated expressions of MGF of the received SNR do
not allow computing easily the aforementioned integral in a closed-
form, the result in Equation (16) can be numerically evaluated by
using standard software such as Maple and Mathematica [18]. Here,
we have presented a closed-form expression for CORA scheme. By
differentiating, Equation (12) with respect to s, we get:

M1(s) = −A

D
Γ(Mm) ×

∞∑

k=0

Γ(k + m)
Γ(m)

1
k!

(c)k (Mm + k)

(B + s)Mm+k+1
(17)

By putting the value of M1(s) in Equation (16), we get,

CORA = − 1
ln(2)

A

D
Γ(Mm) ×

∞∑

k=0

Γ(k + m)
Γ(m)

(Mm + k)
k!

(c)k I2 (18)
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where

I2 =

∞∫

0

Ei(−s)
1

(B + s)Mm+k+1
ds

=
1

(B)Mm+k+1

∞∫

0

Ei(−s)
1(

1 + s
B

)Mm+k+1
ds (19)

By putting s
B = t in Equation (19), and after some mathematical

manipulations, we get:

I2 =
1

(B)Mm+k

∞∫

0

Ei(−Bt)

(1 + t)Mm+k+1
dt (20)

From [23 Equation (8.4.2.7)] along with [23 Equation (8.4.11.1)], the
Equation (20) can be expressed as:

I2 = − 1
(B)Mm+kΓ(k + mM + 1)

∞∫

0

G
1 1
1 1

[
t | −(k + Mm)

0

]
G

2 0
1 2

[
Bt | 1

0 0

]
dt (21)

By using [23 Equation (2.24.1)], the Equation (19) can be expressed
as:

I2 =
G

3 1
2 3

[
B | 0 1

0 0 (k + mM)

]

(B)M m+kΓ(k + mM + 1)
(22)

By putting value of I2 from Equation (22) to the Equation (18), we
get:

CORA =
1

ln(2)
A

D
Γ(Mm) ×

∞∑

k=0

Γ(k + m)
Γ(m)

(Mm + k)
k!

(C)k

G
3 1
2 3

[
B | 0 1

0 0 (k + mM)

]

(B)M m+kΓ(k + mM + 1)
(23)

where G (•) is Meijer’s G function [22, Equation (9.301)]. An
expression of CORA in Equation (23) shows the summation of infinite
series but it diverges rapidly with the increasing the number of terms
and only six terms are required to get closed form expression of CORA.
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4.2. Optimal Simultaneous Power and Rate Adaptation

When both the transmitter and receiver have perfect channel
information, then the channel capacity for the optimal power and rate
adaptation (COPRA) is given by [8]:

COPRA = B

∞∫

γ◦

log2

(
γ

γ◦

)
fγ (γ) dγ (24)

where B is the channel bandwidth (in Hz), and γ◦ is the optimal cut-
off SNR level below which no transmission takes place. This optimal
cut-off SNR level must satisfy:

∞∫

γ◦

(
1
γ◦
− 1

γ

)
fγ (γ) dγ = 1 (25)

to achieve the significant channel capacity, the amount of fading must
be tracked at both the transmitter and receiver, the transmitter adapts
its power and data rate to the channel variations by allocating high-
power levels and rates for good channel condition and low power levels
and rates for bad channel condition [8]. Furthermore, this optimal
policy suffers a probability of outage Pout, which is equal to the
probability of no transmission, as given by:

Pout =

γ◦∫

0

fγ(γ) dγ (26)

Now, an alternate method to evaluate the COPRA by using the MMGF
is as given below. By substituting first γ = q +γ◦ in the Equation (24)
and then again substituting q/γ◦ = x in the Equation (22). The
Equation (23) is reduces to:

COPRA =
γ0

ln(2)

∞∫

0

ln (1 + x) fγ (γ◦(1 + x)) dx

=
γ0

ln(2)
_

E (ln(1 + γ); γ◦) (27)

By using relation given below from [14]:

ln(1 + γ) =

∞∫

0

(
1− e−γ z

z

)
e−zdz (28)
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By substituting the value of ln(1 + γ) form Equation (28) into
Equation (27), we get:

COPRA =
γ0

ln(2)

∞∫

0

[
1− Ê [e−xz; γ◦]

]
e−z

z
dz (29)

Also, we define:

Ê
[
e−xz; γ0

]
=

∞∫

0

e−xzfγ (γ◦(1 + x)) dx

I3 =

∞∫

0

e−xzfγ (γ◦(1 + x)) dx (30)

By putting the γ◦(1 + x) = g in Equation (30) and after some
mathematical manipulation, the integral I3 can be expressed as:

I3 =
ez

γ0

∞∫

γ0

e
− z g

γ0 fγ(g) dg =
ez

γ0
M̂

(
z

γ0
, γ0

)
(31)

where M̂
(

z
γ0

, γ0

)
is the MMGF. By putting value of I3 from

Equation (31) to the Equation (29), we get:

COPRA =
γ0

ln(2)



∞∫

0

e−z

z
dz − 1

γ0

∞∫

0

M̂
(

z
γ0

, γ0

)

z
dz


 (32)

For evaluation of COPRA, in Equation (32), the first integral and second
integral are required to evaluate, which can be obtained numerically by
standard software like Maple and Mathematica. To obtain the optimal
cut-off SNR γ◦ in Equation (32), we need to solve the Equation (25)
by using standard techniques like as discussed in [5, 8, 12]. Here, we
are presenting MMGF based approach for optimization of cut-off SNR
γ◦. By rearranging the Equation (25), we get:

1
γ0

∞∫

γ0

fγ(γ)dγ −
∞∫

γ0

1
γ0

fγ(γ)dγ = 1 (33)

Also, we define:

I4 =
1
γ◦

∞∫

γ0

fγ(γ)dγ (34)
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and

I5 =

∞∫

γ0

fγ(γ)
γ

dγ (35)

By substituting s = 0 and a = γ◦ in Equation (7), we get:

M̂(0, γ◦) =

∞∫

γ0

fγ(γ)dγ (36)

From Equation (34) and Equation (36), I4 can be expressed as:

I4 =
M̂(0, γ◦)

γ◦
(37)

By replacing 1
γ =

∞∫
0

e−γ sds in the Equation (35) and by changing the

order of integration, we get:

I5 =

∞∫

0




∞∫

γ0

e−γ sfγ(γ)dγ


 ds =

∞∫

0

M̂(s, γ0) ds (38)

By substituting I4 and I5 in Equation (31), we get:

M̂(0, γ◦)
γ◦

−
∞∫

0

M̂(s, γ◦) ds = 1 (39)

where M̂(s, γ0) is the MMGF of γ0. From Equation (38) and
Equation (12), the integral I5 is evaluated as:

I5 =
A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!
I6 (40)

where

I6 =

∞∫

0

Γ(k + mM, γ◦(B + s))

(B + s)(k+mM)
ds (41)

By substituting B+s = t in the Equation (41) and after simplification,
we get:

I6 =

∞∫

B

Γ(k + mM, t)

(t)(k+mM)
dt (42)
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By using [23 Equation (8.4.16.2)], the Equation (42), can be expressed
as:

I6 =

∞∫

B

(t)−(k+mM) G
2 0
1 2

[
γ◦t | 1

0 0

]
dt (43)

and from [23 Equation (2.24.2.3)], the Equation (43) can be expressed
as:

I6 = (B)1−(k+mM)G
3 0
2 3

[
Bγ◦| 1 k + mM

(k+mM)−1 0 (k+mM)

]
(44)

By putting the result of I6 from the Equation (44) in to Equation (40),
we get:

I5 =
A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!

G
3 0
2 3

[
Bγ◦| 1 k + mM

(k + mM)− 1 0 (k + mM)

]

(B)(k+mM)−1
(45)

From Equation (12), integral I4 can be expressed as

I4 =
M̂(0, γ◦)

γ◦
=

A

γ◦D

∞∑

k=0

Γ(k+m)Γ(Mm)
Γ(m)Γ(k+Mm)

(C)k

k!
Γ(k+mM, γ◦)

(B)(k+mM)
(46)

By substituting results of the Equations (45) and (46) in the
Equation (39)

[(
A

γ◦D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!
Γ(k + mM, γ◦)

(B)(k+mM)

)

−
(

A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!

×
G

3 0
2 3

[
Bγ◦| 1 k + mM

(k + mM)− 1 0 (k + mM)

]

(B)(k+mM)−1





 = 1 (47)

Although, the optimal cut-off SNR γ◦ cannot be obtained in closed-
form by Equation (47), in order to get optimal cut-off SNR, γ◦,
the numerical evaluation is performed using standard software like
Mathematica or Maple.
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4.3. Channel Inversion With Fixed Rate

The channel capacity for channel inversion with fixed rate (CCIFR)
requires that the transmitter exploits the channel state information
such that the constant SNR is maintained at receiver. In this method,
fixed transmission rate is used since the channel after fading inversion
appears. The channel capacity with fixed channel inversion rate can
be expressed as [8]:

CCIFR = log2


1 +

1
∞∫
0

fγ(γ)
γ dγ


 (48)

The Equation (48) can be expressed in the term of MGF as shown
below:

I7 =

∞∫

0

fγ(γ)
γ

dγ (49)

By replacing 1
γ =

∞∫
0

e−γ sds in the Equation (49), we get:

I7 =

∞∫

0

fγ(γ)




∞∫

0

e−γ sds


 dγ (50)

By changing order of the integration in Equation (50), we get:

I7 =

∞∫

0




∞∫

0

fγ(γ)e−γ sdγ


 ds

Now, we have

I7 =

∞∫

0

M(s)ds (51)

By putting the value of I7 from the Equation (51) in Equation (48),
we get:

CCIFR = log2


1 +

1
∞∫
0

M(s) ds


 (52)
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By putting the value of M(s), from Equation (15) in Equation (51),
we get:

I7 =

∞∫

0

(
1+

γ̄t(1−ρ + Mρ) s

m

)−m (
1+

γ̄t(1− ρ) s

m

)−m(M−1)

ds (53)

By using [22 Equation (3.259.3)], the integral I7 in the Equation (53)
can be expressed as:

I7 =
mB(1,mM−1)
(1+ρ(M − 1))γ̄t

2F1

(
m(M−1), 1; mM ;

Mρ

1+ρ(M−1)

)
(54)

where B(·) is beta function [22, Equation (8.384.1)]. By putting the
result of Equation (54) into the Equation (52), we get:

CCIFR =log2


1+

(1+ρ(M−1))γ̄t

mB(1,mM−1)2F1

(
m(M−1),1;mM; Mρ

1+ρ(M−1)

)

 (55)

The above expression evaluates the accurate value of channel capacity
for channel inversion with fixed rate scheme for arbitrary value of the
fading parameter (m).

4.4. Truncated Channel Inversion

The CIFR suffers from a large capacity penalty relative to other
techniques. The truncated CIFR is a better approach than that of
CIFR, where channel fading is inverted above a cut-off SNR (γ0). The
channel capacity for a truncated CIFR is defined as [8].

CTCIFR = log2


1 +

1
∞∫
γ0

fγ(γ)
γ dγ


 {1− Pout(γ◦)} (56)

In Equation (54), the integral
∞∫
γ0

fγ(γ)
γ dγ is similar with the integral I5

in Equation (35) and it can be written in terms of MMGF as given
in Equation (36). The outage probability Pout(γ◦) expressed in the
Equation (26) can be written as:

Pout(γ◦) = 1−
∞∫

γ◦

fγ(γ) dγ (57)
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By using Equation (37), the Equation (57) can be expressed as:

Pout(γ◦) = 1− M̂(0, γ◦) (58)

(b)

(a)

Figure 1. Channel capacity with optimal rate adaptation (CORA)
versus SNR for various (a) diversity receivers and (b) correlation
coefficients.
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(b)

(a)

Figure 2. Channel capacity for optimal rate adaptation (COPRA)
versus SNR for various (a) diversity receivers and (b) correlation
coefficient.

By putting a = γ◦ and s = 0 in Equation (12), Pout(γ◦) can be
expressed as:

Pout(γ◦) = 1− A

D

∞∑

k=0

Γ(k + m)Γ(Mm)
Γ(m)Γ(k + Mm)

(C)k

k!
Γ(k + mM,γ◦B )

(B)(k+mM)
(59)

CTCIFR = log2


1 +

1
∞∫
0

M̂(s, γ0) ds




{
M̂(0, γ◦)

}
(60)
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By substituting result of I5 from the Equation (45) and Pout, in
Equation (60), we get:

CTCIFR

= log2




1+
1



A
D

∞∑
k=0

Γ(k+m)Γ(Mm)
Γ(m)Γ(k+Mm)

(C)k

k!

G
3 0
2 3

[
Bγ◦| 1 k+mM

(k+mM)−1 0 (k+mM)

]

(B)(k+mM)−1







{
M̂(0, γ◦)

}
(61)

By using the Equation (61), the channel capacity for the truncated
CIFR scheme can be evaluated easily for arbitrary value of the fading
parameter.

5. RESULTS AND DISCUSSION

In this section, we have presented some numerical results for the
channel capacity with MRC diversity at receiver over the correlated
Nakagami-m fading channel. Fig. 1 shows the channel capacity with
optimal rate adaptation (CORA) as a function of the SNR for various
diversity receivers as well as correlation coefficients. As the number of
diversity receiver increases, the CORA improves significantly as shown
in Fig. 1(a). Fig. 1(b) depicts the effect of correlation coefficient on the
channel capacity with optimal rate adaptation (CORA) as a function
of SNR. As the correlation coefficient increases, the CORA decreases
as shown in Fig. 1(b). Fig. 2 shows the channel capacity for optimal
power and rate adaptation (COPRA) versus SNR for various diversity
receivers and correlation coefficients. As the number of diversity
receivers increases, the COPRA improves as shown in the Fig. 2(a).
Fig. 2(b) shows the channel capacity for (COPRA) versus SNR for
several values of correlation coefficient as shown in Fig. 2(b). Fig. 3
shows the graph between the channel inversion with fixed rate (CIFR)
and SNR for various diversity receivers as well correlation coefficients.
The CIFR improves with the increasing of diversity receiver as shown
in Fig. 3(a). Fig. 3(b) shows the channel inversion with fixed rate
(CIFR) versus SNR for several correlation coefficients. As it increases,
the CIFR decreases but the decrement is more in comparison to that
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of the Fig. 1(b) and Fig. 2(b). Fig. 4 shows the channel capacity
with truncated channel inversion (CTCIFR) versus cut-off SNR (γ0)
for various values of the SNR. From Fig. 4, it is seen that as the
SNR increase, the cut-off rate (γ0) also increases. Fig. 5 shows the
channel capacity with truncated channel inversion (CTCIFR) versus
cut-off rate (γ0) for various MRC diversities. As the MRC diversity
increases, the cut-off rate (γ0) increases significantly as shown in

(a)

(b)

Figure 3. Channel inversion with fixed rate (CIFR) versus SNR for
various (a) diversity receivers and (b) correlation coefficients.
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Figure 4. Channel capacity with truncated channel inversion
(CTCIFR) versus cut-off SNR (γ0) for various values of SNR.

Figure 5. Channel capacity with truncated channel inversion
(CTCIFR) versus cut-off SNR (γ0) for different MRC diversity.

Fig. 5. Fig. 6 depicts the channel capacity with truncated channel
inversion (CTCIFR) versus cut-off SNR (γ0) for the various values of
the correlation coefficient. As the correlation coefficient increases, the
cut-off rate decreases slowly.

Figures 7 to 10 show the comparison of channel capacity under
various adaptive condition with the reported literature [12] for
correlated Rayleigh fading channel (m = 1). The result of the proposed
method is similar with that of [12]. In the Fig. 7, the characteristic
of the channel capacity for optimal rate adaptation with correlation
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coefficients of the proposed method has been compared with [12]
by considering the Rayleigh fading channel (m = 1). The results
of the proposed method are comparable with that of the [12]. In
Fig. 8 shows the comparison of the characteristics of channel capacity
for optimal simultaneous power and rate adaptation with SNR for

Figure 6. Channel capacity with truncated channel inversion
(CTCIFR) versus cut off SNR (γ0) for the various value of correlation
coefficient.

Figure 7. Comparison of the capacity with [12] for optimal rate
adaptation (CORA) versus correlation coefficient for diversity M = 3
for different values of SNR.
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Figure 8. Comparison of the channel capacity with [12] for
optimal rate adaptation (COPRA) versus SNR for the several values
of correlation coefficient.

Figure 9. Comparison of the channel inversion with [12] for fixed rate
(CIFR) versus SNR for various correlation coefficients.

various correlation coefficients of the proposed method with [12] by
considering the Rayleigh fading channel (m = 1). The results of the
proposed method are comparable with that of the [12]. Fig. 9 depicts
the comparison of the characteristics of channel capacity of channel
inversion with fixed rate with SNR for various correlation coefficients
of the proposed method with [12] by considering the Rayleigh fading
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Figure 10. Comparison of the channel capacity with [12] for
truncated channel inversion (CTCIFR) versus cut off SNR (γ0) for
various correlation coefficients.

channel (m = 1). The results of the proposed method are comparable
with that of the [12].

In Fig. 10, we have compared the characteristics of channel
capacity of channel inversion with truncated channel (CTCIFR) versus
cut-off SNR (γ0) for various correlation coefficients of the proposed
method with [12] by considering the Rayleigh fading channel (m = 1).
The results of the proposed method are comparable with that of
the [12].

6. CONCLUSIONS

In this paper, we have investigated the marginal MGF for correlated
Nakagami-m fading channel with MRC diversity and obtained
marginal MGF is used to evaluate the channel capacity under
different adaptation policies. A novel mathematical expression for the
computation of channel capacity under various adaptive schemes is
derived which is valid for arbitrary value of the fading parameters m.
We have also analyzed the effect of correlation on the channel capacity.
Due to their simple forms, these results offer a useful analytical tool for
the accurate performance evaluation of the various systems of practical
interest.
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