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Abstract—The problem of localizing small scatterers (in terms of
wavelength) by Time Reversal-MUSIC (TR-MUSIC) algorithm is
addressed. In particular, we focus on uniqueness problems that might
arise for certain far zone configurations when noise corrupts data.
These lead to reconstructions affected by ghost targets from which
it is difficult to discern actual targets. In order to remedy such a
drawback, data obtained at multiple frequencies are employed. In
detail, a new multi-frequency version of TR-MUSIC is introduced. It
consists in mixing reconstructions obtained at different frequencies.
Numerical analysis shows that this method outperforms classical TR-
MUSIC as well as its multi-frequency implementation already present
in literature.

1. INTRODUCTION

Radar imaging is a pervasive research field which is of interest in
different applicative contexts, both military and civilian [1–6].

The common mathematical rationale is the electromagnetic
scattering equations that must be solved for an object function that
accounts for the scatterer features.

As is well known, this entails solving a non-linear and ill-
posed inverse problem that must be attacked as an optimization one.
Accordingly, inversion schemes developed along this path suffer from
local minima problem and are, despite advancement in computer
science, still computationally intensive to limit their usefulness in many
practical cases, particularly when large (in terms of wavelength) spatial
region must be quickly investigated.

Fortunately, in many cases, only qualitative information like
scatterers’ positions and sizes is of concern [7]. This allows to
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adopt inversion schemes based on simplified linearized scattering
equations [8, 9]. Even though they avoid drawbacks affecting
non-linear inversions, reconstructions suffer from artifacts due to
mutual scattering (between scatterers) that is neglected in simplified
models [10].

Some other methods allow for scatterer localization by identifying
their supports according to the value of a suitable indicator
function [11–13]. These methods are algorithmically based on linear
procedures hence are computationally effective. Moreover, they do not
rely on simplified scattering models.

With reference to small (in terms of wavelength) scatterers, we
focus on Time Reversal MUSIC (TR-MUSIC) that has proved to be
very effective in scatterer localization as it allows to obtain resolution
which is finer than diffraction limits [14]. At the beginning, TR-
MUSIC has been developed for a homogeneous two-dimensional scalar
scattering scene [14]. Then, extension to more complicated cases
have followed. For example in [15, 16], non-homogeneous host media
are considered whereas in [17] non-isotropic scatterers are addressed.
Three-dimensional small scatterers are considered in [18, 19]. A
comparison against background uncertainties of different time reversal
and MUSIC based algorithms for small scatterers localization is instead
reported in [20].

In [21], it was shown that for a far zone configuration and for
data collected over an array of uniformly spaced sensors, TR-MUSIC
can suffer from uniqueness problems due to the noise. Accordingly,
reconstructions are affected by ghost targets in the same vain as an
array radiation pattern experiences grating lobes. Analogous problems
are encountered in radar range imaging due to the relationship between
the frequency step and the maximum non-ambiguous range [22].

In [21], propagation through ionosphere helped in removing those
ambiguities.In general this might not be the case. For such situations,
Devaney suggested to exploit frequency diversity. Therefore, inspired
by this suggestion, here we analyze how to exploit multiple frequencies
in order to restore uniqueness and hence suppress ghost targets.

A multifrequency version of TR-MUSIC, called wide band TR-
MUSIC (WBTR-MUSIC) has been already presented in [20, 23].

In this paper, we propose a different strategy. In particular, two or
more reconstructions of the same scene obtained at different frequencies
are “beated” in order to remove spurious targets.

We termed our method to exploit frequency diversity as
Interferometric TR-MUSIC (ITR-MUSIC). This is because it resembles
some interferometric inversion scheme where, however, mixing is
achieved on data space rather than on reconstructions.
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The paper is organized as follows. In Section 2, we recall
basic theory of TR-MUSIC and discuss about uniqueness problems
arising in far zone configuration [21]. In Section 3, multifrequency
implementations of TR-MUSIC are described. In particular, first we
report the WBTR-MUSIC [23]. Then, we introduce the new ITR-
MUSIC. In Section 4, numerical examples for configurations resembling
the ones reported in [21] are used to compare TR-MUSIC, WBTR-
MUSCI and ITR-MUSIC. Conclusions end the paper.

2. TR-MUSIC

The general scenario consists of one or more isolated point targets
located at position rm, m = 1, 2, . . . ,M within a background medium
characterized by an outgoing wave scalar Green function G (r, r′, f), f
denoting the temporal frequency.

Targets are assumed to be interrogated by an array of antennas
having N transmitting and receiving elements. As in [13], we assume
they are co-located at the observation points αk, k = 1, 2, . . . ,N .
Moreover, N > M .

For each transmitting antenna, the scattered field is collected over
all the array antennas and arranged to form the so called N × N
multistatic data matrix (MDM) K. Accordingly, its {j, k} element
Kj,k is the scattered field ES (·) evaluated at αj once antenna in αk
probes the scene.

The multistatic data matrix operator

K : CN → CN (1)

is an endomorphism over the complex linear space CN . Accordingly,
CN = R(K) ⊕ N(K) can be decomposed as the direct sum of two
orthogonal manifolds given by the range R(K), denoted as signal
subspace, and its orthogonal complement N(K), called the noise
sunspace of K.

Under ideal conditions (no noise and numerical uncertainties)
singular values σn = 0 if n > M , that is the rank of K, coincides with
the number of scatterers (unless some pathological configurations [24]
are met). Therefore, it results that,

R(K) = span{u1,u1 · · · ,uM}
N(K) = span{uM+1,uM+2. · · · ,uN} (2)

where {un}N
n=1 and M are the left singular vectors and the rank of K,

respectively.
The multistatic data matrix can be factorized as follows

K = GH−1GT (3)
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where T represents the transpose operator, G is the N×M propagator
matrix from scatterers to the observation points whose n-th column is
gn = [G (α1, rn) , G (α2, rn) , · · · , G (αN , rn)]T and H−1 is the matrix
that takes into account interactions between scatterers, according to
Foldy-Lax model [25].

From Eq. (3), it is clear that span{g1,g1 · · · ,gM} ⊆ R(K).
Therefore, scatterers’ positions can be identified as the locus where
the pseudospectrum

P (r) =
1∑

σj=0

|uH
j g (r) |2

(4)

peaks. Here, H means the Hermitian and r ranges within the
investigation domain where the scatterers are assumed to reside.

2.1. Ghost Targets

When noise corrupts data, TR-MUSIC performance can deterio-
rate [26].

First, rank of K tends to increase making it difficult to discern
between the noise and the signal subspaces. Here, however, we assume
the signal to noise ratio is sufficiently high to let one able to identify
the sharp transition occurring between the signal and noise singular
values. Alternatively, more sophisticated method can be applied to
estimate it [27].

Noise also affects noise subspace structure. This can give rise to
phantom scatterers appearing in the reconstructions.

To show this, we follow Devaney arguments [21].
Consider a homogeneous background medium and assume that

both the observation and the investigation domains consist of parallel
segments, and that sensors are taken uniformly at spatial step δ. This
means that αk ≡ (xk, 0, z), where xk = −XO + (k− 1)δ, XO being the
semi-extent of the observation segment. Targets’ position are instead
rn ≡ (xn, 0, 0) with −XI ≤ xn ≤ XI , XI being the semi-extent of the
investigation domain.

When noise corrupts data, differences between steering vectors
corresponding to scatterers located at xn and xn + mL, with

L =
λz

δ
(5)

and λ being the wavelength, tend to be smoothed. Therefore,
pseudospectrum in Eq. (4) shows multiple peaks and it is no more
possible to uniquely determine the positions of targets using a single
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frequency [21]. This can be roughly explained by recalling far zone
approximation of the Green’s function

G (αk, rn) ∼= 1/z exp{−ik0[z + (x2
k + x2

n)/2z]} exp(ik0xkxn/z) (6)

In particular, the occurrence of replicas is due to the second
exponential term appearing in the right-hand side of (6), entailing
periodicity.

An illustrative example of this situation is shown in Fig. 1.
This figure reports the reconstruction of a single target located at
(−4, 0, 0)m within an investigation domain with XI = 50m, for
noiseless (top panel) and noisy data (bottom panel). To achieve that,
a fixed frequency of f = 2 GHz is employed whereas the measurement
array consists of N = 5 antennas located at xk=[−4,−2, 0, +2, +4]m
(i.e., XO = 4m) for z = h = 190m. Data have been corrupted by
an additive white Gaussian noise N with SNR = 40 dB. The signal to
noise ratio is defined as SNR = 20 log (‖K‖F /‖N‖F ), where ‖·‖F being
the Frobenius norm. Note that, due to the high dynamic exhibited by
the peseudosprectum in Eq. (4) results are displayed under logarithmic
normalized convention, that is

PdB (r) = 20 log
P (r)

max{P (r)} (7)

As can be seen, reconstruction is perfect for noiseless data.
However, even though the SNR is relatively high for noisy data replicas
appear at a period just equal to L = 14.27m, according to Eq. (5).
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Figure 1. Single target pseudospectrum PdB. (a) Reconstruction
without noise. (b) Reconstruction with noise.
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3. MULTIFREQUENCY TR-MUSIC

To overcome the above mentioned non-uniqueness problem, in [21],
it is taken advantages from propagation through a ionosphere layer
that greatly diminished grating lobe effects. This is because the strict
periodic structure of the far field Green function implied by (6) is
destroyed.

When this circumstance does not occur, TR-MUSIC algorithm
has to be modified in order to properly work also in these cases.

To this end, frequency diversity can be exploited. Indeed, from
previous section it is seen that target replicas appear at positions which
depend on the working frequency. Therefore, if multiple frequency data
are suitably combined their presence can be in some way averaged and
hence mitigated.

In this regard, it is worth mentioning that a multi-frequency
version of TR-MUSIC, the WBTR-MUSIC, has been already presented
in literature [20, 23]. In those papers, pseudospectra, as in (4), obtained
at different working frequencies are combined so that the overall
scatterer position estimator is given by

PWB (r) =
1∫

Ω

∑

σj≤ε

|uH
j (f)g (r, f) |2df

(8)

where Ω is the employed frequency bandwidth.
Such a MUSIC version resolves some problems affecting time

domain time reversal scheme without the need of further processing
to compensate the arbitrary and frequency dependent phases which
characterizes MDM eigenvectors [28]. Moreover, because it combines
reconstructions obtained at different frequencies it is shown that this
method is statistically stable [20].

Note that, as data are corrupted by noise, a suitable decision
threshold ε is employed to select the noise subspace. More in detail,
this is chosen by a visual inspection of the singular value behavior in
correspondence of their sharper transition. Alternatively, a different
criterion can be followed [27].

In this paper, we propose a different way to exploit multi-
frequency data in an interferometric fashion.

More in detail, the multi-frequency pseudospectrum is obtained
by a pixel by pixel multiplication between reconstructions obtained
at different frequencies. This way to combine frequency is expected
to better exploit the fact that spurious peak positions change with
frequency, whereas actual target peaks do not. Accordingly, we address
this method as interferometric TR-MUSIC (ITR-MUSIC) and the
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corresponding pesudospectrum is given as

PI (r) =
Q∏

q=1

1∑

σj≤ε

|uH
j (fq)g (r, fq) |2

(9)

where Q is the number of chosen frequencies.

4. NUMERICAL RESULTS AND COMPARISON

In this section, the two multifrequency TR-MUSIC methods are
compared according to same scenario as in Section 2 (see Fig. 1).
In particular, scatterers are all assumed to have equal frequency
independent scattering coefficients.

Finally, all the figures display pseudospectra under a logarithmic
scale, that is

PWBdB (r) = 20 log
PWB (r)

max{PWB (r)} (10)

and
PIdB (r) = 20 log

PI (r)
max{PI (r)} (11)
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Figure 2. Single target pseudospectra PWdB for different levels of
SNR.
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Figure 3. Single target pseudospectra PIdB for different levels of
SNR.

4.1. Role of Noise

As spurious artifacts are due to the noise it makes it sense first to
study how WBTR-MUSIC and ITR-MUSIC perform under different
values of SNR (defined as in previous section). To this end, a
single target located at (−4, 0, 0) is considered and five frequencies
taken uniformly within the bandwidth Ω = [2, 2.5]GHz are used.
Logarithmic pseudospectra as SNR varies are reported in Fig. 2 and
Fig. 3, respectively, for the WBTR-MUSIC and the ITR-MUSIC
method.

As can be seen, both methods succeed in removing spurious
artifacts for high values of SNR and hence outperform TR-MUSIC.
However, when SNR decreases ITR-MUSIC performs better than
WBTR-MUSIC which remains still affected by few ghost peaks and
above all suffers from a higher clutter pedestal.

4.2. Two Target Case

In the case of two targets the scene is populated by replicas due
to both of them. Moreover, noise in general will also couse loss of
resolution [26].

First, it is considered the case of well-resolved scatterers. In
particular, the two targets are located at x1 = −16 m and x2 = 21 m,
that is, well beyond diffraction limit λh/XO that at the highest adopted
frequency of 2.5 GHz is equal to 5.7 m. Also in this case, from Fig. 4
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Figure 4. Two target pseudospectra PWBdB for different levels of
SNR. Targets are separated by a distance of 37m.
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Figure 5. Two target pseudospectra PIdB for different levels of SNR.
Targets are separated by a distance of 37 m.

and Fig. 5, it can be appreciated how for low SNR ITR-MUSIC
performs better than WBTR-MUSIC. In particular, for SNR = 5dB,
WBTR-MUSIC returns an high cluttered reconstruction with peaks
comparable to those of actual targets. For this SNR, ITR-MUSIC also
is cluttered but spurious peaks are still many dB below target peaks.

In the second example (Figs. 6 and 7), targets get closer, below
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diffraction limit. They are located at x1 = 4m and x2 = 6m. Also in
this case it can be concluded that ITR-MUSIC is more stable against
noise.
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Figure 6. Two target pseudospectra PWBdB for different levels of
SNR. Targets are separated by a distance of 2m.
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Figure 7. Two target pseudospectra PIdB for different levesl of SNR.
Targets are separated by a distance of 2 m.
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4.3. Role of Frequency Allocation

According to Eq. (5), the number of replicas increases as frequency
grows (or equivalently by enlarging the measurement aperture keeping
fixed the number of antennas). Therefore, it is worth investigating how
WBTR-MUSIC and ITR-MUSIC behave in such a case.

To this end, the same case as in Figs. 6 and 7 is addressed
but the five frequencies are taken within the band Ω = [3, 3.5]GHz.
The corresponding reconstructions are reported in Figs. 8 and 9.
Actually, for WBTR-MUSIC the lower SNR the higher number of
replicas. However, ITR-MUSIC remains rather stable with a slightly
improvement in resolution due to the adopted higher frequencies. In
any case, the latter shows better performance.

4.4. Role of Number of Frequencies

Previous examples shown that ITR-MUSIC still remains affected by
spurious artifacts in the case of two targets when SNR is very low
(see Figs. 7 and 9). Instead, this circumstance does not occur for the
case of single target (see Fig. 3). This can be roughly explained by
observing that in the case of two targets there are two different set of
replicas. Therefore, it can occur that some replicas overlap at some
points making high the pseudospectrum in those positions. This, of
course, depends on actual scatterers’ positions and on the adopted
frequencies.
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Figure 8. Two target pseudospectra PWBdB for different level of
SNR. Targets are separated by a distance of 2 m and Ω = [3, 3.5]GHz.
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Figure 9. Two target pseudospectra PIdB for different level of SNR.
Targets are separated by a distance of 2 m and Ω = [3, 3.5]GHz.

In order to mitigate such a drawback the number of frequencies
can be increased. Indeed, by doing so, it is expected that
while pseudospectra at different frequencies will certainly overlap
in correspondence to actual targets’ positions throughout the entire
bandwidth, spurious replicas will overlap only for few frequencies.
Hence, it is expected that the dynamic range between actual scatterer
reconstructions and spurious peaks increases. Accordingly, this will
make artifacts only barely visible or at best they can completely
disappear.

In order to show the effectiveness of this strategy, the case of
not well resolved scatterers addressed in Figs. 7 and 9 is considered.
In particular, only results concerning the more critical situation for
SNR= 5 dB are shown. PWBdB and PIdB are displayed in Figs. 10 and
11, respectively. There, different frequency allocations are considered
and the number of adopted frequencies is increased up to 10. As can
be seen, above conjecture is very well verified. Indeed, ITR-MUSIC
images appear more clear as compared to the corresponding reported
in Figs. 7 and 9. Moreover, the proposed ITR-MUSIC returns clearer
reconstructions and allows to obtain values of signal-to-clutter ratio
higher than WBTR-MUSIC.
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Figure 10. Two target pseudospectra PWBdB for SNR = 5dB and
10 adopted frequencies.
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Figure 11. Two target pseudospectra PIdB for SNR = 5dB and 10
adopted frequencies.
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5. CONCLUSION

As outlined in [21], single-frequency TR-MUSIC can suffer from
uniqueness problems when noise corrupts data for some far zone
configurations. Here, we propose a new TR-MUSIC detection
algorithm based on interferomentric arguments. This allowed to
remove unwanted targets replicas by outperforming TR-MUSIC multi-
frequency implementation already present in literature.

Of course, material conveyed in this paper has to be mainly meant
as a proof of concept as a highly idealized scattering scenario has been
considered.

It is our future commitment to consider more realistic situations
and proceed to the mandatory experimental validation.
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