
Progress In Electromagnetics Research, Vol. 133, 259–283, 2013

FAST GPU-BASED INTERPOLATION FOR SAR BACK-
PROJECTION

A. Capozzoli*, C. Curcio, and A. Liseno

Dipartimento di Ingegneria Biomedica, Elettronica e delle Teleco-
municazioni, Università di Napoli Federico II, Via Claudio 21, I-
80125 Napoli, Italy

Abstract—We introduce and discuss a parallel SAR backprojection
algorithm using a Non-Uniform FFT (NUFFT) routine implemented
on a GPU in CUDA language.

The details of a convenient GPU implementation of the
NUFFT-based SAR backprojection algorithm, amenable to further
generalizations to a multi-GPU architecture, are also given.

The performance of the approach is analyzed in terms of accuracy
and computational speed by comparisons to a “standard”, parallel
version of the backprojection algorithm exploiting FFT+interpolation
instead of the NUFFT. Different interpolators have been considered for
the latter processing scheme. The NUFFT-based backprojection has
proven significantly more accurate than all the compared approach,
with a computing time of the same order. An analysis of the
computational burden of all the different steps involved in both the
considered approaches (i.e., standard and NUFFT backprojections)
has been also reported.

Experimental results against the Air Force Research Laboratory
(AFRL) airborne data delivered under the “challenge problem for
SAR-based Ground Moving Target Identification (GMTI) in urban
environments” and collected over circular flight paths are also shown.

1. INTRODUCTION

The backprojection algorithm [1, 2] is a frequently used technique in
Synthetic Aperture Radar (SAR) image formation. Assuming that the
data acquired by the SAR sensor are available over a uniform grid
in the frequency domain, SAR backprojection consists of two-steps.

Received 19 July 2012, Accepted 17 September 2012, Scheduled 22 October 2012
* Corresponding author: Amedeo Capozzoli (a.capozzoli@unina.it).

260 Capozzoli, Curcio, and Liseno

The first step amounts to transform the frequency domain data by a
Fast Fourier Transform (FFT) to a uniform grid of the time domain,
while the second step regards interpolating the data from the uniform
grid dictated by the FFT to the non-uniform grid dictated by the
discretization of the on-ground scenario.

The backprojection algorithm shows two main advantages if
compared to other approaches [1]. First, it does not involve
approximations of the relevant Green’s function. Second, it enables
to form SAR images as the data are acquired, pulse by pulse, by
integrating newly obtained information into the SAR image as it
becomes available. The main drawback of SAR backprojection is the
computational complexity, which grows, in a sequential algorithm, as
P (M) + O(M2 log M) for an M × M image, where the polynomial
dependence P (M) is due to the required interpolation stage, while the
O(M2 log M) dependence is due to the involved FFT step [3, 4]. The
possibility of using FFTs is thus appealing from the computational
viewpoint. Indeed, for a fixed M and depending on the interpolation
scheme, the dominant term can become P (M) or O(M2 log M). Thus,
the choice of the interpolator is critical to obtain a favourable trade-
off between accuracy and processing speed, since accurate but slow
interpolators can make the approach for very large data sets even
impractical [2]. In other words, proper interpolators can enable the
algorithm to have the same asymptotic computational complexity of a
standard FFT.

To reduce the computational burden, different methods have been
proposed. While accepting some sacrifice in image quality, they rely on
FFT stages performed in polar coordinates [5] or based on hierarchical
decompositions of the backprojection operator [6, 7] to achieve an
O(M2 log M) complexity.

Approaches based on the use of Non-Uniform FFTs (NUFFTs) [8,
9] have recently gained interest in SAR imaging to enable the
efficient computation (O(M2 log M) complexity) of Non-Uniform
Discrete Fourier Transforms (NUDFTs) with unequally spaced data or
results [10, 11]. NUFFT-based backprojection represents an interesting
alternative to other backprojection approaches to efficiently nest in a
single stage the FFT and an effective and precise interpolation, and to
form very accurate SAR images at a reasonable computational cost.

We stress that accurately and quickly processing SAR data by
the use of effective algorithms and performing hardware has aroused
interest since more than two decades. This happened since when
the FFT algorithm was used, for the first times, to quicken the
computationally burdened ω-k processing [12–14], the use of travelling
sampling interpolation techniques for bandlimited functions were

Progress In Electromagnetics Research, Vol. 133, 2013 261

firstly experimented [14] and computer parallel codes were firstly
developed to accelerate the computations [15]. Currently, it arouses
interest in all those applications in which obtaining precise images of
large areas [16] or accurately extracting geometrical [17–19] or physical
parameters [20, 21] is required. For example, in SAR interferometry,
guaranteeing high coherence values to preserve the accuracy of the
interferometric phase and to obtain meaningful Digital Elevation Maps
(DEMs) is crucial [22]. It is no accident that right in this framework
different interpolators have been proposed and compared in terms of
accuracy [17–19].

It should be also noticed that SAR backprojection lends naturally
itself to parallelization, which should naturally lead to the choice of
parallel hardware for its implementation. Graphics Processing Units
(GPUs), which provide platforms for parallel computing with very
competitive “flops per dollar” ratios [23–28], represent an excellent
opportunity in this framework. The use of GPUs is spreading over
the SAR community [10, 11, 29–34] whose first attempts in this context
date even back to the times when extensions of the ANSI C simplifying
the programming of graphic cards (as CUDA — Compute Unified
Device Architecture — or OpenCL) [35] were not yet available [36].

Purpose of this paper is to introduce, for the very first time, and
discuss a new parallel SAR backprojection algorithm using a NUFFT
routine implemented on GPU. The details of a convenient GPU
implementation of the NUFFT-based SAR backprojection algorithm,
amenable to further generalizations to a multi-GPU architecture [34],
are also given. We compare, under the new light of parallel
programming on GPUs, SAR backprojection algorithms based on the
most common interpolators proposed by the SAR community and
the proposed SAR backprojection approach based on the use of the
NUFFT [10, 11, 37]. The comparison is performed in terms of accuracy
and processing speed, by highlighting the computational performance
of each individual step of the involved routines. The main results
are highlighted in detail in the Conclusions and Future Developments
Section. The extent of the comparison against other pre-existing
techniques can result also very useful to the Reader who is then
oriented to the choice of interest depending on the needs, again in terms
of accuracy and processing speed. The very convenient performance
of the NUFFT-based approach is confirmed by results obtained
against data provided by the Air Force Research Laboratory (AFRL)
under the “challenge problem for SAR-based Ground Moving Target
Identification (GMTI) in urban environments” [38] and collected by
the airborne sensor of the AFRL under circular flight paths.

The paper is organized as follows.

262 Capozzoli, Curcio, and Liseno

In Section 2, the SAR signal model is shortly recalled. In
Section 3, the backprojection algorithm is described by paying
particular attention to the FFT+interpolation stage and by discussing
how the latter can be implemented by a Non Equispaced Results (NER)
NUFFT [8, 9]. Section 4 points out the computational complexity
of the FFT+interpolation stage, by stressing the advantage of using
a NER-NUFFT. Furthermore, the interpolation kernels considered
in this paper and used for the comparison with the NUFFT-based
SAR backprojection are detailed and the NER-NUFFT algorithm is
briefly recalled. Section 5 is devoted to shortly illustrate the GPU
implementations of the confronted algorithms while in Section 6 we
present numerical results concerning their comparison in terms of
accuracy and processing speed. Section 7 contains the experimental
results on the AFRL-GMTI data which illustrate the outperforming
features of the NUFFT in terms of achievable accuracy only, being
the processing speed analyzed in Section 6. Finally, in Section 8,
conclusions are gathered and ongoing developments are illustrated.

2. SAR SIGNAL MODEL

Let us consider the monostatic SAR acquisition geometry of Fig. 1.
The SAR sensor travels along a flight path such that

(x(τ), y(τ), z(τ)) represents the trajectory of the Transmitting
(Tx)/Receiving (Rx) antenna phase center, where τ stands for the
“slow-time” [2]. We consider a scene populated by generic stationary
targets (i.e., their locations do not depend on τ), residing at the

Figure 1. Geometry of the problem.

Progress In Electromagnetics Research, Vol. 133, 2013 263

positions (x′, y′, z′), and we assume that the target reflecting features
do not depend neither on the frequency f nor on the aspect angle,
which is related to the reciprocal positions of the sensor and the
scatterers themselves. As the antenna phase center moves along the
flight path, it transmits pulses (chirp pulses, typically) in the direction
of the scene at regularly spaced time instants τn.
Following the “start-stop” approximation, at a given τn, the output of
the receiver is a function of the “fast-time” t [1, 2] denoted by s(t, τn)
and known as “raw-data”. Its frequency domain expression is

S(f, τn) = H(f)
∫∫

D
A

(
x′, y′

)
e−j4πf∆R(x′,y′;τn)/cdx′dy′, (1)

where the integration is extended to the investigated scenario D,

∆R
(
x′, y′; τn

)
=

√
(x(τn)− x′)2 + (y(τn)− y′)2 + (z(τn)− z′ (x′, y′))2

−
√

x2(τn) + y2(τn) + z2(τn), (2)
the scatterers are assumed to be located on the surface of equation
z′ = z′(x′, y′), A is the “scattering amplitude” of the generic target
at (x′, y′, z′) [2], H(f) is the spectrum of the illuminating pulse and c
is the speed of light. In Eq. (1), it has been assumed, as in common
practice, that a scatterer at the scene origin O will have zero phase for
every f and τn.

If a DEM is available, then the actual target locations can be
accounted for. Since our purpose is to analyze different processing
schemes in terms of accuracy and computational performance, we
assume no further a priori information so that in the next Sections
we set z′ = 0.

3. THE BACKPROJECTION ALGORITHM

On defining an (x′m, y′m) grid for D, an approximation to A can be
expressed as [10, 11]

A
(
x′m, y′m

)
=

∑
n

Qmn

(
tNU
mn

)
(3)

where

Qmn

(
tNU
mn

)
=

∫ fmax

fmin

S(f, τn)
H(f)

ej2πftNU
mn fdf (4)

is the “filtered projection”, fmin and fmax are the minimum and
maximum frequencies of S, respectively, and the tNU

mn ’s are the fast-
time instants given by

tNU
mn = 4π

∆R (x′m, y′m; τn)
c

. (5)

264 Capozzoli, Curcio, and Liseno

It should be noticed that dividing the acquired signal S(f, τn) by
H(f) in Eq. (4) corresponds to range-compression or, in particular, to
standard matched filtering when the chirp signal is used as illuminating
pulse [39]. It should be also stressed that, since the fast-time instants
tNU
mn and the grid coordinates (x′m, y′m) are non-linearly related by

Eq. (5), then the tNU
mn ’s are non-uniformly spaced, even for a uniform

Cartesian grid (x′m, y′m).
After having computed S(f, τn) from the acquired raw-data by

FFT operations [2], the evaluation of the filtered projections can be
performed following two different ways.
(i) “Standard backprojection”, henceforth “Algorithm A”.

A first possibility is to use an FFT routine, which however
provides the Qmn’s at uniformly spaced fast-time instants tUmn.
Consequently, an interpolation step is also required to evaluate
the filtered projections from the uniform grid tUmn (provided by
the FFT) to the non-uniform grid tNU

mn of interest.
(ii) “NUFFT-based backprojection”, henceforth “Algorithm

B”. Alternatively, a 1D NUFFT routine of NER type can be
used to achieve the values of the filtered projections directly at
the non-uniform sampling points of interest [10, 11].

4. COMPUTATIONAL COMPLEXITY AND
INTERPOLATION

For a sequential approach and for an image of size N ×M (azimuth ×
range), the computational complexity of step #1 is O(NM log M). On
the other side, as stressed in the Introduction, the complexity of steps
#2 and #3 is, apart from oversampling factors [8, 9], O(NM log M) +
P (N, M). It should be noticed that, if the evaluation of Qmn (tNU

mn)
involves a number of, say, T ¿ M samples of Qmn (tUmn) (“traveling”
sampling interpolation [40]), then P (N, M) ' NTM , so that the
overall complexity of the backprojection algorithm becomes dominated
by the term O (NM log M) for large images. Different polynomial
interpolation kernels or procedures to accelerate the convergence speed
of the Nyquist series by proper window functions have been proposed
and considered in the SAR literature [17–19, 41, 42]. Conversely, the
Nyquist series used without convergence acceleration entails T ' M , so
that P (N, M) ' NM2 dominates the computational complexity [32].

4.1. Interpolation Kernels

The interpolation kernels herein considered for Algorithm A give rise
to traveling sampling interpolators and are the following (assuming

Progress In Electromagnetics Research, Vol. 133, 2013 265

unit uniform sample grid distance):

• Nearest neighbor

i(x) =

0, if |x| > 1
2 ;

1
2
, if x = 1

2 ;

1, if |x| < 1
2 .

(6)

involving one sample;
• Piecewise linear [43]

i(x) =
{

0, if |x| > 1;
1− |x|, if |x| ≤ 1.

(7)

involving two samples;
• Four-point cubic [44]

i(x) =

3
2
|x|3 − 5

2
|x|2 + 1, if 0 ≤ |x| < 1;

− 1
2
|x|3 +

5
2
|x|2 − 4|x|+ 2, if 1 ≤ |x| < 2;

0, if 2 ≤ |x|.

(8)

involving four samples; by this kernel, the interpolation error goes
to zero uniformly at a rate proportional to the cube of the sampling
increment;

• Six-point cubic [44]

i(x) =

4
3
|x|3 − 7

3
|x|2 + 1, if 0 ≤ |x| < 1;

− 7
12
|x|3 + 3|x|2 − 59

12
|x|+ 15

6
, if 1 ≤ |x| < 2;

1
12
|x|3 − 2

3
|x|2 +

21
12
|x| − 3

2
, if 2 ≤ |x| < 3;

0, if 3 ≤ |x|.

(9)

involving six samples; by this kernel, the interpolation error has a
fourth-order convergence rate.

• Truncated sinc with approximate prolate spheroidal
sampling window [41]

i(x) =

sinc(x)
sinh

(
πν L

2

√
1−(2x

L)2
)

sinh(πν L
2)

√
1−(2x

L)2
, if |x| ≤ L

2 ;

0, if |x| > L
2 .

(10)

266 Capozzoli, Curcio, and Liseno

where sinc(x) = sin(πx)/(πx), ν = (1 − 1
χ) and χ is the

oversampling factor [18, 19]; this interpolation kernel involves an
overall number of L samples; the value of L is chosen according
to the desired trade-off between accuracy and computational
complexity.

• Truncated sinc with Knab sampling window [42]

i(x) =

sinc(x)
cosh

(
πν L

2

√
1−(2x

L)2
)

cosh(πν L
2) , if |x| ≤ L

2 ;

0, if |x| > L
2 .

(11)

with the same definitions of sinc(x) and of ν as above; as for
the foregoing one, also this interpolation kernel involves an overall
number of L samples, with L defining a trade-off between accuracy
and complexity.

4.2. NER-NUFFT

The NUFFT algorithm employed in this paper is that developed in [9],
which is based on the use of Kaiser-Bessel interpolation windows, see
also [10, 11].

In order to illustrate the algorithm, let us denote by zk the
equispaced data to be transformed, by yl ∈ [−N/2, N/2] the N non-
equispaced grid points at which calculating the transform of the zk’s
and by ẑl the values of the NUDFT of the zk’s. Then, the 1D NER-
NUFFT algorithm quickly calculates the 1D NER-NUDFT defined as

ẑl =
N/2∑

k=−N/2

zke
−2πjylk/N . (12)

The main idea of the NUFFT algorithm is to approximate
the “nonuniform” exponential exp(−j2πylk/N) by interpolating few,
“oversampled”, “uniform” exponentials according to [9]

e−j2πyl
k
N =

(2π)−1/2

Φ(2πk/(cχN))

∑

m∈Z
Φ̂(cχyl −m)e−j2πm k

cχN (13)

where cχ > 1 is an “oversampling factor”, Φ is the Kaiser-Bessel
window, and Φ̂ is its Fourier transform.

By exploiting (13), Eq. (12) can be rewritten as

ẑl =
1√
2π

∑

m∈Z
Φ̂(cχyl −m)

N/2∑

k=−N/2

e
−j2πm k

cχN
zk

Φ(2πk/(cχN))
︸ ︷︷ ︸

Um

. (14)

Progress In Electromagnetics Research, Vol. 133, 2013 267

Taking now into account that Φ̂ has finite support, then Eq. (14)
takes the form

ẑl ' 1√
2π

K∑

p=−K

Φ̂(p)Up+µl
, (15)

where K is 3 or 6 for single or double precision arithmetics, respectively,
µl is the nearest integer to cχxl and the subscript p + µl has to be
considered as cχN -periodic.

Accordingly, the NUDFT can be effectively evaluated in three
steps

(i) Scaling and zero padding:

uk =

0 k = −cχN/2, . . . ,−N/2− 1
zk/φk k = −N/2, . . . , N/2− 1
0 k = N/2, . . . , cχN/2− 1

; (16)

(ii) FFT of {uk}cχN/2−1
k=−cχN/2 on cχN points to obtain {Um}cχN/2−1

m=−cχN/2;

(iii) Cyclic convolution to evaluate Eq. (15).

5. PARALLEL IMPLEMENTATION DETAILS

Under a parallel implementation, the relative values of the
computational burdens of the FFT and interpolation stages can be in
principle different from those involved in a sequential implementation.
Analyzing this point is the aim of the present Section.

The two algorithms considered in this paper have been fully
implemented in CUDA language [45] for parallel execution on a
GPU and in this Section we highlight the salient points of such
implementations. They share the same computational flow and
instructions as in Algorithm 1, illustrated in a Matlab-like language
only for the Reader’s convenience. More in detail, in Algorithm 1, the

Algorithm 1 Implementation of standard and NUFFT-based BPs.
for k = 1 : az bin

r =
√

(data.x(k)− x)2 + (data.y(k)− y)2 + (data.z(k)− z)2

t = 2r/c

Q = Evaluate projection (data.fp(:, k), t); (see Eq. (4))
A = A + Q;

end

268 Capozzoli, Curcio, and Liseno

Table 1. Processing steps of Algorithms A and B for fixed τn.

Step Algorithm A Algorithm B

#1 FFT of raw-data s(t, τn) FFT of raw-data s(t, τn)

#2 Evaluate Qmn (tU
mn) by FFT

(#2 & #3) Evaluate Qmn (tNU
mn) by NUFFT

#3
Interpolate Qmn (tU

mn) to

Qmn (tNU
mn)

#4
Superimpose the

result to Eq. (3)

Superimpose the

result to Eq. (3)

#5 Update τn Update τn

underscore represents array or matrices, az bin is the overall number of
sent/received pulses (see Section 2), (data.x(k), data.y(k), data.z(k)) is
the position of the sensor for the k-th pulse, x, y and z are the vectors
accounting for the on-ground scene discretization, t is the vector
containing the round trip traveltimes, data.fp(:, k) stands for the
values of S(f, τk), Q is the projection as evaluated at the k-th step and
A represents the image obtained at the k-th step, and updated by the
k-th projection. The “Evaluate projection” stage implements Eq. (4),
corresponding to steps 2 & 3 of Table 1, and is invoked at each instance
of the “for loop”. The calculation of all the auxiliary quantities as well
as the “Evaluate projection” stage are implemented by appropriate
CUDA kernels [45]. The implementations of Algorithms A and B (see
Algorithm 2) differentiate at the “Evaluate projection” stage, which is
performed by an FFT + interpolation for Algorithm A and by a 1D
NER-NUFFT only for Algorithm B, respectively. More in detail, the
differences between the two cases reside in the scaling zero padding
and interpolation kernels of Algorithm 2. Concerning the former, in
Algorithm B, the data are scaled by a modified Bessel window before
zero padding, according to [9]. Regarding the latter, the interpolation
is performed by one of the kernels mentioned above in the foregoing
Section for Algorithm A, while a Kaiser window is used for the NUFFT-
based case, according to [9]. For both, a zero padding with a factor
of cχ (equal to 2 in our implementations) has been considered before
the FFT, while the FFT step has been implemented by exploiting the
CUDA cuFFT library [46, 47].

The interpolation step for the 1D NER-NUFFT has been
deeply described in [11], while that for the FFT + interpolation
approach has been implemented by the same CUDA kernel, exploiting
different device functions corresponding to the different considered

Progress In Electromagnetics Research, Vol. 133, 2013 269

interpolators. It should be noticed that, although nearest and linear
interpolators exploit the texture memory [30, 45], this solution has not
been considered here to avoid further losses of accuracy [48].

We explicitly mention that, the CUDA codes have undergone a
deep optimization regarding minimizing the memory allocations [49],
CPU-GPU memory transfers [50], kernel calls [51] and, most
importantly, global memory accesses [35]. Finally, two versions have
been implemented for each approach, one exploiting the single and one
the double precision accuracy, in order to analyze the trade-off between
accuracy and processing speed.

Algorithm 2 Illustrative pseudo-code for the
“Evaluate projection” stage.
void nufft NER 1D func (cufftComplex *data, float *points,
cufftComplex *result, int N, int M)
{

/* ALLOCATIONS */
cufftComplex *uk;
cudaMalloc ((void **) & uk,sizeof (cufftComplex)*cχ*N);
/* SCALING, ZERO PADDING AND FFTSHIFT */

scaling zero padding ≪ block size 1, cχ*N/block size 2
+ (cχ*N%block size == 0 ? 0 : 1) ≫ (data, uk, N);

/* FFT */
cufftHandle plan; cufftPlan1d (& plan, cχ*N , CUFFT C2C,

1);
cufftExecC2C (plan, uk, uk, CUFFT FORWARD);
cufftDestroy (plan);
/* INTERPOLATION */
dim3 dimBlock(block size 2, 1); dim3 dimGrid

(M/block size 2 + (M%block size 2 == 0 ? 0 : 1), 1);
interpolation ≪ dimGrid, dimBlock ≫ (uk, points, result,

N , M);
/* DEALLOCATIONS */
cudaFree (uk);

}

270 Capozzoli, Curcio, and Liseno

6. NUMERICAL RESULTS

The performance of standard and NUFFT-based parallel backprojec-
tions have been assessed both in terms of accuracy and of computa-
tional speed. To this end, steps #2 and #3 of Table 1 have been run on
complex random vectors of M = 512 elements with real and imaginary
parts uniformly distributed between 0 and 1 to compute the projec-
tions at N locations, with N equal to 2i, i = 4, . . . , 22, randomly and
uniformly distributed in (−N/2, N/2). Reference results for steps #2
and #3 have been calculated by “direct” backprojection [4], that is,
by a backprojection algorithm performing “exact” NUDFTs using Ba-
sic Linear Algebra Subroutines (BLAS) [52]. The direct backprojec-
tion has been implemented again in CUDA language by exploiting the
cuBLAS library [53] (in particular, matrix-vector multiplication rou-
tines). Both the accuracy and the computational speed have been
assessed following average operations on a number of 20 realizations
for each individual test of interest.

As mentioned before, we distinguish between single and double
precision computations. Let us stipulate that a number of interpolation
samples larger than 7 are needed to achieve double precision, as in the
case of the NUFFT [9]. Then
• the nearest (one sample), linear (two samples), four-point

cubic (four samples), six-point cubic (six samples), Knab and
approximate prolate interpolating windows with L = 6 samples
and the NUFFT with 2K+1 = 7 samples (i.e., the value suggested
in [9] to achieve single precision) belong to the single precision
class;

• Knab and approximate prolate with L = 12 interpolation windows
and the NUFFT with 2K +1 = 13 interpolation samples (i.e., the
value suggested in [9] to achieve double precision) belong to the
double precision class.
The processing has been performed on a workstation equipped

with an Intel Pentium D CPU 3.4 GHz, 4 GB of RAM, an NVIDIA
Tesla C2050 [10, 11], installed on an ASUSTek P5D DH Deluxe
motherboard having 2 PCI Express× 16 slots to host the GPU.

Regarding the accuracy, it can be assessed by using different
criteria, as for example by resorting to coherence calculations [17–
19] or to the Root Mean Square (RMS) error. Here, we compare
the accuracies of the two approaches in terms of achieved RMS error
between the “exact” solution and the different considered processing
schemes by Figs. 2 and 3. Assessments by coherence calculations will
be dealt with in Section 7. As expected, as long as the number
of interpolation samples increases, a better accuracy is obtained.

Progress In Electromagnetics Research, Vol. 133, 2013 271

Figure 2. Rms errors of Algorithms A and B for the single precision
case.

Figure 3. Rms errors of Algorithms A and B for the double precision
case.

Furthermore, the NUFFT-based approach significantly outperforms
the compared ones. It should be noticed that, the comparison regards
the cases N = 2i, i = 4, . . . , 18, being the only possible ones for the
cuBLAS routine to be successfully run due to memory limitations of
the employed GPU.

The performance in terms of processing times† for the above
mentioned steps #2 and #3 is illustrated in Figs. 4 and 5. As it can be
† The processing does not account for any CPU-GPU memory transfer.

272 Capozzoli, Curcio, and Liseno

Figure 4. Processing times of Algorithms A and B for the single
precision case.

Figure 5. Processing times of Algorithms A and B for the double
precision case.

seen, Algorithm B is only slightly slower than the compared ones for
the single precision case, while is as fast as the compared ones for the
double precision case. Again for Figs. 4 and 5, the comparison is limited
to N = 2i, i = 4, . . . , 18. The behavior of the computation times (say,
“asymptotic”) for N = 2i, i = 19, . . . , 22 is reported in Figs. 6 and 7.
Relevantly, the processing time for Algorithm B becomes less than that
concerning Algorithm A exploiting the Knab or approximate prolate
interpolation windows.

Progress In Electromagnetics Research, Vol. 133, 2013 273

Figure 6. “Asymptotic” processing times of Algorithms A and B for
the single precision case.

Figure 7. “Asymptotic” processing times of Algorithms A and B for
the double precision case.

We finally note that, for the NUFFT-based projection evaluation
and for N = 524288, in single precision arithmetics, approximately
16% of the time is spent in the scaling zero padding kernel, 80% of
the time is due to the FFT and 4% of the time to the interpolation
kernel, thus the performance being bounded by that of the cuFFT
library. It should be also noticed that the same use of the cuFFT

274 Capozzoli, Curcio, and Liseno

library is made for Algorithms A and B, so the cuFFT processing
time is the same for both the approaches. The different processing
times between Algorithms A and B can be then explained by the
different interpolation schemes adopted. In particular, the NUFFT-
based scheme proves to be more convenient than that exploiting Knab
or approximate prolate interpolation due to the use of the expansion
in Eq. (13) purposely worked out for the exponentials involved in the
NUDFT. Similar reasoning applies to double precision.

7. EXPERIMENTAL RESULTS

In 2009, the AFRL released X-band data collected by its own airborne-
sensor in a circular acquisition geometry over an urban scene consisting
of numerous buildings and civilian vehicles [38]. The purpose was to
push the development of new algorithms for the detection, geolocation,
tracking and identification of moving targets since, in the observed
scene, multiple vehicles were driving on roads near buildings, and
ground truth was provided for one of them.

The data are motion-compensated, range-compressed, delivered
in the frequency domain, and cover the scenario for about 71 seconds
in duration. The sensor completed two circular flight paths around
the scene at HH polarization and at a height of about 7.2 km, one
corresponding to a “reference” acquisition, which is used in this paper
and contains no moving targets, and one corresponding to a “mission”
acquisition, including the moving objects. The data have a center
frequency of 9.6 GHz and a bandwidth of 640 MHz, each pulse contains
384 frequency samples and the achievable on-ground resolution is about
0.2m× 0.2m.

Figures 8 and 9 show the results obtained by using the NUFFT-
based SAR backprojection algorithm (run with K = 3 and K = 6,
respectively) and by considering all (i.e., 10000) the available azimuth
bins, which took an overall processing time of about 45 s and 131 s,
respectively. It should be noticed that we have recently implemented a
multi-GPU backprojection approach which takes approximately 19 s to
process the same image when run on the 2 GPUs of the front-end node
of the “Jazz” cluster available at Caspur (Inter-University Consortium
for the Application of Super-Computing for Universities and Research),
Rome, Italy [34].

In order to compare the accuracy performance of Algorithm B to
Algorithm A using the different considered interpolators, the attention
has been focused on a sub-image of the result in Figs. 8 and 9. A
reference sub-image has been calculated again by direct backprojection,
see Fig. 10. We note that, Section 6 involves numerical data.

Progress In Electromagnetics Research, Vol. 133, 2013 275

Figure 8. Algorithm B image obtained from the AFRL-GMTI data:
single precision.

Figure 9. Algorithm B image obtained from the AFRL-GMTI data:
double precision.

Therefore, evaluating the accuracy of the different implementations is
performed against an “exact” reference. On the other side, Section 7
involves experimental data and an “exact” image is not available.
Accordingly, the reference is obtained by the most accurate SAR

276 Capozzoli, Curcio, and Liseno

Figure 10. Reference subimage. Figure 11. Single precision.
Coherence maps using nearest
interpolation.

Figure 12. Single precision. Co-
herence maps using linear interpo-
lation.

Figure 13. Single precision.
Coherence maps using four point
cubic interpolation.

image formation approach available. Furthermore, to assess the degree
of similarity to the reference sub-image, coherence maps have been
evaluated between the latter and the results achieved by the different
considered schemes [22], see Figs. 11–17, for the single precision
case. For the coherence maps, larger amounts of “bright” pixels are
symptomatic of a larger degree of similarity to the reference sub-image
and, thus, of a better accuracy. It should be noticed that the coherence
maps in Figs. 11–17 have been imaged in a narrow gray scale ranging
from 0.995 to 1. Indeed, a value of coherence equal to 0.995 causes
an interferometric phase with a root mean square error of already
11.2◦. As it can be seen from Figs. 11–17, the amount of “bright”
pixels gradually increases from the nearest to the truncated sinc with
approximate prolate and Knab sampling window interpolators and

Progress In Electromagnetics Research, Vol. 133, 2013 277

Figure 14. Single precision.
Coherence maps using six point
cubic interpolation.

Figure 15. Single precision. Co-
herence maps using approximate
prolate window interpolation.

Figure 16. Single precision. Co-
herence maps using Knab window
interpolation.

Figure 17. Single precision.
Coherence maps using NUFFT.

very few dark pixels appear in the result corresponding to Algorithm B.
The minimum coherence values have been equal to 0.0088, 0.5241,
0.8723, 0.9902, 0.9852, 0.9927 and 1 for the nearest, linear, 4 point
cubic, 6 point cubic, approximate prolate, Knab and NUFFT cases,
respectively.

Finally, due to the very high accuracy achieved by the approximate
prolate and Knab window as well as the NUFFT, the minimum
achieved coherence values have been, for the double precision case,
equal to 1 in all the three cases. However, Algorithm B has proven
faster (execution time of 23 s) than Algorithm A when using both, the
approximate prolate (execution time of 31 s) or Knab (execution time
of 33 s) interpolation windows. We also mention that the time taken
by the GPU-based direct backprojection algorithm implemented by

278 Capozzoli, Curcio, and Liseno

double precision cuBLAS has been 650 s. Accordingly, the speedup
gained by Algorithm B, equal to 28, indicates that the use of the
proposed approach enables the processing of very large images, which
would be otherwise unfeasible by the GPU-based direct backprojection
algorithm exploiting the cuBLAS.

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have introduced and discussed a parallel SAR backprojection
algorithm profiting of the use of a 1D NER-NUFFT routine
implemented on a GPU in CUDA language.

The performance of the approach has been analyzed in terms
of accuracy and computational speed by comparing a version of the
backprojection approach exploiting the NUFFT with a version of the
same approach exploiting FFT+interpolation stages. As main results,
the proposed GPU & NUFFT-based SAR backprojection:

• outperforms, in terms of accuracy, other SAR backprojection
schemes based on different kinds of interpolators commonly used
in SAR tomography, as nearest neighbor, piecewise linear, and
four-point and six-point cubic, as well as more sophisticated and
recently introduced ones, as the truncated sinc with approximate
prolate spheroidal sampling window and the truncated sinc with
Knab sampling window (see Figs. 2 and 3);

• shows processing times of the same order of the other confronted
SAR backprojection schemes (see Figs. 4–7).

Experimental results against the AFRL challenge problem GMTI
data have been also shown. The developed approach is capable to
perform an accurate processing of large images in an overall computing
time much more convenient than standard CPUs. Further speedups
can be achieved by implementations on compact systems based on
multiple GPUs [34].

It should be noticed that the computational flow in Algorithm 1
is of interest in “real-time” or “quasi real-time” processing, to enable
forming SAR images as the data are acquired, pulse by pulse, as already
stressed in the Introduction. Moreover, hardware like a single GPU or
clusters of more than one GPU is simple, cheap and light so that it is
in principle amenable of on-board installations.

The NUFFT-based backprojection approach can be extended to
bistatic SAR processing [54], to fast and fast-factorized backprojection
schemes [5, 7] and to the use of 2D NUFFTs (i.e., simultaneous
processing of all the pulses), instead of 1D ones, when “on-line”
processing is not of interest.

Progress In Electromagnetics Research, Vol. 133, 2013 279

The approach can be finally useful for interferometric coregistra-
tion applications [18, 19, 55] and also to quickly forming 3D SAR im-
ages [56].

ACKNOWLEDGMENT

We thank the Air Force Research Laboratory for having provided the
“SAR-Based GMTI in Urban Environment Challenge Problem” data
sets, public release # 88 ABW-09-0967 (www.sdms.afrl.af.mil).

REFERENCES

1. Bamler, R., “A comparison of range-doppler and wavenumber
domain SAR focusing algorithms,” IEEE Trans. on Geosci.
Remote Sens., Vol. 30, No. 4, 706–713, Jul. 1992.

2. Horham, L. A. and L. J. Moore, “SAR image formation
toolbox for MATLAB,” Proc. of SPIE 7699, 769906, 2010,
doi:10.1117/12.855375.

3. Desai, M. D. and W. K. Jenkins, “Convolution backprojection
image reconstruction for spotlight mode synthetic aperture radar,”
IEEE Trans. on Image Proc., Vol. 1, No. 4, 505–517, Oct. 1992.

4. Choi, H. and D. C. Munson, Jr., “Direct-Fourier reconstruction in
tomography and synthetic aperture radar,” Int. J. Imaging Syst.
Tech., Vol. 9, No. 1, 1–13, 1998.

5. Yegulalp, A. F., “Fast backprojection algorithm for synthetic
aperture radar,” Proc. of the IEEE Radar Conf., 60–65, Waltham,
MA, Apr. 20–22, 1999.

6. Basu, S. and Y. Bresler, “O(N2 log2 N) filtered backprojection
reconstruction algorithm for tomography,” IEEE Trans. on Image
Proc., Vol. 9, No. 10, 1760–1773, Oct. 2000.

7. Ulander, L. M. H., H. Hellsten, and G. Stenström, “Synthetic
aperture radar processing using fast factorized back-projection,”
IEEE Trans. on Aerosp. Electron. Syst., Vol. 39, No. 3, 760–776,
Jul. 2003.

8. Fessler, J. A. and B. P. Sutton, “Nonuniform Fast Fourier
Transforms using min-max interpolation,” IEEE Trans. on Signal
Proc., Vol. 51, No. 2, 560–574, Feb. 2003.

9. Fourmont, K., “Non-equispaced fast Fourier transforms with
applications to tomography,” J. Fourier Anal. Appl., Vol. 9, No. 5,
431–450, Sept. 2003.

10. Capozzoli, A., C. Curcio, A. Di Vico, and A. Liseno, “NUFFT-

280 Capozzoli, Curcio, and Liseno

& GPU-based fast imaging of vegetation,” IEICE Trans. on
Commun., Vol. E94-B, No. 7, 2092–2103, Jul. 2011.

11. Capozzoli, A., C. Curcio, and A. Liseno, “GPU-based ω-k pro-
cessing by 1D Non-Uniform FFTs,” Progress In Electromagnetic
Research M, Vol. 23, 279–298, 2012.

12. Franceschetti, G. and G. Schirinzi, “A SAR processor based on
two-dimensional FFT codes,” IEEE Trans. on Aerosp. Electron.
Syst., Vol. 26, No. 2, 356–366, Mar. 1990.

13. Cafforio, C., C. Prati, and F. Rocca, “SAR data focusing using
seismic migration techniques,” IEEE Trans. on Aerosp. Electron.
Syst., Vol. 27, No. 2, 194–207, Mar. 1991.

14. Franceschetti, G., R. Lanari, V. Pascazio, and G. Schirinzi,
“WASAR: A wide-angle SAR processor,” IEE Proceedings F
Radar and Signal Processing, Vol. 139, No. 2, 107–114, Apr. 1992.

15. Franceschetti, G., A. Mazzeo, N. Mazzocca, V. Pascazio, and
G. Schirinzi, “An efficient SAR parallel processor,” IEEE Trans.
on Aerosp. Electron. Syst., Vol. 27, No. 2, 343–353, Mar. 1991.

16. Ender, J. H. G. and A. R. Brenner, “PAMIR — A wideband
phased array SAR/MTI system,” IEE Proc. — Radar Sonar
Navig., Vol. 150, No. 3, 165–172, Jun. 2003.

17. Hannsen, R. and R. Bamler, “Evaluation of interpolation kernels
for SAR interferometry,” IEEE Trans. on Geosci. Remote Sens.,
Vol. 37, No. 1, 318–321, Jan. 1999.

18. Migliaccio, M. and F. Bruno, “A new interpolation kernel for SAR
interferometric registration,” IEEE Trans. on Geosci. Remote
Sens., Vol. 41, No. 5, 1105–1110, May 2003.

19. Migliaccio, M., F. Nunziata, F. Bruno, and F. Casu, “Knab
sampling window for InSAR data interpolation,” IEEE Trans. on
Geosci. Remote Lett., Vol. 4, No. 3, 397–400, Jul. 2007.

20. Capozzoli, A., G. D’Elia, A. Liseno, A. Moreira, and
K. P. Papathanassiou, “A novel optimization approach to forest
height reconstruction from multi-baseline data,” Proc. of the
Geosci. Remote Sens. Int. Symp., 5037–5040, Barcelona, Spain,
Jul. 23–28, 2007.

21. Capozzoli, A., G. D’Elia, A. Liseno, P. Vinetti, M. Nannini,
A. Reigber, R. Scheiber, and V. Severino, “SAR tomography with
optimized constellation and its application to forested scenes,”
Atti della Fondazione G. Ronchi, Vol. LXV, No. 3, 367–375, May–
Jun. 2010.

22. Bamler, R. and P. Hartl, “Synthetic aperture radar interferome-
try,” Inverse Probl., Vol. 14, No. 4, R1–R54, Aug. 1998.

Progress In Electromagnetics Research, Vol. 133, 2013 281

23. Tao, Y. B., H. Lin, and H. J. Bao, “From CPU to GPU:
GPU-based electromagnetic computing (GPUECO),” Progress In
Electromagnetic Research, Vol. 81, 1–19, 2008.

24. Dziekonski, A., A. Lamecki, and M. Mrozowski, “A memory
efficient and fast sparse matrix vector product on a GPU,”
Progress In Electromagnetic Research, Vol. 116, 49–63, 2011.

25. Gao, P. C., Y. B. Tao, and H. Lin, “Fast RCS prediction using
multiresolution shooting and bouncing ray method on the GPU,”
Progress In Electromagnetic Research, Vol. 107, 187–202, 2010.

26. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, “GPU accelerated
unconditionally stable Crank-Nicolson FDTD method for the
analysis of three-dimensional microwave circuits,” Progress In
Electromagnetic Research, Vol. 102, 381–395, 2010.

27. Dziekonski, A., P. Sypek, A. Lamecki, and M. Mrozowski,
“Finite element matrix generation on a GPU,” Progress In
Electromagnetic Research, Vol. 128, 249–265, 2012.

28. Demir, V., “Graphics processor unit (GPU) acceleration of
finite-difference frequency-domain (FDFD) method,” Progress In
Electromagnetic Research M, Vol. 23, 29–51, 2012.

29. Di Bisceglie, M., M. Di Santo, C. Galdi, R. Lanari, and
N. Ranaldo, “Synthetic aperture radar processing with GPGPU,”
IEEE Signal Proc. Mag., Vol. 27, No. 2, 69–78, Sept. 2010.

30. Fasih, A. and T. Hartley, “GPU-accelerated synthetic aperture
radar backprojection in CUDA,” Proc. of the IEEE Radar Conf.,
1408–1413, Washington, DC, May 10–14, 2010.

31. Kusk, A. and J. Dall, “SAR focusing of P-band ice sounding data
using back-projection,” Proc. of the IEEE Geosci. Remote Sens.
Symp., 4071–4074, Honolulu, HI, Jul. 25–30, 2010.

32. Ponce, O., P. Prats, M. Rodriguez-Cassola, R. Scheiber, and
A. Reigber, “Processing of circular SAR trajectories with fast
factorized back-projection,” Proc. of the IEEE Geosci. Remote
Sens. Int. Symp., 3692–3695, Vancouver, Canada, Jul. 24–
29, 2011.

33. Capozzoli, A., C. Curcio, A. Liseno, and P. Vinetti, “Fast
interpolation accelerated on GPU for SAR backprojection,” Proc.
of the 28th Annual Rev. of Progr. in Appl. Comput. Electromagn.,
305–310, Columbus, OH, Apr. 10–14, 2012.

34. Capozzoli, A., C. Curcio, A. Liseno, and P. V. Testa, “NUFFT-
based SAR backprojection on multiple GPUs,” Proc. of the
Tyrrhenian Workshop on Advances in Radar and Remote Sensing,
Napoli, Italy, Sept. 12–14, 2012.

282 Capozzoli, Curcio, and Liseno

35. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel
Processors, Burlington, Morgan Kaufmann, MA, 2010.

36. Blom, M. and P. Follo, “VHF SAR image formation implemented
on a GPU,” Proc. of the IEEE Int. Symp. on Geosci. Remote
Sens., 3352–3356, Seoul, South Korea, Jul. 25–29, 2005.

37. Jackson, J. I., C. H. Meyer, D. G. Nishimura, and A. Macovski,
“Selection of a convolution function for Fourier inversion using
gridding,” IEEE Trans. on Med. Imag., Vol. 10, No. 3, 473–478,
Sept. 1991.

38. Scarborough, S. M., C. H. Casteel, Jr., L. R. Gorham,
M. J. Minardi, U. K. Majumder, M. G. Judge, E. Zelnio,
and M. Bryant, “A challenge problem for SAR-based GMTI
in urban environments,” Proc. of SPIE 7337, 73370G, 2009,
doi:10.1117/12.823461.

39. Hein, A., Processing of SAR Data: Fundamentals, Signal
Processing, Interferometry, Springer-Verlag, Berlin, Heidelberg,
2004.

40. D’Elia, G., G. Leone, R. Pierri, and G. Schirinzi, “Traveling
sampling of scattered fields,” Proc. of the IEEE Antennas Propag.
Int. Symp., 531–534, Vancouver, Canada, Jun. 17–21, 1985.

41. Knab, J. J., “Interpolation of band-limited functions using the
approximate prolate series,” IEEE Trans. on Inf. Theory, Vol. 25,
No. 6, 717–719, Nov. 1979.

42. Knab, J. J., “The sampling window,” IEEE Trans. on Inf. Theory,
Vol. IT-29, No. 1, 157–159, Jan. 1983.

43. Li, A., “Algorithms for the implementation of Stolt interpolation
is SAR processing,” Proc. of the IEEE Geosci. Remote Sens.
Symp., 360–362, Houston, TX, May 26–29, 1992.

44. Keys, R. G., “Cubic convolution interpolation for digital image
processing,” IEEE Trans. on Acoust. Speech Signal Proc., Vol. 29,
No. 6, 1153–1160, Dec. 1981.

45. Sanders, J. and E. Kandrot, CUDA by Example, Addison-Wesley,
Ann Arbor, MI, 2011.

46. CUDA CUFFT Library, Feb. 2011.
47. Nukada, A. and S. Matsuoka, “Auto-tuning 3-D FFT library for

CUDA GPUs,” Proc. of Conf. on High Performance Computing
Networking, Storage and Anal., Portland, OR, Nov. 14–20, 2009.

48. Ruijters, D., B. M. ter Haar Romeny, and P. Suetens, “Efficient
GPU-based texture interpolation using uniform B-splines,” J.
Graphics, GPU, Game Tools, Vol. 13, No. 4, 61–69, Jan. 2008.

49. http://www.cs.virginia.edu/∼ mwb7w/cuda support/memory m-

Progress In Electromagnetics Research, Vol. 133, 2013 283

anagement overhead.html.
50. http://www.cs.virginia.edu/∼mwb7w/cuda support/memory tra

nsfer overhead.html.
51. Tarjan, D., K. Skadron, and P. Micikevicius, “The art of

performance tuning for CUDA and manycore architectures,”
Birds-of-a-feather session at SC’09, 2009.

52. Capozzoli, A., C. Curcio, G. D’Elia, A. Liseno, and P. Vinetti,
“Fast CPU/GPU pattern evaluation of irregular arrays,” Appl.
Comput. Electromagn. Soc. J., Vol. 25, No. 4, 355–372, Apr. 2010.

53. CUDA Toolkit 4.0, CUBLAS Library, Apr. 2011.
54. Rigling, B. D. and R. L. Moses, “Polar format algorithm for

bistatic SAR,” IEEE Trans. on Aerosp. Electron. Syst., Vol. 40,
No. 4, 1147–1159, Oct. 2004.

55. Selva, J. and J. M. Lopez-Sanchez, “Efficient interpolation of SAR
images for coregistration in SAR interferometry,” IEEE Geosci.
Remote Sens. Lett., Vol. 4, No. 3, 411–415, Jul. 2007.

56. Austin, C. D., E. Ertin, and R. L. Moses, “Sparse multipass 3D
SAR imaging: Applications to the GOTCHA data set,” Proc.
of SPIE Algorithms for Synthetic Aperture Radar Imagery XVI,
Vol. 7337, Orlando, FL, Apr. 16–17, 2009.

