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Abstract—In this article, a new hybrid algorithm based on Honey
Bees Mating Optimization (HBMO) combined with the Tabu Search
(TS) for null steering beamformer in adaptive antenna array is
presented. The proposed method HBMO/TS is applied to a set of
random cases to estimate the excitation weights of an antenna array
that steer the main lobe towards a desired signal, place nulls towards
several interference signals and achieve the lowest possible value of side
lobe level. Moreover, the proposed algorithm is tested and compared
with two other well-known approaches that are the Least Mean Squares
(LMS) and Genetic Algorithm (GA). The abovementioned methods
have been performed considering uniform linear antenna array and
achieved by controlling only the phase of each array element. Results
obtained prove the effectiveness of our proposed approach HBMO/TS.

1. INTRODUCTION

The techniques of introducing nulls in the antenna patterns to
suppress interference and maximizing their gain in the direction
of desired signal have received considerable attention in the past
and are still of great interest using evolutionary algorithms such as
genetic algorithms (GA) [1–3], particle swarm optimization (PSO) [4–
12], Taguchi’s optimization method [13] or the sequential quadratic
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programming (SQP) algorithm [14]. In this article, an interference
rejection approach, based on an optimization method called HBMO in
combination with TS is studied and developed. This approach allows
a statistical exploration and research of the optimal power supply of
adaptive patch antenna, under the constraint that only the phases of
beamforming coefficients are adjustable. HBMO method was presented
for the first time in 2001 [15], and since used in various applications
such as in [16–22]. In addition to HBMO applications, a so called
Artificial Bee Colony (ABC) algorithm is also proposed as a mean for
solving optimization problems [23].

This article also assesses the effectiveness of the hybrid algorithm
HBMO/TS for the rejection of interference by ordering only the supply
phase. We first start detailing our approach HBMO which is based
upon the mating process of queens in honey bees. The principle of
adaptation and optimization of an antenna array is then presented.
Explanation and details of the progress of our algorithm HBMO/TS
are made by giving the appropriate model and presenting all its
parameters.

2. ORIGINAL HBMO ALGORITHM

During the first three days of life of honey bees, the queens cannot fly.
From the fifth to the fifteenth day after its birth, the queen, in favorable
weather, makes one or more flight tracking and coupling. Fertilization
of the queen bees by males takes place outside the hive and in the
air. The queen is fertilized by several males until her spermatheca
is properly filled. Her tracking period can take several days. The
number of copulations appears to be an average of eight but this may
vary according to season and mature males availability. Eight to ten
males are sometimes necessary for the fertilization of a single queen.
After the nuptial flight the queen returns to the hive, the sperm will
be kept in her spermatheca and will ensure the fertilization of eggs for
the lifetime of the queen. Before the mating process begins, the user
must define a number ηsp corresponding to the size of the spermatheca
of the queen. This number is the maximum number of mating of the
queen in one nuptial flight. Whenever the queen mates successfully, the
genotype of the drone is stored and a variable is increased by one until
the size of the spermatheca is reached. Two more parameters must be
defined, the number of queens and the number of broods that will be
born by the queen. In this implementation of the HBMO algorithm,
the number of queens is equal to one since, in real life, one queen
can survive within the hive, the number of broods being the number
corresponding to the size of the queen spermatheca. Now we are ready
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to begin the mating flight of the queen. At the beginning of the flight,
the queen is initialized with some energy content and return to its hive
when the energy is within a certain threshold from zero to the value of
the spermatheca [22]. The mating of the queen with the drone takes
place with a certain probability distribution defined as [15]:

Pro (D) = exp
(
−∆(f)

S (t)

)
(1)

where Prod (D) is the probability of successful mating, otherwise, the
probability of adding the drone’s sperm in the spermatheca of the
queen. ∆(f) is the absolute value of the difference between the fitness
function of the drone and the fitness function of the queen.

∆ (f) = |f (D)− f (Q)| (2)

S(t) and E(t) are the speed and the energy of the queen.

S (t + 1) = α ∗ S (t) (3)

and
E (t + 1) = α ∗ E (t) (4)

α is the reducing factor of energy and speed after each transition (α
is within the interval [0, 1]). The probability of successful mating is
high when the speed of the queen is at a high level or when the fitness
function of the drone is approximately equal to that of the queen.

3. OPTIMIZATION PRINCIPLE OF AN ANTENNA
ARRAY

An antenna array is a set of antennas, arranged in a particular and
specific geometry and intended to send or received similar frequency.
The advantage of using antenna arrays rather than one source lies in
the fact that the element has a single fixed radiation in space (unless
it is rotated mechanically) by having multiple sources radiating into
space, and by weighting each of these elements, you can vary and
change the delays between signals from different antennas to obtain
a spatial distribution of radiated power using variable weighting of
supply law. The selection process is done by adaptation algorithms
that construct reference signals from a predetermined knowledge of
the structure of communication signals or apportion of transmitted
data [24–26]. Figure 1 shows the basic concept of an adaptive
antenna array. The responses of individual sources in the network
are then combined by appropriate treatment in order to extract the
useful signal. Any variation in complex weights wi leads to a new
network response. Indeed, the gain of the network, compared to the
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Figure 1. Narrow band antenna array with a complex weight.

incident direction of the wave front is easily adjustable by changing
the magnitude and phase of signals from different antennas before
summing.

If we consider an adaptive network subject to the interference, the
problem can be treated in the same way as in the case of the synthesis
of antenna array. The directions of incidence of the different sources are
known, as the case dealt within this article, we can choose to direct the
radiation pattern of zeros in the directions interfering while focusing
the direction of incident of useful source [26].

Several topologies exist for adaptive network of antenna. However,
this article treats the case of the linear network (a linear array of N
uniform elements). We recognize that there is no coupling between the
sources, and each source in the presence of remaining ones radiates the
same field. The total field is given by:

F (θ) = f (θ)
N−1∑

i=0

wi exp (jk0id sin θ cosϕ) (5)

With

wi = ai exp(−jbi) (6)

By replacing wi in Equation (5), the resulting final equation will be:

F (θ) = f (θ)
N−1∑

i=0

ai exp (jk0id sin θ cosϕ + bi) (7)
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θ and ϕ are direction angles of the sources; ai and bi are respectively the
magnitude of the supply and the phase power of the antenna array; d
is the spacing between the elements in the antenna, f(θ) being the field
of an antenna element of the network (it is the same for all elements)
and ko is the wave number. The principle of adapting the antenna
array is to determine the complex weighting of power that places zeros
in the directions of interference, in order words, find the values of
ai and bi. The approach using the HBMO algorithm to adapt the
antenna array is to set the magnitude of the phase that minimizes the
maximum radiation levels in the directions of interferences. The link
between HBMO algorithm and the problem of adapting antenna array
is achieved by the following fitness function:

fitness = 20 log10

[
Sd |F (θd)|+

M∑

int=1

Sint |F (θint)|
]

(8)

With
Sd = |Sd(t)| exp(−jθd) (9)

Sint = |Sint(t)| exp(−jθint) (10)
M represents the number of interferences; Sd and Sint are, respectively,
the spatial signatures of the desired signal and the interfered signal; θd

and θint are, respectively, the direction of arrival of the desired signal
and the interfered signal.

The fitness can then be expressed by:

fitness = 20 log10

M+1∑

i=1

Si |F (θi)| (11)

With
Si = Sd + Sint (12)

Moreover, by replacing F (θ) in Equation (11), the resulting final
equation will be:

fitness=20log10

[
M+1∑

i=1

Sif(θi)
N∑

n=1

anexp(jk0nd sin θn cosϕn+bn)

]
(13)

Si is the vector space of the sources.

4. OPTIMIZATION OF THE ANTENNA ARRAY

In this section we present and explain in details three different
methods of optimization of the antenna array using the following
algorithms: HBMO/TS, GA and LMS. GA and LMS are being added
for a comparison purpose and in the view of improving our proposed
approach.
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4.1. Using the Hybrid Algorithm HBMO/TS

After initializing HBMO/TS parameters, we randomly generate a set
of solutions (population of bees). Each solution represents a vector
phase of the antenna array. The evaluation and ranking are based on
the values of the fitness function (Equation (13)). The best solution
(optimal phase) is considered as the queen and the remaining solutions
as the drones. The Mating, which is the coupling of the queen
with the drones, generates new solutions called the Broods. Each
crossover operation takes place according to the probability Pro (D)
(Equation (1)). The crossover process will be done by permutation
between elements of the queen vector and the drone vector. The choice
of these elements of permutation is done randomly. We test every time
the feasibility of the solution which should belong to the research space.
After each mating, an update of the spermatheca, speed and energy of
the queen is done systematically. The mating is stopped when one of
the stopping criteria (size of the spermatheca ηsp, final energy Ef or
final speed Sf ) is reached. After the mating step, we use the workers to
improve the generated solutions named Broods. The workers are based
on TS that will be part of the algorithm HBMO hence the name hybrid
approach HBMO/TS. The overall approach is to modify iteratively
an initial solution, hoping to reach a final acceptable solution in a
reasonable time. To this end, the method uses tabu movements to
move from one solution to another within a predefined search space.
TS strategy is to generate from an initial solution (solution brood) a
set of neighboring solutions throughout research space. The starting
solution and every solution in the neighborhood represent a phase
vector with n unknowns (n: number of antennas). Each component
of this vector is in the range [−π/2, π/2] (lower and upper bounds
of research space). The neighboring solutions are determined by the
application of a research movement in the vicinity of the starting
solution given by the following expression:

Xk+1=Xk+g (Xk) (14)

Xk represents the current vector phase and Xk+1 the neighbor vector
phase and k number of iterations of this process. The stochastic
transformation function is determined experimentally with r being a
random variable within the interval [−1, 1].

g (Xk) =Xk+(2r1−0.5)/100 (15)

At each iteration, we retain the best phase vector neighbor which
becomes the starting solution for the next iteration. The evaluation
of phase vectors is done accordingly to the criterion of minimizing the
“objective” function (Equation (13)). Avoid the risk of recycling since
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the algorithm needs a memory to store the latest best solutions already
visited (tabu list). In applying the suction criterion of the tabu search,
we choose the best phase vector found during this process (even if this
solution belongs to the tabu list). This vector will represent the brood
phase improved by the workers.

After phase improvement by workers, we repeat the evaluation
and ranking of broods improved and the best solution is compared
with the queen. If it brings an improvement in the value of fitness, the
queen will be replaced by this solution; otherwise, we keep the queen.
The overall process, which is the optimization of antenna array based
on HBMO/TS, happens indefinitely until reaching a stopping criterion
defined by a number of iterations.

The following steps summarize the HBMO/TS algorithm.

i. HBMO Parameters initialization.
• ηsp: Size of the spermatheca.
• E(t) et S(t): Energy and Speed (Energy and Speed are within

the interval [0.5, 1]).
• α: reducing factor of energy and speed (α is within the

interval [0, 1]).
• M : maximum number of mating flights.

ii. Generate the initial population of the bees (random strategy).
iii. Evaluate and ranking Bees Fitness function.
iv. Select the best solution of the population of phase vector which

represents the queen.
v. For i = 0 to M (M : number of mating flights).

do while E(t) > Emin or S(t) > Smin or Sperm is not full (Sperm
6= ηsp).
• Select a drone.
• if the drone passes the probabilistic condition.

do the Mating (cross between drone and queen →
Generate a brood).
Add brood to the list of broods.
Add drone sperm in the spermatheca (update sperm).

endif
S(t + 1) = α× S(t).
E(t + 1) = α×E(t).

Enddo
• Improve the brood’s fitness by applying the workers improve

( ) (Tabu search based).
• if the brood’s fitness is better than the queen’s fitness.

Replace the queen with the brood.
else Add the brood to the population of drones.
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endif
vi. Update the drone population (Replace the weak drones by the best

broods).
enddo (for)

vii. return The Queen (Best Solution).

The procedure of workers improve based on Tabu Search is presented
by the following algorithm.

workers improve ( ): Tabu search

i. Begin
Initial solution s (brood found which will be improved);
Insert s in the tabu List;

ii If F (s) < F (Smax) then Smax ← s. {Smax: the best solution} While
(Criterion of stop not checked)
Generate the neighborhood of the current solution
Select s′ in this neighborhood although s′ is not present in the
tabu list.
Smax ← s′ {minimize the fitness as seen in Equation (13)}
Update the tabu list
End if
End while

iii. End.

4.2. Using Genetic Algorithm (GA)

The variables to be optimized are represented by genes; genes set being
considered as an individual. By analogy with our problem, the genes
are the bn and the individual is the set of the vector b of N elements.
We use a 16-bits coding to increase the accuracy of calculation of the
phase law.

The first step in the genetic algorithm is to generate an initial
population as a binary matrix of L rows and C columns, in that L is the
number of individuals in the population and C is the number of genes.
This latter having the individual equal to the number of elements, that
is to say, N times the number of bits in the binary encoding used. We
evaluate the strength of individuals in the population by calculating
the fitness of each individual (each line of the initial matrix). This is
done by decoding the chromosome for each individual. The following
formula is being used for decoding chromosomes:

b =
Pmax + Pmin

2N

N−1∑

i=0

2iPi + Pmin (16)



Progress In Electromagnetics Research C, Vol. 32, 2012 73

Pmax and Pmin are respectively the upper and lower bounds of the
interval of variation of the two phases. Pi is the umpteenth bit of
the chromosome to be decoded. The vector b obtained is then used
to calculate the fitness function for this individual. The GA is a
maximizer by default, and as we seek to minimize the radiation level,
we apply the following formula:

Fitness = Max− fitness (17)

Max is a positive real number of high value (larger than the maximum
of all values of the fitness function). From this stage, operators of the
genetic algorithm will be involved in the reproduction of populations
by operations: selection, classification, crossover and mutation. Note
that these operators are performed on the population in binary code.
The dimensions of the original matrix must be maintained after each
operator. The last population of individuals obtained is called a
generation. It is composed of individuals better than the original
population. However, this is not enough to achieve good results. The
four operations must be repeated as much as a determined number
of generations is not reached or until the genetic algorithm does not
converge to an optimal individual.

4.3. Using the Least Mean Square (LMS)

The LMS is based on the gradient method, which calculates and
updates the weights recursively. We show that the error is a quadratic
form of weights and, intuitively, the optimal solution is obtained
by correcting step by step the weight vector in the direction of
minimum [27].

5. SIMULATION AND RESULTS

The method of adapting antenna array by the hybrid algorithm
HBMO/TS has been programmed in Matlab. We considered a linear
printed antenna array of 10 evenly spaced elements of λ/2 on which
several measures were conducted. The antenna array is first fed
uniformly in phase and magnitude. In order to apply our algorithm,
we need to define initialization parameters as shown in Table 1.

In the first step, we applied our algorithm directly to different
measures of rejections. We note that in all cases (Figures 2(a), (b)
and (c)) the radiation pattern does not undergo any degradation in the
coverage area of the signal and rejections are always in the direction
of interferences. Levels of interferences rejections are remarkably low
in the order of −118 dB (Figure 2(a)) for rejection localised at 6◦
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Figure 2. Interferences rejections by HBMO/TS: (a) interference
rejection in the direction of the main lobe at 6◦, (b) two very
closed interferences rejections at 40◦ and 42◦, (c) the case of several
interferences rejections (interferences at −50◦, −30◦, 20◦, 40◦, 60◦).

Table 1. Parameters of the HBMO/TS approach.

HBMO parameters TS parameters

Number of Queen: 1 Tabu list size: 10

Number of drones: 40 Number of iterations: 100

Number of Mating Flights: 20 Type of neighborhood: stochastic

Size of Queen Sparmatheca ηsp = 20 processing in neighborhood space

Number of Broods: 20 g(Xk)

Number of Workers: 1

A decay rate: 0.9

Speed and Energy randomly in [0.5, 1]

Number of iterations for general algo-

rithm: 10
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Table 2. Parameters of the genetic algorithm.

GA parameters
Initial population size: 50
Number of generation: 30
Probability of crossover: 0.7
Mutation probability: 0.2
Type of crossing: Crossing to a single point
Type of coding: Binary encoding

(very close to the direction of the useful signal) and in the order of
−106 dB (Figure 2(b)) for two closed rejections. Figure 2(b) shows
clearly the accuracy of the two closely located interferences rejections
at respectively 40◦ and 42◦. In the case of multiple interferences,
the level of rejection varies from −86 dB to −98 dB (Figure 2(c)).
The side lobe level is reduced; it ranges from −15 dB to −30 dB
for the different cases of simulation. It can be concluded that the
HBMO/TS method provides a significant improvement on the levels
of interferences rejection above −85 dB and reach very low levels up to
−106 dB and −118 dB.

In the second step, we perform a comparison between our method
and two other well-known approaches that are the Least Mean Squares
(LMS) and Genetic Algorithm (GA) which are probably the most
common used and many articles are taking them as a references. These
approaches have also been programmed in Matlab. In order to apply
our algorithms, we need to define initialization parameters of GA as
shown in Table 2.

In the case of a rejection located at 45◦ (Figure 3(a)), the hybrid
method and LMS give a better result (more than −105 dB) compared
to the GA (−80 dB). Regarding the rejection of two very closed
interferences at 17◦ and 20◦ of Figure 3(b), the rejection level is
between −95 dB and −108 dB for HBMO/TS and less than −62 dB
for the LMS and GA case.

As for several interferences, the GA shows a very low rejection
levels at between −56 dB and −65 dB. The LMS method is seen to
be ineffective when the number of rejections is greater than two.
Figure 3(c), case of three interferences rejections at −30◦, 20◦ and
40◦, shows clearly that the resulted rejection are shifted towards new
values such as −35, 22 and 52 instead of −30, 20 and 40 as reached
by the HBMO/TS method. However, the hybrid method gives better
satisfying results (the rejection levels are situated between −92 dB and
−101 dB). We notice that the results achieved by the HBMO/TS are
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Figure 3. Interferences rejections: (a) interference rejection at 45◦,
(b) two very closed interferences rejections (17◦ and 20◦), (c) several
interferences rejections (at −30◦, 20◦ and 40◦).
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Figure 4. Comparative graphs showing the evolution of the fitness
function in the case of one interference rejection at 45◦ for HBMO/TS
and AG.

much better than the ones seen when using LMS and GA methods.
The phases of antenna elements are computed as given in Table 3.

Phase values are calculated from the three different scenarios and in
each case of interferences rejection. We notice that HBMO/TS and
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Table 3. Phase values in all cases of interferences rejection and for all
scenarios HBMO/TS, AG and LMS.

HBMO/TS AG LMS 

Interferences 

Rejection 
at

 
Phase(°) 

  45°
 20°

 
and 

17°

40°, 20°

and -30°
45°

  20° and 

17°

40°, 20°

and  -30°
 45°  20° and 

17°

40°, 20°

and  -30°

Phase 1 9.29 -18. 77 28.32 71.81 18 .96 81.50 -35.65 25.95 -13.48

Phase 2 43..02  44. 10 34.26 69.16 87.04 69.69 -25.27 79.44 -19.94

Phase 3 20.94  44. 14 28.10 62.51 37.71 72.72 -43.52 81.43 -25.19

Phase 4 15.83  22. 07 67.17 67.63 66.68 120. 00 -31.21 63.30 13.17

Phase 5 14.97  25. 83 64.09 52.36 47.26 89.98 -27.86 54.96 -7.03

Phase 6 2.33  18. 47 16.71 56.42 28.90 66.57 -61.02 51.65 -28.66

Phase 7 6.97  21, 46 21.57 69.16 15.77 42,22 -53.35 44.74 -22.49

Phase 8 14.70  -11. 17 46.85 70.16 5.79 81.04 -26.27 25.02 -10.49

Phase 9 -1.29  2. 35 57.09 62.21 12.85 95.03 -54.26 28.15 -15.74

Phase 10 34.56  56. 48 48.65 91.02 48.77 73.96 -35.78 81.42 -22.19

LMS phase values are within the interval [−π
2 ; π

2 ] and AG phase values
are within the interval [0; π].

A comparison in terms of convergence among the HBMO/TS and
AG is made. We observe, in Figure 4, that the HBMO/TS converges a
little slower than AG but it finally achieves better fitness values (18.94
for HBMO/TS and 28.75 for AG).

6. CONCLUSION

Our hybrid approach combining HBMO and TS presents satisfactory
results with respect to the interferences rejections. We obtained very
low levels rejections having good accuracy even in the case of multiple
interferences. In comparison with the two other well-known approaches
that are the Least Mean Squares (LMS) and Genetic Algorithm
(GA), we observed the effectiveness of our approach HBMO/TS. This
could be a reliable method for the rejection of several interferences.
One might consider using it for other types of network architectures
(network plan, conformal network) and in contexts of more specifics
applications such as satellite communications and mobile networks.
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