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Abstract—Aiming to efficiently overcome the acoustic refraction
and accurately reconstruct the microwave absorption properties in
heterogeneous tissue, an iterative reconstruction method is proposed
for microwave-induced thermo-acoustic tomography (MITAT) system.
Most current imaging methods in MITAT assume that the
heterogeneous sound velocity (SV) distribution obeys a simple
Gaussian distribution. In real problem, the biological tissue may
have several different inclusions with different SV distribution. In
this case, the acoustic refraction must be taken into account. The
proposed iterative method is consisted of an iterative engine with
time reversal mirror (TRM), fast marching method (FMM) and
simultaneous algebraic reconstruction technique (SART). This method
utilizes TRM, FMM and SART to estimate the SV distribution of
tissue to solve the phase distortion problem caused by the acoustic
refraction effect and needs little prior knowledge of the tissue. The
proposed method has great advantages in both spatial resolution and
contrast for imaging tumors in acoustically heterogeneous medium.
Some numerical simulation results are given to demonstrate the
excellent performance of the proposed method.
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1. INTRODUCTION

Microwave-induced thermo-acoustic tomography (MITAT) has re-
cently received more and more attentions because of its great poten-
tial in biomedical applications [1–4]. The basic idea of the MITAT is
that a microwave pulse heats a tissue sample, and then the sample
absorbs the microwave energy and simultaneously generates temporal
thermo-acoustic waves. An image of the electromagnetic absorption
distribution is reconstructed from the received thermo-acoustic sig-
nals [5]. This image reveals the physiological and pathological status
of the tissue, which can be very useful in many applications. Due to
its safety and low cost imaging, MITAT has great potential in early
tumor detection [5]. Compared with other acoustic imaging systems
and microwave systems, the MITAT system has the advantages of both
high spatial resolution and high contrast.

Various reconstruction methods for acoustically heterogeneous
medium in MITAT have been reported. Hristova et al. [6–8] applied
time reversal mirror (TRM) to reconstruct the image under the
assumption that the sound velocity (SV) distribution of heterogeneous
media is known. However in engineering the SV distribution of the
heterogeneous medium is usually unknown. Hristova et al. also pointed
out that the using of an incorrect SV distribution would deteriorate
both the amplitudes, as well as the locations of the features of the
image [6]. In order to overcome this problem, some improved methods
have been approached. [9] and [10] proposed a correction method based
on ultrasonic transmission tomography (UTT) to measure the SV
distribution in the tissue beforehand. It would be extremely valuable to
recover the image of the electromagnetic absorption distribution from
the measured data without any additional measurements. Zhang and
Anastasio [11] proposed a method for reconstructing both the acoustic
speed and electromagnetic absorption distribution of the tissue. But
this method assumes that the interface geometry of the SV distribution
of the tissue is known and also needs some prior knowledge about the
SV distribution of the tissue. Xie et al. [12] presented an adaptive
and robust method of reconstruction for thermo-acoustic tomography,
which suits for weakly heterogeneous tissue. The SV distribution of
the heterogeneous tissue in their model is assumed to be a Gaussian
distribution. As summarized in their paper [12], this method does not
consider the acoustic refraction effect resulted from the heterogeneous
SV distribution. Cox and Treeby [13] utilized TRM to reconstruct the
weakly heterogeneous tissue and demonstrate the robustness of TRM.
They also assume that the heterogeneous tissue obeys a Gaussian
distribution and ignores the acoustic refraction.
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Actually, the SV distribution of the biological tissue does not
obey a simple Gaussian distribution. In this realistic situation, the
acoustic refraction must be taken into account. A numerical study
showed that the effects of the acoustic refraction can be reduced
by using SV distribution [9, 10, 14]. Hence, it is very important to
extract the information of the SV distribution of the heterogeneous
biological tissue from the measured data. An energetic algorithm for
solving the SV distribution is the fast marching method (FMM) based
on simultaneous algebraic reconstruction technique (SART) [15, 16].
(For convenience, we note the FMM based on SART as FMM-SART
algorithm). FMM-SART algorithm has been applied in ultrasound
computed tomography (UCT) [17–20] and has excellent performance
in solving the SV distribution.

In this paper, we propose a new iterative method based on the
TRM technique and FMM-SART algorithm to accurately reconstruct
the microwave absorption properties for MITAT when the acoustic
refraction is taken into account. The proposed iterative reconstruction
method firstly sets an initial homogeneous SV distribution to
approximate the real SV distribution of the tissue. Then it makes
use of the TRM and FMM-SART algorithm to iteratively correct the
SV distribution. Finally the microwave absorption distribution image
is reconstructed by using TRM technique based on the latest updated
SV distribution. This method corrects the acoustic refraction effects
in heterogeneous tissue by estimating the SV distribution. It greatly
enhances the spatial resolution and image contrast. Furthermore, the
proposed method only uses the measured data and needs little prior
information of the tissue.

The remainder of the paper is organized as follows. Section 2
describes the proposed iterative reconstruction method. Some
simulation results and discussions are given in Section 3. Excellent
performance of the iterative reconstruction method is demonstrated.
Conclusions are drawn in the final section.

2. ITERATIVE RECONSTRUCTION METHOD

2.1. Problem Formulation

In MITAT system, the thermo-acoustic forward problem can be written
as follows [6–10, 13]:





[
∂2

∂t2
− v(m)2ρ(m)∇ ·

(
1

ρ(m)∇
)]

p(m, t) = 0,

p(m, t) |t=0 = P0(m), ∂p(m,t)
∂t |t=0 = 0,

(1)
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where p(m, t) is the acoustic pressure at time t and location m ∈ Ω
inside the 2-D imaging region Ω, ρ(m) the density, and v(m) the SV
distribution of the tissue. Both ρ(m) and v(m) may vary with position
m. P0(m) is the original pressure distribution and roughly proportional
to the microwave energy absorption distribution.

The thermo-acoustic image reconstruction problem is to estimate
P0(m) from the given measured data p(ms, t) on an arbitrary
measurement surface S, where ms ∈ S. However, most current imaging
methods in MITAT assume that the heterogeneous SV distribution
obeys a Gaussian distribution. But in practice, there may have several
other different tissues embedded in the biological tissue, which have
different SV distributions. The current methods will not work well.
For this situation, the acoustic refraction must be considered. The
goal of the proposed method is to solve the phase distortion problem
caused by acoustic refraction and accurately reconstruct the microwave
absorption properties.

In the following, first some brief introductions on both TRM
and FMM-SART algorithm will be given, and then an iterative
reconstruction method for MITAT will be described in detail.

2.2. TRM Technique in MITAT

The application of TRM to tomography was initially suggested by Xu
and Wang [21]. A great deal of work has been done to demonstrate that
TRM technique could be used as an imaging algorithm for MITAT [22–
25].

The main idea of the TRM is that according to the measured data
on measurement surface S, reverse the time and solve the following
equations: 




[
∂2

∂t̃2
− ṽ2(m)ρ̃(m)∇ ·

(
1

ρ̃(m)∇
)]

p̃
(
m, t̃

)
= 0,

p̃
(
m, t̃

) |t̃=0 = 0,
∂p̃(m,t̃)

∂t̃
|t̃=0 = 0,

p̃
(
ms, t̃

)
= p

(
ms, T − t̃

)
,

(2)

where the reverse-time variable t̃ runs from 0 to T , and the symbol ms

represents the sensor positions on an arbitrary measurement surface.
At time t̃ = T , the solution of (2) equals to the original pressure P0(m).
(A detailed mathematical derivation process of TRM can be referred
in [6, 7, 21, 22].)

From (2), we can see that the solution to (2) will not be equal to
P0(m) if ṽ(m) and ρ̃(m) in (2) is not equal to v(m) and ρ(m) in (1).
Actually, ṽ(m) and ρ̃(m) are usually selected as a spatially-averaged
value of v(m) and ρ(m) [12, 13]. So the pressure reconstructed by TRM
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is just an approximate solution of P0(m). Cox and Treeby [13] have
demonstrated that TRM still works well for this situation that the SV
distribution of the tissue obeys Gaussian distribution. However, it will
not be robust when the acoustic refraction is taken into consideration.
One must obtain some information of the real SV distribution to
overcome the acoustic refraction effect.

2.3. FMM-SART Algorithm

FMM-SART algorithm refers to a standard ultrasound problem, with
well identified sources and receivers. It combines FMM with SART
to estimate the real SV distribution of the biological tissue. FMM-
SART algorithm has been done on experimental demonstrations and
simulations in UCT [18]. This approach can be described in brief as
follows.

A key mathematical equation in ray theory is the Eikonal equation
which is reformulated in 2-D as:[

(∂U/∂x)2 + (∂U/∂y)2
]

= 1/v2(x, y), (3)

where v(x, y) is the SV value at pixel (x, y), and U(x, y) is the time-
of-flight (TOF) from the source to the pixel (x, y).

For given SV distribution, FMM can efficiently solve (3) and
calculate the TOF at each pixel (x, y). Then FMM calculates the
fastest propagation path from the receiver back to the source according
to the gradients of the calculated TOFs. Therefore, the TOFs
calculated by using FMM at receivers will be equal to the TOFs
evaluated from the measured data if the assumed SV distribution is
equal to the real SV distribution.

However, the real SV distribution is actually unknown and
the SV distribution initialized can not be equal to the real SV
distribution. For this reason, some differences must exist between the
TOFs calculated from the measured data and the TOFs simulated
by FMM. SART algorithm is therefore applied. SART is an algebraic
reconstruction approach, which attempts to update the initial assumed
SV distribution v(x, y) towards to the real SV according to these
different TOFs by iteratively solving the following pixel update
equation [15, 18]:

vk(x, y) =
d

d

vk−1(x, y)
+

n∑

i

∆Ui/n

, (4)

where k enumerates the iteration. d is the length of one grid and n the
number of rays updating the given pixel (x, y). The expression of ∆Ui
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is given as:
∆Ui = (TOFcol(i)− TOFsim(i))/L, (5)

where the TOF sim(i) is the TOF calculated by FMM at the position
of ith transducer based on the assumed SV. L is the number of the
pixels included by the ray path from the given source to the ith
transducer. The TOF col(i) is the TOF picked from the received data
of ith transducer.

2.4. Iterative Method for MITAT

The problem in MITAT is somewhat different from that in UCT. In
UCT, ultrasound signal is emitted from one transducer to biological
tissue and other transducers receive the ultrasonic signals. In MITAT,
however, ultrasonic signals are generated by thermo expansion in
biological tissue. In one word, the acoustic source in UCT is known;
nevertheless the acoustic source in MITAT is unknown, which limits
the application of FMM-SART algorithm.

A key contribution of this paper is that we combine TRM
with FMM-SART to compensate for their defects to solve the
inverse problem in MITAT. First TRM technique is used to estimate
a preliminary source position based on the initial assumed SV
distribution. Second FMM is applied to calculate all the TOF sims
and the propagation paths according to the estimated source position
and the initial assumed SV distribution. Third SART is used to
iteratively correct the SV distribution. The processes continue until
the difference between the TOF cols and the TOF sims becomes smaller
than a threshold. Finally, an image is reconstructed by using TRM
based on the latest updated SV distribution.

Updating the SV distribution is also an important process
of the proposed method and has some differences to that in
UCT [16, 18]. Because SART updates the SV distribution along the
fastest propagation path, the estimated SV distribution will be more
close to the real SV distribution as the transducer number increases. In
UCT, if we assume that there are M transducers, that every transducer
emits once, and that the other (M − 1) transducers receive, one
complete iteration will update the SV distribution M · (M − 1) times
by using SART algorithm. In MITAT, however, it only updates the
SV distribution N · M times where N is the number of the acoustic
sources (tumors) in the tissue. Usually, N is far less than M , which
can lead to lots of pixels apart from the propagation paths not been
updated. Therefore, the transducers are needed as many as possible in
MITAT to update all the pixels. In order to update all the pixels with
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fewer transducers, we update the pixels not only in the propagation
paths but also near around the propagation paths.

The proposed iterative method consists of the following steps:

1) Extract the TOF cols from the received acoustic data.
2) Initialize the SV field and suppose the initial SV field is

homogeneous.
3) Estimate the source position by TRM technique based on the

current SV field.
4) Calculate TOF sims at all detectors using FMM based on the

current SV field and the source position estimated in step 3).
5) Compute the propagation paths from the source position described

in step 3) to all detectors and the corresponding L of each path.
6) Calculate all the correction factors according to (5).
7) Judge whether ∆Ui described in step 6) is smaller than a threshold

or not. If all ∆Ui are smaller than the threshold, then reconstruct
image using TRM based on the current SV field. If not, update
the SV field combining SART and repeat step 3) to step 7).

In step 1), in order to facilitate the calculations of TOF, a TOF
picker is applied to automatically calculate the TOFs. The TOF picker
combines the wavelet transform and Akaike information criteria (AIC),
which is called wavelet-AIC TOF picker. It has been applied to in vivo
ultrasound breast data. (More details can be found in [26, 27]).

The computational complexity of the proposed method is not
serious in 2-D breast model. However, this problem gets very bad
in 3-D breast model, which needs to adopt Graphic Processing Units
(GPU) [28] or other techniques to speed up tomographic processing in
3-D tomography.

Another important issue is the convergence of the proposed
iterative method. Because the proposed method utilizes SART to
iteratively update the SV distribution, the convergence of the proposed
method is determined by that of SART. The convergence of the SART
has been demonstrated by Jiang and Wang [29].

3. NUMERICAL SIMULATIONS

In this section, the performance of the proposed method will be
demonstrated by using numerical simulated data. In these simulations,
we mainly consider the process that the induced thermo-acoustic
signals propagate in the tissue and are received by ultrasound
transducers.
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Table 1. Nominal dielectric properties of breast tissues.

Fatty Breast
Tissue

Glandular
Tissue

Tumor

Permittivity (F/m) 9 11–15 50
Conductivity (S/m) 0.4 0.4–0.5 4

Figure 1. 2-D breast model.

The nominal dielectric properties of breast tissues are listed in
Table 1 [12, 30]. The dielectric properties of fatty breast tissue
and glandular tissue are very close to each other. So, we assume
that the dielectric properties of healthy adipose-dominated tissues
are homogeneous approximately but their acoustic parameters are
heterogeneous [15, 18]. However, the dielectric properties of tumor
are much larger than the fatty breast tissue and glandular tissue. The
conductivity between tumor and healthy adipose-dominated tissues in
the breast is as large as 10 : 1, which means that the microwave energy
absorbed by tumor is 10 times more than that by healthy adipose-
dominated tissues. Hence, we assume that tumor is the acoustic source
and that the other four tissues do not emit acoustic signals.

A simulation setup about the SV distribution of biological tissue
is shown in Fig. 1. A 5-mm-diameter inclusion (located at X = 0mm,
Y = 0 mm) is the thermo-acoustic source, which induces acoustic
signals. To validate the performance of the proposed method, we set
four different sizes of circle areas, which represent the glandular tissues,
embedded in the fat. Actually, the SV distribution and density vary
spatially in the tissue even in the same tissue. Therefore, the SV
values of these five tissues are modeled as 2-D Gaussian distribution
with the standard deviation of 10 and the corresponding spatially-
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Table 2. Parameters setup.

Fat Tissue 1 Tissue 2 Tissue 3 Tissue 4
Velocity (m/s) 1370 1580 1572 1560 1566
Diameter (mm) 120 40 38 40 42

(a) (b) (c)

Figure 2. (a) Image reconstructed by TRM with real SV distribution;
(b) Image reconstructed by TRM with initial assumed homogeneous
SV distribution; (c) Image reconstructed by the proposed method.

averaged SV values and the sizes are given in Table 2. (These SV
values are set according to [15] and [18]). The density is selected as
ρ = 0.893 ∗ SV − 349, which is a relation derived from the measured
properties of soft tissue [31]. Moreover, the spatial distribution of
inclusions in the tissue is also unknown in practice. So, in all the
examples given below, the propagation model based on (1) with varying
SV and density is used to simulate the realistic measured data and a
similar model based on (2), but with constant homogeneous SV and
density is used to reconstruct 256×256 images [32, 33]. 256 ultrasound
transducers are put surrounding the biological tissue to receive the
ultrasonic signals [15, 18]. The breast model is immersed in a lossless
liquid with permittivity similar to that of the fatty tissue [12].

3.1. Without Noise

Though the real SV distribution and density of the tissue are unknown,
the spatially-averaged values of SV and density of the tissue are known
(as is typically the case in practice) [12, 13]. In this example, the initial
assumed SV distribution of biological tissue is homogeneous and the
SV value is set to 1370 m/s. The density is 945.85 kg/m3.

The performances of TRM and the proposed method are compared
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in Fig. 2. Fig. 2(a) is the image of pressure reconstructed by TRM
under the real SV and density distribution. It is used as a reference
here. Fig. 2(b) is the image reconstructed by TRM under the assumed
constant SV and density distribution. It shows clearly that the
acoustic phase is distorted seriously due to the effects of acoustic
heterogeneities. Due to the phase distortion, the image is blurred and
the image contrast is decreased. Fig. 2(c) is the image reconstructed
by the proposed iterative method with one time of iteration. It can
be seen that most of the acoustic signals are refocused at the right
source position in Fig. 2(c) and can easily detect the tumor embedded
in the tissue. Fig. 2(c) is not as good as Fig. 2(a), but much better
than Fig. 2(b). In Fig. 2, the three images are normalized by original
pressure intensity of the tumor.

From Fig. 2, TRM has excellent performance when the real
SV distribution of the tissue is known, which need other additional
measurement technique to obtain in prior. And this is always
nonrealistic. In practice, the real SV distribution of the tissue is
always unknown. Conventional TRM will not be able to solve the
phase distortion problem caused by acoustic refraction. Obviously, the
proposed method mitigates the phase distortion and greatly enhances
the spatial resolution for this situation.

To clearly show the robustness of the proposed method, a profile
of the pressure recovered by TRM and the proposed method is given
in Fig. 3. The solid line is the original pressure of the acoustic source
(tumor) generated by thermal expansion, which is roughly proportional
to the absorbed microwave energy. The dashed line and the dash-dot
line are the pressures reconstructed by TRM and the proposed method
separately. The dashed line corresponds to the pressure in Fig. 2(b)
at Y = 0 mm and the dash-dot line plots the pressure in Fig. 2(c) at
Y = 0 mm. From Fig. 3, the pressure reconstructed by traditional
TRM is spread around the source position with low amplitude. By
using the proposed method, the magnitude of the pressure is nearly
4 times larger than that by TRM, which means that the pressure has
gathered much stronger at the source position.

Figure 4 is the comparisons between the TOF cols and the
TOF sims. The solid line represents the TOF cols calculated from
the measured data; the dash-dot line and dashed line are the
TOF sims simulated by FMM based on the assumed homogeneous SV
distribution (SV = 1370 m/s) and the SV distribution updated once
respectively. The TOF sims drawn in dash-dot line is far away from
the TOF cols drawn in solid line, which means that the initial assumed
homogeneous SV is far too different to the real SV distribution.
The proposed method iteratively corrects the initial assumed SV
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Figure 3. Profiles of the pressure
at the source position.

Figure 4. Comparisons between
the TOFcols and the TOFsims.

distribution according to the difference between TOF sims (the dash-
dot line) and TOF cols (the solid line) until the difference between them
is less than a threshold. The TOF sims in dashed line agrees well with
the TOF cols in solid line and it means that the updated SV distribution
approximates the real SV distribution closely. Therefore, the acoustic
signals can be refocused at the source position.

Through this experiment, the advantage of the proposed method
has been demonstrated. In the following subsection, its effectiveness
will be further tested for the case when the Gaussian noise is
introduced.

3.2. With Noise

In order to further demonstrate the robust property of the proposed
method, Gaussian noise is added. In [34], 18 dB of signal to noise ratio
(SNR) in vivo breast data is regarded as low SNR. Here we use 17 dB
SNR. The initial assumed SV distribution and density are the same as
those in the previous example.

Figures 5(a) and (b) show the images reconstructed by
conventional TRM and the proposed method separately, which are also
normalized as shown in Fig. 2. Compared with TRM, the proposed
method can still recover the original pressure intensity more accurately
though the noise is introduced.

Figure 6 gives the profiles of the pressure intensity shown in Fig. 5
at Y = 0 mm. The solid line is the original pressure intensity, which
is generated by thermal expansion and proportional to the absorbed
microwave energy. The dashed line and dash-dot line are the pressures
recovered at by TRM and the proposed method. Compared with
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(a) (b)

Figure 5. (a) Image reconstructed by TRM; (b) Image reconstructed
by the proposed method.

Figure 6. Profiles of the pressure
at the source position.

Figure 7. Comparisons between
the TOFcols and the TOFsims.

that in Fig. 3, the pressure reconstructed by the proposed method in
Fig. 6 is a little bit worse because of the increasing errors for TOFcols
caused by the Gaussian noise. Even though, the proposed method still
works better than TRM. It shows that the magnitude of the pressure
recovered by the proposed method is more than 3 times larger than
that by TRM in this example.

Figure 7 shows the comparisons between the TOF cols and the
TOF sims. The solid line is the TOF cols calculated from the measured
data containing random noise. The dash-dot line is the TOF sims
calculated by FMM under the initial assumed homogeneous SV
distribution. The dashed line is the TOF sims calculated by FMM
based on the SV distribution updated once. By updating the SV
distribution, the TOF sims drawn in dashed line is closer to the
TOF cols. This illustrates that the latest updated SV distribution
approximates well to the real SV distribution.
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From these examples, it is concluded that the proposed method
effectively solves the phase distortion problem induced by acoustic
refraction effect via estimating the SV distribution of the tissue. It
greatly improves the positioning accuracy and has much higher spatial
resolution and contrast of the image than the conventional TRM
technique based on the assumption of uniform SV distribution. And
due to the TRM engine involved in the proposed method, it also has
the advantages of spatial-temporal matched filtering and statistical
self-averaging [22–24].

4. CONCLUSIONS

In this paper, a new iterative reconstruction method is proposed for
MITAT when the acoustic refraction effect is taken into consideration.
The advantages of TRM and FMM-SART algorithms are combined to
solve the phase distortion problem in heterogeneous tissue in MITAT.
The main idea of the proposed method is that TRM and FMM-
SART are iteratively applied to estimate the SV distribution, and
the image of microwave absorption is then reconstructed based on the
updated SV distribution to overcome the acoustic refraction effect. The
effectiveness of the method has been demonstrated by two cases. The
results show that the iterative method has better performance than the
conventional TRM method in both the spatial resolution and image
contrast. The proposed method solves the inverse problem in MITAT
using solely measured data with very few acceptable assumptions.
Furthermore, this method needs little prior knowledge of the SV
distribution of tissue. It might be a promising method in practice.
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