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Abstract—The stability and numerical error of the extended four-
stages split-step finite-difference time-domain (SS4-FDTD) method
including lumped inductors are systematically studied. In particular,
three different formulations for the lumped inductor are analyzed:
the explicit, the semi-implicit, and the implicit schemes. Then, the
numerical stability of the extended SS4-FDTD method is analyzed
by using the von Neumann method, and the results show that the
proposed method is unconditionally-stable in the semi-implicit and
the implicit schemes, whereas it is conditionally stable in the explicit
scheme, which its stability is related to both the mesh size and the
values of the element. Moreover, the analysis of the numerical error
of the extended SS4-FDTD is studied, which is based on the Norton
equivalent circuit. Theoretical results show that: 1) the numerical
impedance is a pure imaginary for the explicit scheme; 2) the numerical
equivalent circuit of the lumped inductor is an inductor in parallel
with a resistor for the semi-implicit and implicit schemes. Finally, a
simple microstrip circuit including a lumped inductor is simulated to
demonstrate the validity of the theoretical results.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] has been proven
to be an established numerical technique that provides accurate
predictions of field behaviors for electromagnetic interaction problems.
However, the applications of the FDTD method had been restricted
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by the well-known Courant-Friedrichs-Lewy (CFL) condition [2] on
the times step and the numerical dispersion associated with space
discretization.

Recently, to overcome the CFL condition on the time step size of
the FDTD method, an unconditionally-stable FDTD method based on
the alternating direction implicit (ADI) technique was developed [3, 4].
The ADI-FDTD method has second-order accuracy both in time
and space. Nevertheless, it presents large numerical dispersion error
with large time steps. Then, improved ADI-FDTD methods were
proposed [5, 6]. Subsequently, other unconditionally-stable methods
such as Crank-Nicolson based [7–10], split-step [11, 12] and locally-
one dimensional (LOD) [13, 14] FDTD methods were developed. The
LOD-FDTD method can be considered as the split-step approach (SS1)
with first-order accuracy in time, which consumes less CPU time than
that of the ADI-FDTD method. Then, fourth-order LOD-FDTD was
presented in [15]. Moreover, three-dimensional LOD-FDTD methods
with second-order accuracy in time were shown in [16, 17]. To reduce
the dispersion error, an efficient six-stages split-step unconditionally-
stable FDTD method was proposed in [18]. Furthermore, to improve
the accuracy, unconditionally-stable FDTD methods with high-order
accuracy and low dispersion error in 2-D domains were proposed in [19–
21]. Then the method in [19] was extended to 3-D domains, and high-
order split-step unconditionally-stable FDTD was proposed in [22],
which denoted as SS4-FDTD herein.

Along another line, there have been many efforts made for the
extended FDTD [23–26] to incorporate the passive and active lumped
elements into FDTD method. Through the stability analysis of the
extended FDTD methods in recent years [27–29], one can find that
the stability of the previous extended FDTD including passive lumped
elements is either related to the mesh size, or related to both the mesh
size and the values of the elements. Furthermore, an unconditionally
stable FDTD technique including passive lumped elements based on
the Crank-Nicolson method was presented in [30]. An unconditionally
stable ADI-FDTD method including passive lumped elements was
proposed in [31], and the stability analysis was given based on the
energy concept. Subsequently, the numerical dispersion of the ADI-
FDTD technique including lumped models was studied based on the
circuital viewpoint [32]. The LOD-FDTD method was extended to
include lumped elements [33]. However, the unconditionally-stable
SS4-FDTD method has not been extended to include lumped elements,
then the study on its stability and numerical error is very useful.

The stability and numerical error of the extended four-stages
split-step finite-difference time-domain (SS4-FDTD) method including
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lumped inductors are systematically studied in this paper. Firstly, the
formulation of the extended SS4-FDTD method is given. Specially,
three different formulations for the lumped inductor are analyzed: the
explicit, the semi-implicit, and the implicit schemes. Secondly, the
numerical stability of the extended SS4-FDTD method is analyzed
by using the von Neumann method, and the results show that the
proposed method is unconditionally-stable in the semi-implicit and
the implicit schemes, whereas it is conditionally stable in the explicit
scheme. Thirdly, the numerical error analysis of the extended SS4-
FDTD is studied, which based on the Norton equivalent circuit.
Theoretical results show that: the numerical equivalent circuit of the
lumped inductor is an inductor in parallel with a resistor for the semi-
implicit and the implicit schemes. Finally, a simple microstrip circuit
including a lumped inductor is simulated to demonstrate the validity
of the theoretical results.

2. FORMULATION OF THE EXTENDED SS4-FDTD
METHOD

In linear, isotropic, non-dispersive and lossless medium, ε and µ
are the electric permittivity and magnetic permeability, respectively.
The lumped inductor is replaced along the +z direction and the
contribution of the lumped inductor is presented by ~JLz. Then, the
3-D Maxwell’s equations can be written in a matrix form as

∂~u/∂t = [M ] ~u− ~JLz/ε. (1)

where ~u = [Ex, Ey, Ez,Hx,Hy,Hz]T , and [M ] is the Maxwell’s matrix.
Symmetric operator and uniform splitting are simultaneously

exploited to decompose the matrix [M ] into four parts. Then, (1) can
be written as

∂~u/∂t = [A] /2 · ~u + [B]/2 · ~u + [A]/2 · ~u + [B]/2 · ~u− ~JLz/ε. (2)

Due to the limitation of space, [M ], [A], and [B] are not shown here.
They can be found in [21].

By using the split-step scheme [34], (2) is divided into four sub-
equations, from n to n+1, one time step is divided into four sub-steps
accordingly, n → n + 1/4, n + 1/4 → n + 2/4, n + 2/4 → n + 3/4 and
n + 3/4 → n + 1, by successively solving

sub-step 1: ∂~u/∂t=4·
(
[A]/2 · ~u− ~JLz/4ε

)
n →n+1/4 (3a)

sub-step 2: ∂~u/∂t=4·
(
[B]/2·~u− ~JLz/4ε

)
n+1/4→n+2/4 (3b)
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sub-step 3: ∂~u/∂t=4 ·
(
[A]/2 · ~u− ~JLz/4ε

)
n+2/4→n+3/4 (3c)

sub-step 4: ∂~u/∂t=4 ·
(
[B] /2 · ~u− ~JLz/4ε

)
n+3/4→n+1. (3d)

Furthermore, the right side of the above equations can be approximated
by using the Crank-Nicolson scheme [7]. Subsequently, four sub-
procedures are generated as follows

([I]−∆t/4·[A]) ~un+1/4=([I]+∆t/4·[A]) ~un−∆t ~J
n+1/8
Lz /4ε (4a)

([I]−∆t/4·[B]) ~un+2/4=([I]+∆t/4·[B]) ~un+1/4−∆t ~J
n+3/8
Lz /4ε (4b)

([I]−∆t/4·[A]) ~un+3/4=([I]+∆t/4·[A]) ~un+2/4−∆t ~J
n+5/8
Lz /4ε (4c)

([I]−∆t/4·[B]) ~un+1=([I]+∆t/4·[B]) ~un+3/4−∆t ~J
n+7/8
Lz /4ε. (4d)

where [I] is a 6 × 6 identity matrix. Without loss of generality, the
updating equations are herein presented for the sub-step 1 only. More
specifically, (4a) can be rewritten as

sub-step 1:

En+1/4
x = En

x +
∆t

4ε

∂

∂y

(
Hn+1/4

z + Hn
z

)
(5a)

En+1/4
y = En

y +
∆t

4ε

∂

∂z

(
Hn+1/4

x + Hn
x

)
(5b)

En+1/4
z = En

z +
∆t

4ε

∂

∂x

(
Hn+1/4

y + Hn
y

)
− ∆t

4ε
J

n+1/8
Lz (5c)

Hn+1/4
x = Hn

x +
∆t

4µ

∂

∂z

(
En+1/4

y + En
y

)
(5d)

Hn+1/4
y = Hn

y +
∆t

4µ

∂

∂x

(
En+1/4

z + En
z

)
(5e)

Hn+1/4
z = Hn

z +
∆t

4µ

∂

∂y

(
En+1/4

x + En
x

)
. (5f)

To account for lumped inductors, the constitutive equation of the
inductors can be considered, in differential

dILz

dt
=

1
L

Vz. (6)

or integral form

ILz =
1
L

∫
Vzdt. (7)

The voltage across the inductor is related to the electric field as

Vz =
∫

Ezdl ' ∆zEz. (8)
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and the current to the current density by

ILz =
∫∫

JLzdS ' ∆x∆yJLz. (9)

At the time step of t = (n + 1/8)∆t, the voltage and current
characteristic equations of the lumped inductor are discussed through
three different formulations: the explicit, the semi-implicit, and the
implicit schemes.

Explicit Scheme: I
n+1/8
Lz =

1
L

(
∆t

4

4n∑

k=0

V k/4
z

)
=

∆t∆z

4L

4n∑

k=0

Ek/4
z (10a)

Semi-Implicit Scheme: I
n+1/8
Lz =

1
L

(
∆t

4

4n∑

k=0

V (2k+1)/8
z

)

=
∆t∆z

4L

1
2

(
2

4n∑

k=0

Ek/4
z +En+1/4

z

)
(10b)

Implicit Scheme: I
n+1/8
Lz =

1
L

(
∆t

4

4n+1∑

k=0

V k/4
z

)
=

∆t∆z

4L

4n+1∑

k=0

Ek/4
z .(10c)

The difference between (10a) and (10c) is that, in the latter expression,
the summation runs up to E

n+1/4
z .

3. NUMERICAL STABILITY ANALYSIS

This section analyzes the stability of the SS4-FDTD method including
lumped inductors. Since it is difficult to analyze the magnitudes of
the eigenvalues of the updating matrix, the Fourier method, which
has been used to study the stability of the SS4-FDTD method in [22],
is not suitable here, and therefore, another stability analysis method
based on von Neumann’s theory [35] is adopted to prove the numerical
stability, which has also been applied to the stability analysis of the
extended FDTD method [29].

Theoretically, at each sub-step, when the extended SS4-FDTD
method is unconditionally stable. Then, it can be generated that
the extended SS4-FDTD method is unconditionally stable in a total
time step. Otherwise, the extended SS-FDTD method is conditionally
stable. Now the numerical stability in sub-step 1 is analyzed first,
and then the numerical stability in other sub-steps can be obtained by
using the similar method.

Based on the von Neumann method, a Fourier series expansion of
the error function at the mesh node at a given time instant t = n∆t is
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considered. Due to linearity, only a single term of this expansion needs
to be considered, i.e.,

fn (i, j, k) = f0Z
n exp [j (i∆xkx + j∆yky + k∆zkz)] . (11)

where f0 is a complex amplitude; indexes i, j, k denote the position of
the nodes in the mesh; ∆x, ∆y and ∆z are the sizes of the discretization
cell; kx, ky and kz are the wave numbers of the discrete modes in the
x-, y-, and z-directions, respectively. Z is the amplification factor,
which gives the growth of the error in a time iteration, i.e., fn+1(i,
j,k) = Zfn (i, j,k).

By substituting (11) into (5a)–(5f), after a series of algebraic
manipulations, the following equations can be generated.

(
Z1/8−Z−1/8

)
Ex0 =

∆t

4ε

−2j sin (ky∆y/2)
∆y

(
Z1/8+Z−1/8

)
Hz0 (12a)

(
Z1/8−Z−1/8

)
Ey0 =

∆t

4ε

−2j sin (kz∆z/2)
∆z

(
Z1/8+Z−1/8

)
Hx0 (12b)

(
Z1/8−Z−1/8

)
Ez0 =

∆t

4ε

−2j sin (kx∆x/2)
∆x

(
Z1/8 + Z−1/8

)
Hy0

−∆t

4ε

Iz0

∆x∆y
(12c)

(
Z1/8−Z−1/8

)
Hx0 =

∆t

4µ

−2j sin (kz∆z/2)
∆z

(
Z1/8+Z−1/8

)
Ey0 (12d)

(
Z1/8−Z−1/8

)
Hy0 =

∆t

4µ

−2j sin (kx∆x/2)
∆x

(
Z1/8+Z−1/8

)
Ez0 (12e)

(
Z1/8−Z−1/8

)
Hz0 =

∆t

4µ

−2j sin (ky∆y/2)
∆y

(
Z1/8+Z−1/8

)
Ex0. (12f)

Substituting the voltage and current characteristic equations of the
lumped inductor into (11), we can obtain the relationship of the
amplitudes IL0 and Ez0. Then, a characteristic polynomial S(Z) is
obtained by replacing the relation into (12a) and (12f), (12b) and
(12d), (12c) and (12e). Based on the von Neumann method, for a
finite-difference scheme to be stable, all the roots Zi of the stability
polynomial S(Z) must be inside or on the unit circle in the Z-plane,
i.e., |Zi| ≤ 1.

By a series of analysis, S(Z) is a second order polynomial in Z1/4,
and let r = Z1/4, we have S(r) = a2r

2 + a1r + a0. To ensure that a
finite-difference scheme will be stable, the roots of S(r) must lie inside
or on the unit circle in the R-plane, i.e., |ri| ≤ 1. This must satisfy
three algebraic inequalities:

a2 ≥ |a0| , S (1) ≥ 0, S (−1) ≥ 0. (13)



Progress In Electromagnetics Research B, Vol. 44, 2012 123

For Ex and Hz, substituting (12f) into (12a), the coefficients of
the polynomial S(r) are given by

a2 = 1 + bdP 2
y , a1 = −2 + 2bdP 2

y , a0 = 1 + bdP 2
y .

where b = ∆t/(4ε), d = ∆t/(4µ), Pα = −2 sin(kα∆α/2)/∆α, α = x, y,
or z.

Then, all of the coefficients satisfy the inequalities (13), so the
formulation of Ex and Hz is unconditionally stable.

For Ey and Hx, substituting (12d) into (12b), the coefficients of
the polynomial S(r) are given by

a2 = 1 + bdP 2
z , a1 = −2 + 2bdP 2

z , a0 = 1 + bdP 2
z .

Also, all of the coefficients satisfy the inequalities (13), so the
formulation of Ey and Hx is unconditionally stable.

Now, the stability of the formulation of Ez and Hy will be analyzed
as follows. Substituting the error function of device current and electric
field into the Equations (10a)–(10c), the following formulations are
generated.

Explicit Scheme :
(
Z1/8−Z−1/8

)
IL0 =

∆t∆z

4L
Ez0 (14a)

Semi-Implicit Scheme :
(
Z1/8−Z−1/8

)
IL0 =

∆t∆z

8L
Z1/8

(
Z1/8+Z−1/8

)
Ez0(14b)

Implicit Scheme :
(
Z1/8−Z−1/8

)
IL0 =

∆t∆z

4L
Z1/4Ez0. (14c)

Similarly, the polynomial S(r) of the computation of Ez and Hy can be
obtained after replacing the Equations (14a)–(14c) into the Equations
(12c) and (12e).

3.1. Explicit Scheme

The coefficients of S(r) for this scheme are given by

a2 = 1 + bdP 2
x , a1 = −2 + 2bdP 2

x + b
∆t∆z

4∆x∆yL
, a0 = 1 + bdP 2

x .

In order to fulfill |ri| ≤ 1, according to the inequalities (13), the
following stability condition must be verified.

∆t ≤ 8
√

LCc. (15)

where Cc = ε∆x∆y/∆z is the cell capacitance. The inequality shows
that this scheme is conditionally stable depending on the value of the
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inductance and the mesh of the size. For this scheme, S(r) is symmetric
(a2 = a0), thus, if ri is one of its roots, r−1

i is also a root; consequently,
as long as (15) is verified, we have |r1,2| = 1 and, therefore, this scheme
is non-dissipative.

3.2. Semi-implicit Scheme

For this scheme, the coefficients of the stability polynomial are given
by

a2=1+bdP 2
x+b

∆t∆z

8∆x∆yL
, a1=−2+2bdP 2

x+b
∆t∆z

8∆x∆yL
, a0=1+bdP 2

x .

Here, all of these coefficients meet the inequalities (13), so the semi-
implicit scheme is unconditionally stable.

3.3. Implicit Scheme

Similarly, the coefficients of the polynomial S(r) are given by

a2 = 1 + bdP 2
x + b

∆t∆z

4∆x∆yL
, a1 = −2 + 2bdP 2

x , a0 = 1 + bdP 2
x .

By examining these coefficients, it is found that all of the
inequalities (13) are met, so the implicit scheme of the lumped inductor
is also unconditionally stable.

4. NUMERICAL ERROR ANALYSIS

Since it is difficult to analyze the magnitudes of the eigenvalues of the
updating matrix, the Fourier method which has been used to study the
dispersion of the SS4-FDTD [22], is not suitable here, and therefore,
by using a circuital viewpoint [2], the numerical impedance of lumped
inductors to be defined, and the numerical error of the extended SS4-
FDTD method with a lumped inductor is analyzed through three
different schemes.

As a starting point, we consider the circuital form-Norton
equivalent circuit-of (5c) in the z-direction in sub-step 1, the similar
formulations in other sub-steps can be obtained, which are also shown
as follows.

4Cc

∆t

(
V n+1/4

z − V n
z

)
+ I

n+1/8
Lz =I

n+1/4
hy + In

hy (16a)

4Cc

∆t

(
V n+2/4

z − V n+1/4
z

)
+ I

n+3/8
Lz =−I

n+2/4
hx − I

n+1/4
hx (16b)

4Cc

∆t

(
V n+3/4

z − V n+2/4
z

)
+ I

n+5/8
Lz =I

n+3/4
hy + I

n+2/4
hy (16c)
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4Cc

∆t

(
V n+1

z − V n+3/4
z

)
+ I

n+7/8
Lz =−In+1

hx − I
n+3/4
hx . (16d)

where Ihx and Ihy are the part of total current through the FDTD
cell introduced by magnetic fields Hx and Hy, respectively. ILz is the
current flowing through the lumped inductor, and Vz is the voltage.

By using the von Neumann method, substituting the voltage
and current characteristic equation of the lumped inductor into (11),
transforming (16a)–(16d), the following relations are generated.

4Cc

∆t

(
Z1/8 − Z−1/8

)
Vz0 + ILz0=

(
Z1/8 + Z−1/8

)
Ihy0 (17a)

4Cc

∆t

(
Z1/8 − Z−1/8

)
Vz0 + ILz0=−

(
Z1/8 + Z−1/8

)
Ihx0. (17b)

and let the total current Iz = Ihy − Ihx, combining (17a) and (17b),
the following formulation can be arrived.

2
4Cc

∆t

(
Z1/8 − Z−1/8

)
Vz0 + 2ILz0 =

(
Z1/8 + Z−1/8

)
Iz0. (18)

where Vz0 and Iz0 denote the amplitudes of voltage and current. By
simply letting Z = ejω∆t, the above equation can be expressed as

Iz0 = Vz0 (1/Zc + 1/Ze) . (19)

where Zc = [8Ccj tan (ω∆t/8)/∆t]−1, and

Ze =
(
Z1/8 + Z−1/8

)/
2 · Vz0/ILz0. (20)

are identified as the numerical impedances associated to the cell
capacitance and to the lumped inductor, respectively.

Then, by substituting (14a)–(14c) into the expression of Ze, the
numerical results of the lumped inductor for three different schemes
can be obtained.

4.1. Explicit Scheme

According to (20), the numerical impedance of the lumped inductor
can be given by

Ze =
4j

∆t
sin

(
ω∆t

4

)
L. (21)

From the above expression, it can be seen that the real part of this
expression is zero, and this scheme is non-dissipative.
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4.2. Semi-implicit Scheme

For this scheme, the numerical impedance of the lumped inductor is

Ze =
8

∆t
sin2

(
ω∆t

8

)
L + j

4
∆t

sin
(

ω∆t

4

)
L. (22)

Obviously, Ze contains the loss real part, so this scheme is dissipative,
and the dissipative nature of the lumped inductor can be replaced by
an equivalent circuit consisting of an inductance and a series resistance
Rsi = 8 sin2(ω∆t/8)L/∆t.

4.3. Implicit Scheme

For this scheme, the numerical impedance of the lumped inductor is
given by

Ze =
4

∆t
sin2

(
ω∆t

4

)
L + j

2
∆t

sin
(

ω∆t

2

)
L. (23)

Similarly, Ze also contains the real part of loss. Similar to the
semi-implicit scheme, the numerical equivalent circuit of the lumped
inductor is an inductor in parallel with a resistor of resistance Ri =
4 sin2(ω∆t/4)L/∆t. It can be observed that, when the time step is set
smaller, the numerical dissipative nature of the lumped inductor also
decreases.

5. NUMERICAL RESULTS

In order to illustrate the validity of the stability conditions and
dispersion error characteristic derived in the preceding sections, the

Figure 1. Configuration of microstrip structure with the lumped
inductor.
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stability of the explicit, the semi-implicit, and the implicit schemes are
studied. Then, the extended SS4-FDTD method is utilized to simulate
a microstrip structure with a lumped inductor as shown in Figure 1.
The entire computation domain is divided into 30 × 100 × 15 in x-,
y- and z-directions, and cell sizes ∆x = ∆y = ∆z = 0.15mm. The
thickness of the dielectric plane is 1∆z, and the dielectric constant
εr = 2.55. The dimension of the metal strip is 2∆x × 90∆y. Mur’s
first-order absorbing boundary condition is applied on the truncated
boundary to absorb out-going waves except for the z = 0 plane. In
addition, for the z = 0 plane, it is terminated with perfect electric
conducting (PEC) boundary. Therefore, on the PEC outer boundary
of the FDTD space lattice, the tangential electric fields remain zero
for all time steps. A voltage source is connected to one termination of
the metal strip, which is 10∆y apart from the absorbing boundary. At
the node (15∆x, 50∆y), a lumped inductor of inductance L = 1 pH is
used between the metal strip and the infinite ground plane, as shown
in Figure 1. ∆tmax = 8

√
LCc is the maximum of the ∆t in the explicit

scheme in (15). Here, CFLN is used: it is defined as the radio between
the time step taken and the maximum time step limit of the explicit
scheme, i.e., CFLN = ∆t/∆tmax.

For the explicit scheme, four different simulations have been
performed: CFLN = 0.2, 0.5, 0.9, 1.01. Figure 2 shows the electric
field at the node (15∆x, 50∆y), as a function of the time step. It can
be seen that the simulations with CFLN = 0.2, 0.5, 0.9 remains stable
during the whole period of time; whereas, when CFLN = 0.9, the
error of the result is becoming larger, it can be explained by a simple

Figure 2. Voltage across the
lumped inductor of the extended
SS4-FDTD method for the ex-
plicit scheme.

Figure 3. Voltage across the
lumped inductor of the extended
SS4-FDTD method for the semi-
implicit scheme.
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argument. CFLN = 0.9 closes to the critical point of the stability
of the explicit scheme and, therefore, the result with CFLN = 0.9 is
stable, though the result with CFLN = 0.9 is not accurate. On the
other hand, when CFLN = 1.01, the field begins to increase without
bound, thus, it is unstable.

For the semi-implicit scheme and implicit scheme, four different
simulations have been performed: CFLN = 0.5, 1, 2, 3 or 4. Figures 3
and 4 show the electric fields at the node (15∆x, 50∆y), as a function
of the time step. From Figure 3, the semi-implicit scheme is stable
with CFLN = 1, 2, and 3, so the extended SS4-FDTD methods
with the semi-implicit scheme is unconditionally stable. However, the
error of the result with the semi-implicit scheme increases as CFLN
increases, when CFLN = 3, the error of the result with the semi-
implicit scheme is becoming larger. On the other hand, as can be seen
from Figure 4, the implicit scheme is stable with CFLN = 1, 2, 4, and
the implicit scheme is unconditionally stable. In addition, the error
of the result with the implicit scheme increases as CFLN increases.
Nevertheless, the increase of the error of the result with the implicit
scheme is much less pronounced than that of the changes in Figure 3.
Specifically, the result of the extended SS4-FDTD method with the
implicit scheme of CFLN = 4 is in good agreement with the result
of CFLN = 1. Therefore, among the explicit, the semi-implicit and
the implicit schemes, the implicit scheme exhibits good accuracy while
preserving the unconditionally-stable.

In order to show the validity of the analytical expressions for ZL

obtained for three schemes under study, ZL directly from the SS4-
FDTD simulations are computed. To this end, a procedure consisting

Figure 4. Voltage across the
lumped inductor of the extended
SS4-FDTD method for the im-
plicit scheme.

 

Figure 5. Lumped inductor
impedance of the extended SS4-
FDTD method for the explicit
scheme with L = 1 pH.
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of two different simulations is used.
Firstly, a plane-wave propagation through an unloaded spatial

region consisting of 30 × 100 × 15 cells of sizes ∆x = ∆y = ∆z =
0.15mm. At a specific node, the current In+1

z (i, j, k + 1/2) and the
voltage V n+1

z (i, j, k + 1/2) employing the following expressions are
recorded:

Iz

∣∣∣n+1
i,j,k+1/2 =

(
Hy

∣∣∣n+1
i+1/2,j,k+1/2 −Hy

∣∣∣n+1
i−1/2,j,k+1/2

)
·∆y

−
(
Hx

∣∣∣n+1
i,j+1/2,k+1/2 −Hx

∣∣∣n+1
i,j−1/2,k+1/2

)
·∆x (24a)

Vz

∣∣∣n+1
i,j,k+1/2 = Ez

∣∣∣n+1
i,j,k+1/2 ·∆z. (24b)

As a post-processing task, the impedance associated to the cell
capacitance is computed as

Zc = Ṽz/Ĩz = DFT
(
V n+1

z

)/
DFT

(
In+1
z

)
. (25)

Secondly, node (i, j, k + 1/2) is loaded with a lumped inductor
and a new simulation is performed. Repeating the procedure described
above, the total numerical impedance of the loaded case ZT is
computed.

Finally, Ze is calculated as

Ze = (1/ZT − 1/Zc)
−1 . (26)

Figure 5 compares the analytical expression of Ze (21) with the
data obtained by the SS4-FDTD simulations, with the exact impedance
Ze = jωL for the explicit scheme with L = 1 pH. The CFLN value in
these calculations is 0.5 and the results are shown up to 80GHz, which
corresponds to a spatial resolution of 25 cells per wavelength in free
space. It can be observed that the SS4-FDTD results are in good
agreement with (21). Therefore, the explicit scheme provides values of
imaginary part that are in good agreement with the exact ones.

The comparison made in Figure 5 is repeated in Figures 6
and 7 for the semi-implicit and the implicit schemes, respectively. In
these figures, the value of the inductance is maintained as shown in
Figure 5. Again, for the imaginary part, the analytical expressions
ZL of the SS4-FDTD results are in good agreement with the exact
ones. From Figure 6, for the semi-implicit scheme, when CFLN = 1,
the simulation result of the SS4-FDTD method is in good agreement
with the analytical expression of ZL. However, the error between
the simulation result and the analytical expression of ZL is becoming
larger as the CFLN increases. Subsequently, from Figure 7, for the
implicit scheme, the simulation result of SS4-FDTD method keeps a
good agreement with the analytical expression of ZL as the CFLN
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(a) (b)

(c)

Figure 6. Lumped inductor impedance of the extended SS4-FDTD
method for the semi-implicit scheme with L = 1 pH. (a) CFLN = 1.
(b) CFLN = 2. (c) CFLN = 4.

increases. On the other hand, for the real part and the semi-implicit
scheme in Figure 6, when the values of the CFLN and frequency are
small, the simulation result is close to the exact one. However, as
the values of the CFLN and frequency increase, the error between
the simulation and the exact value increases. This is most likely
due to the fact that the real part of the simulation is a resistance
Rsi = 8 sin2(ω∆t/8)L/∆t in (22), whereas, for the exact value, the
real part is zero. Moreover, for the implicit scheme, the real part in
Figure 7 has the similar characteristic. Specifically, the real part of the
simulation is a resistance Ri = 4 sin2(ω∆t/4)L/∆t in (23); however,
for the exact value, the real part is also zero. Therefore, the values of
CFLN and frequency are set larger, the error between the simulation
and the exact value increases.

Comparing the results obtained by three schemes under study,
the implicit scheme exhibits also good accuracy added to its inherent
unconditional stability. Therefore, it is observed that the implicit
scheme exhibits the best accuracy of all.
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(a) (b)

(c)

Figure 7. Lumped inductor impedance of the extended SS4-FDTD
method for the implicit scheme with L = 1 pH. (a) CFLN = 1.
(b) CFLN = 2. (c) CFLN = 4.

6. CONCLUSION

The stability and numerical error analysis of the extended SS4-FDTD
method including the lumped inductor have been studied in this paper.
Three finite-difference schemes have been analyzed, which are the
explicit, the semi-implicit, and the implicit schemes. Furthermore,
the stability analysis of the formulations has been studied by using the
von Neumann method. Specifically, the theoretical stability analysis
shows that the explicit scheme is conditionally stable, and the stability
criterion depends on both the values of the inductor and the mesh sizes,
whereas the semi-implicit and the implicit schemes are unconditionally
stable. Moreover, the closed-form numerical error expressions have
been derived for each scheme based on the circuital viewpoint. From
the standpoint of accuracy, the explicit scheme has a non-dissipative
nature and exhibits the best accuracy of all. However, in practice, this
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fact does not represent any advantage because a restrictive stability
condition must be employed in this scheme. The semi-implicit and the
implicit schemes are slightly dissipative. Finally, a microstrip circuits
including a lumped inductor has been simulated to show the validity
of the theoretical results. Comparing the results obtained by three
schemes under study, the implicit scheme exhibits the best accuracy of
all.
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