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Abstract—In this paper, the concept of static electric permittivity
and its measurement are discussed. A classical description of
polarization via a harmonically bound charge model is revisited and
the evolution of the polarization concept in the presence of free
electrons is shown. Various electrostatic problems are defined under
ideal conditions. The measurement procedures for characterizing the
static permittivity of dielectrics and conductors via the measurement
of induction-electric field, charge-potential difference and electrostatic
energy variation are discussed. Two basic experiments with a lossy
dielectric are described. In one case we reach an electrostatic
equilibrium with an indeterminate solution. In the other case we
define a magnetostatic problem. Finally, we comment on the case
of a laboratory experiment remarking on the proper use of the low-
frequency limit of dielectric constant and showing experimental results
performed on a supercapacitor.

1. INTRODUCTION

Electric permittivity ε is a constitutive parameter relating the
macroscopic fields induction D and electric field E. The assumption
that D depends only on E holds for constant fields, while for variable
fields a relationship between D and H is possible. Such an effect
remains on the order of a/λ, where a is the atomic dimension and λ is
the field wavelength [1]. This effect is generally negligible, especially
in slowly varying fields.
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Under the hypothesis of linearity, D and E generally show a
frequency dispersion relationship. This means that ε varies as a
function of the angular frequency ω and D(ω) = ε(ω)E(ω). In the
time representation, D(t) and E(t) are not instantaneously related.
The field D(t) depends on the history of the electric field [1, 2], i.e., it
holds the convolution integral relationship

D(t) = ε0

{
E(t) +

∫ +∞

−∞
G(τ)E(t− τ)dτ

}
(1)

where the kernel G(τ) depends on the structure of the dielectric
material. In more detail, G(τ) is the inverse Fourier transform of the
electric susceptibility χ(ω) = ε(ω)/ε0 − 1.

A full description of the physics of dispersion in dielectric media
remains, in general, a very complex task and it should involve
the study of electron and ion motion through a combined use of
classical and quantum mechanic theory. However, a simple model of
harmonically bound charges (electrons and ions) is generally adopted
to illustrate this phenomenon. In terms of classical models of the
molecular properties, the relationship between the macroscopically
defined parameter ε and the molecular properties can be summarized
by the Clausius-Mossotti ’s equation:

γ =
3
N

ε/ε0 − 1
ε/ε0 + 2

(2)

that relates the molecular polarizability γ to ε and

χ =
Nγ

1− 1
3
Nγ

(3)

where N is the average number of molecules per unit volume.
In 1929 Debye presented a model for the response of electric

dipoles to an alternating electric field [3, 4]. The model showed an
exponential relaxation of dipole polarization and this led to the known
expression

ε(ω) = ε(∞) +
ε(0)− ε(∞)

1 + iωτ
(4)

where τ is the relaxation time, ω the angular frequency of the
alternating electric field, and ε(0) and ε(∞) are the zero- and high-
frequency limits. A simple physical consideration shows that when
ω → ∞, the function ε(ω) → ε(∞), i.e., ε0. Indeed, for a valid
macroscopic description the condition ω ¿ c/a must hold. Since λ ≈
c/ω, as the frequency increases λ becomes comparable with the atomic
dimension a. This is clearly discussed in [1].
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Development of the Debye model and further investigation of the
relaxation response were a consequence of the possibility of applying
the dielectric spectroscopy over an extremely broad frequency range.
Today it is possible to measure from µHz to tens of GHz with
the use of commercially available spectrometers. Measurements at
low frequency, f ≤ 2GHz, are generally performed through the use
of dielectric samples prepared in parallel-plate geometry [5]. At
higher frequencies reflectrometric techniques with a sample mounted
at the end of the transmission lines and analysis of transmission
properties are adopted [6, 7]. Note that time domain and frequency
domain measurement techniques are generally used to characterize
the dielectrics in the µHz-MHz frequency range. Reflective coaxial,
transmission coaxial and quasi-optical methods are used to cover the
range 108–1011 Hz, while higher frequency ranges from 1011–1015 Hz
are covered by Fourier-transform methods [8–10]. In the very high
frequency range, ε(ω) is generally expressed as

ε(ω) = ε0

(
1− 4πNe2/mω2

)
.

Recently, the authors developed various experimental and theoretical
studies in the field of metamaterials, mainly focusing on the
magnetic permeability of resonant repeated structures at industrial
frequencies [11–13] and on the characterization and modeling
of supercapacitor [14]. Such studies showed some conceptual
and practical problems for the characterization of materials with
permittivity or permeability dispersion at low frequencies. With
reference to the study developed in [14] on a supercapacitor, an evident
dispersion of the equivalent capacitance was observed down to 1mHz.
In such a sense, some remarks can be made concerning the definition
of ε in the case of static fields. With reference to the Debye formula
we revisit the meaning and measurement of ε at zero frequency [15]

ε(0) = lim
ω→0

ε(ω). (5)

Referring to non-variable fields, in principle we can distinguish between
constant field configurations with and without motion of charges. For
clarity, the steady-state condition is characterized in the first case by a
direct motion of charges, thus it is defined as a magnetostatic problem.
In the second case there is no charge motion after the transient phase
is extinguished, resulting in an electrostatic problem.

In [1] and [2] the determination of the field due to a static point
charge at a specific distance from a boundary plane between two
different dielectric media 1 and 2 is analyzed. The analysis shows
that for ε2 À ε1 medium 2 behaves much more like a conductor
than a dielectric. In the limit case of ε2 → ∞ the solution leads
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to the same results obtained by the method of images for a conductor
in place of medium 2. This suggests the same result, ε = ∞, for
lossy dielectrics in the presence of constant fields. In fact, a dielectric
medium with zero electrical conductivity, σ = 0, is an ideal assumption,
while in practice all the dielectric materials exhibit a σ different
from 0. As a consequence, once any transient phase is extinguished
the dielectric materials behave like a conductor under non-variable
fields. In particular, we show how a lossy capacitor connected to a
direct current generator defines a magnetostatic problem, and how the
relationship V/I = R, with V the potential difference I the current
and R the resistance of the dielectric, is representative of the steady
state condition, providing ε →∞ the same as for a conductor.

This paper is organized as follows: In Section 2, we readdress
the theory of polarization through a classical description based on
a harmonically bound charge model, and we discuss how ε → ∞
in the limit of a static field if unbounded electrons are present in
the medium. In Section 3, we define various electrostatic problems
and we show how to estimate ε for a conductor via the measurement
of, induction-electric field D-E, charge-potential difference Q-V and
through an energy analysis. In Section 4, we discuss an electrostatic
and a magnetostatic problem corresponding to actual measurement
conditions and we comment on the measurement of permittivity in a
practical case.

2. CLASSICAL MODEL OF POLARIZATION

For the sake of clarity we shall consider a short review of a simple
model of fields in the matter based on Eq. (1) [1, 2, 16]. Specifically,
we neglect the difference between the applied electric field and the
field in the matter and assume that they are uniform. The model is
therefore appropriate only for substances of relatively low density. The
equation of motion for an electron of charge e bound by a harmonic
force and under the influence of an electric field E(t) is

m
[
ẍ + γẋ + ω2

0x
]

= −eE(t) (6)

where γ is the phenomenological friction constant of the damping force.
Considering the dipole moment contributed by one electron, p = −ex,
and passing to the Fourier representation we obtain

p =
e2

m

[
ω2

0 − ω2 − ıωγ
]−1 Ê(ω). (7)
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If we suppose that there are N/V molecules per unit volume with Z
electrons per molecule, then we may write

P̂ = ε0χÊ(ω) =
N

V

Ze2

m

[
ω2

0 − ω2 − ıωγ
]−1 Ê(ω). (8)

We deduce that the dielectric constant is
ε̂

ε0
= 1 +

N

V

Ze2

mε0

[
ω2

0 − ω2 − ıωγ
]−1

. (9)

We assume that the electric field is in the form of

E(t) = E0 cos[ωct] (10)

so as to obtain the case of a constant and uniform electric field taking
the limit ωc → 0. Going back to the time representation, from Eq. (8)
we obtain

P =
e2NZ

(
ω2

0 − ω2
c

)
E0 cos[ωct]

2πmV
[
γ2ω2

c +
(
ω2

0 − ω2
c

)2
] +

e2NZγωcE0 sin[ωct]

2πmV
[
γ2ω2

c +
(
ω2

0 − ω2
c

)2
] . (11)

From Eq. (11), for ωc → 0, the vector P is

P =
e2NZ

2πmVω2
0

E0 ≡ ε0χE0. (12)

Note that ω0 → 0 means that the electrons are somewhat free and the
medium approaches the condition of a conductor in the static case. As
expected, ε →∞.

3. ELECTROSTATIC PROBLEM — IDEAL
CONDITIONS

Let us imagine a charged ideal parallel-plate capacitor as that shown
in Fig. 1.

If the charge density is σ, the electric field inside the capacitor is
uniform and its magnitude is E = σ.

Now consider an indefinite slab of a non-charged conductor and
put it into the capacitor as shown in Fig. 2. Assuming the thickness of
the conductor is small when compared with the other dimensions, we
can deduce that, by induction, the two surfaces will be opposite the
charge of the capacitor. This configuration has the following electrical
field distribution in the three regions VI , VII , VIII

EI = σk̂, EII = 0, EIII = σk̂
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Figure 1. Charged ideal parallel-plate capacitor. Absolute vacuum
is between the electrodes. The terms V0 and h stand for the per unit
area volume and separation distance between the electrodes.

Figure 2. Charged ideal parallel-plate capacitor with a conducting
slab inserted into it. Absolute vacuum is between the electrodes and
the slab. The terms VI , VII , and VIII stand for the volume per unit
area between the upper electrode and the slab, of the slab and between
the lower electrode and the slab.

where k̂ is the unit vector normal to the capacitor plates. Since the
conductor did not carry any charge, the correspondent induction vector
D is continuous

DI = DII = DIII .

In region II the field is in a medium and it holds the relationship DII =
εEII while in the other regions we have DI = DIII = σk̂. Since EII = 0,
the continuity of the field D is preserved if ε →∞.

The same result is obtained approaching the estimation of ε via
the measurement of the integral quantities Q and V . With reference to
Fig. 1, the potential difference V0 between the electrodes is V0 = E0h
and the capacitance of the capacitor is C0 = Q/V0. Inserting the
conducting slab into the capacitor as shown in Fig. 2, the potential
difference between the electrodes at the steady-state condition is V =
VI + VIII = E0(hI + hIII ) since EII = 0 and VII = 0. The capacitance
of the system is C = Q/V and its inverse 1/C = VI/Q + VIII /Q.
This is equivalent to a dielectric plate II with infinite permittivity
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inserted into the capacitor. In such a case, a zero potential difference
is maintained between the upper and lower boundary surfaces of the
dielectric plate as well as for the conducting slab.

3.1. Electrostatic Configuration: Dielectric Slab

Now we consider a further example to better clarify how to define
electrostatic properties, such as the dielectric constant, through the
analysis of the variation of the electrostatic energy. For this purpose
we consider an ideal capacitor with the two plates charged with an
electrical charge ±Q0, surface S, and separated by a distance h, as for
Fig. 1. For the sake of simplicity, in this section only we will set ε0

as unit. As previously mentioned, the uniform electric field inside has
magnitude E0 = σ0 = Q0/S. Let us charge a dielectric slab on the two
surfaces with charge Q1. The slab generates a uniform electric field
outside the slab

E1 = ±Q1

S
k = ±σ1k (13)

where the minus sign refers to the semi-space underneath the slab.
Inside the slab the electric field vanishes. The electrostatic energy
of the system capacitor and dielectric slab shown in Fig. 3 is simply
the sum of the single electrostatic energies given by the formula U =
1
2

∫
V E ·DdV, namely

U1 =
1
2
E2

0V0 +
1
2
E2

1Vu +
1
2
E2

1Vd (14)

where V0 = Sh, Vu and Vd are the volumes of the two semi-spaces
outside the slab.

Inserting the slab into the capacitor as shown in Fig. 4 we have

U2 =
1
2
(E0 + E1)2VI +

1
2ε

E2
0VII +

1
2
(E0 − E1)2VIII

+
1
2
E2

1(Vu − VI) +
1
2
E2

1(Vd − VIII ). (15)

Figure 3. Charged ideal parallel-plate capacitor and charged dielectric
slab.
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Evaluating the change of the electrostatic energy of the system we have

∆U = −1
2
E2

0

(
1− 1

ε

)
VII + E1E0(VI − VIII ). (16)

The electrical field is E1 = σ1 = (DI − DII ) · n, where n is the
outer-pointing normal from the slab. Measuring the variation of the
electrostatic energy we have a measure of the induction vector D.

Note that if VIII = VI then ∆U does not depend on the external
charge Q1. Finally, taking the limit for ε → ∞ we rediscover the
variation of energy for a conductor

∆U = −1
2
E2

0VII + E1E0(VI − VIII ). (17)

3.2. Electrostatic Configuration: Dielectric Sphere

Next we study an analogous case considering a dielectric sphere of
radius a with a charge distribution on the surface given by σ(θ) =
σex cos θ. The function σ(θ) has been selected in such a way as to
find a simple analytical solution. Solving the Laplace equation for the
potential, ∇2φ = 0, we obtain for the potential the following

φin =
σex

ε + 2
r cos θ (18)

φout =
ε− 1
ε + 2

E0a
3 cos θ

r2
+

σexa3

ε + 2
cos θ

r2
. (19)

As before, we imagine inserting the sphere into the capacitor as shown
in Fig. 5. The field of the sphere is assumed to vanish at the electrodes.
Combining the electric field given by Eqs. (18) and (19) with the well

Figure 4. Charged ideal
parallel-plate capacitor with
charged dielectric slab inserted
into it.

Figure 5. Charged dielec-
tric sphere inserted into an ideal
parallel-plate capacitor. Absolute
vacuum is between the electrodes
and the sphere.
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known solution of a dielectric sphere in a uniform electric field we
obtain for the field inside the sphere

Ein =
(

3E0

ε + 2
− σex

ε + 2

)
k̂, (20)

where k̂ is the unit vector in the z direction. In terms of polar unit
vector

k̂ = cos θr̂− sin θθ̂.

Outside of the sphere we have

Eout = E0k̂ + EP , (21)

where the components of the vector EP are

EPr = 2
ε− 1
ε + 2

E0a
3

r3
cos θ +

2a3σex

ε + 2
cos θ

r3
(22)

EPθ =
a3E0(ε− 1) sin θ

r3(ε + 2)
+

a3σex

(ε + 2)
sin θ

r3
. (23)

With respect to the vector D, inside the sphere it holds

D = εEin (24)

while outside the sphere it coincides with the field Eout. The energy
variation of the system is

∆U =
1
2

∫

V
E ·DdV − 1

2
E2

0VC − 2a3πσ2
ex

3(ε + 2)
(25)

where VC = Sh is the volume enclosed by the capacitor. If a ¿ h
we can perform the integration considering a vanishing electrical field
outside of the capacitor. We may rewrite Eq. (25) as

∆U =
4π

3(ε + 2)
a3

[
1
2
(ε− 1)E2

0 − E0σex

]
. (26)

Note that for ε → ∞ the contribution of the external charge, σex,
vanishes. The same result is obtained for the case of a charged
conducting sphere, although the considered charge distribution is an
ideal assumption since a charge on a conducting sphere tends to
distribute uniformly.

We shall end this section considering a dielectric sphere with a
uniform charge distribution on its surface. Using the same notation of
the previous example we can write, for the field inside the sphere

Ein =
3E0

ε + 2
k̂, (27)
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and for the field outside the sphere

Eout = E0k̂ + EP (28)

EPr =
q

4πr2
+ E0 cos θ +

2a3E0(ε− 1) cos θ

r3(ε + 2)
(29)

EPθ =
a3E0(ε− 1) sin θ

r3(ε + 2)
. (30)

The variation of electrostatic energy is

∆U =
1
2

∫

V
E ·DdV − 1

2
E2

0VC − q

8aπ
=

4
3
πa3 ε− 1

ε + 2
E2

0

2
(31)

that is independent from the external charge q. The case of a conductor
is obtained evaluating the limit for ε →∞.

4. ELECTROSTATIC AND MAGNETOSTATIC
PROBLEM — ACTUAL CONDITIONS

Dielectrics and conductors exhibit different values of the electrical
conductivity σ. Such a difference is evident over certain time scales
or frequency ranges within which low and high values of σ are more
characteristic of an insulating and conducting behavior. On the other
hand, it is common for a material to change its behavior showing a
proper frequency dispersion law for its parameters.

In particular, apart from the absolute vacuum any other material
behaves as a conductor in static conditions. This poses some questions
on the possibility of measuring the static ε under “actual conditions”,
i.e., with a lossy dielectric. Is it possible to reach an electrostatic
steady-state or could we reach other conditions from which it would
be possible to derive the correct estimation of static ε?

Such considerations find an experimental evidence and a
practical application with new dielectric materials, such as those for
supercapacitors that show a permittivity dispersion at frequency well
below 1 Hz [14]. In Table 1, we report some experimental results
performed on a 120 F Maxwell c© double layer supercapacitor. The
results are expressed in terms of real part of the capacitance of a
G (conductance)-C (capacitance) parallel equivalent circuit. The data
clearly show a dispersion of the estimated parameter down to 1mHz.

Looking at the capacitance values reported in Table 1, we can
notice how they are still far from converging to a constant capacitance
value at lower frequencies. This leads to the question on how to
measure and to define the static capacitance or, alternatively, on
how to properly read the obtained experimental results. The static
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Table 1. Estimated real part of the capacitance value of an equivalent
G-C parallel circuit of the supercapacitor.

frequency (Hz) 0.001 0.005 0.01 0.05 0.1 0.5 1
capacitance (F) 119.29 104.10 100.80 86.30 63.40 8.10 2.55

capacitance value is usually provided by the manufacturer, but its
meaning should be properly taken into account. As written in
the introduction, the characterization of static permittivity becomes
more critical for materials showing permittivity dispersion at low
frequencies. If for example they are used as energy storage devices,
it is important to know as accurately as possible the effective stored
and suppliable energy.

Let us first find the time scale to reach the static condition
for lossy dielectrics. For simplicity, imagine inserting an external
charge density ρ(x, y, z) inside a lossy dielectric sphere. The continuity
equation is written as:

∂

∂t
ρ(r, t) + ∇ · J(r, t) = 0. (32)

Using the phenomenological relation J = σE and Maxwell’s
equation ∇ ·E = ρ/ε we obtain for the charge density

∂

∂t
ρ(r, t) +

σ

ε
ρ(r, t) = 0 (33)

that has as solution

ρ(r, t) = ρ(r, 0) exp
[
−σ

ε
t
]
. (34)

The time constant through which the dynamic system evolves can be
estimated via an experimental observation. For example, we can try
to measure the field inside the sphere taking into account that for any
conductor the charge will finally distribute on the external surface of
the body vanishing the electric field inside the material. Using the
semi-empirical argument given above, at first approximation, we can
assume an exponential decay of the field and we can write the time
evolution expression for the charge density as

ρ(x, y, z, t) = ρ(x, y, z, 0) exp
[
− t

τeff

]
, (35)

where τeff is
τeff =

εeff

σ
(36)
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and where we can define εeff as the equivalent permittivity better
fitting the time evolution for the charge density. However, once
electrostatic equilibrium is reached we have defined an indeterminate
problem. Both D and E are zero at equilibrium inside the medium.
Outside of the sphere D and E are the same field (except for the
universal constant ε0) and their magnitude at the sphere surface is the
superficial charge density. Since the discontinuity of D is the value of
the superficial charge density, this implies that inside the sphere the
fields vanish.

Let us now consider the problem defined in Fig. 6 that consists
of a direct current generator connected to a lossy capacitor. The
steady-state condition is driven by Ohm’s law V/I = R where V
is the potential difference I is the current and R is the resistance
of the dielectric. Strictly speaking, we have defined a magnetostatic
problem. In principle, from the geometric parameters of the medium, it
is possible to estimate the value of σ via the constitutive equation J =
σE. On the other hand, we will never reach electrostatic equilibrium.
Consequently we are not able to measure the static permittivity.
However, as for the previous case of the sphere, we have a conductor
behavior that is in agreement with previous sections and we can
attribute this to the infinite value of the static ε.

Referring still to the problem defined in Fig. 6, let us comment on
the case of a common laboratory experiment with low lossy dielectrics.
Once the DC generator is closed on the capacitor system a first charge
transient of the capacitor follows when the circuit is switched on. For
simplicity, we can assume that the charge transient time constant is
negligible, for example when compared to τeff . In practice the material
would respond to a voltage step input, while the estimated ε would be
the value assumed by the permittivity during the “first instances” of
the main transient, i.e., for t ¿ τeff .

We believe that the present analysis may provide a contribute to
the characterization of static permittivity and to possible development
of capacitance standards [17–19].

Figure 6. Magnetostatic field problem. Capacitor setup.
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5. CONCLUSIONS

In this paper, we discussed the concept and measurement of static
electric permittivity. A formal description and measurement definition
of such a parameter was provided via a classical model of polarization,
as well as an analysis of various electrostatic configurations. Two
basic experiments with a lossy dielectric were described. In one
case, the charge evolution inside a sphere previously charged by the
insertion of an external charge density was treated. Some remarks
on the effective time constant were provided. In the other case a
magnetostatic problem was defined by supplying a capacitor filled
with a lossy dielectric via a DC generator. In this case, it was
stressed how the system never reached electrostatic equilibrium. In
both cases, after the transient phases were extinguished we observed
a conductor behavior. As a consequence, we could attribute to the
static ε of the investigated material an infinite value. The case of a
common laboratory experiment and experimental results performed on
a commercial supercapacitor were also commented on to point out the
meaning of the value attributed to ε in actual measurement conditions.
The presented analysis may help to discuss the dielectric behavior of
actual materials as well as to reassess the concept and measurement
of permittivity under static conditions. Finally, this can find practical
applications with energy storage devices for which dielectric materials
show permittivity dispersion at low frequencies.
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