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Abstract—The use of permanent magnets as bearings has gained
attention of researchers nowadays. The characteristics of forces and
moments have to be analysed thoroughly for the proper design of
permanent magnet bearings. This paper presents a mathematical
model of an axially magnetized permanent magnet bearing (ring
magnets) using Coulombian model and a vector approach to estimate
the force, moment and stiffness. A MATLAB code is developed
for evaluating the parameters for five degrees of freedom (three
translational and two rotational) of the rotor. Furthermore, it
is extended to analyse stacked ring magnets with alternate axial
polarizations. The proposed model is validated with the available
literature. Comparison of force and stiffness results of the presented
model with the results of three dimensional (3D) finite element analysis
using ANSYS shows good agreement. Finally, the cross coupled
stiffness values in addition to the principal stiffness values are presented
for elementary structures and also for stacked structures with three ring
permanent magnets.

1. INTRODUCTION

Permanent magnet bearings are contact free bearings wherein the
rotor is levitated using an attractive or repulsive forces generated
between the magnets. The contact free feature of permanent magnet
bearings offers attractive advantages like friction free and lubrication
free operation, low maintenance, long life etc. Exhaustive work is
carried out by Yonnet [1, 2], Delamare et al. [3] for synthesizing
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different configurations of the magnetic bearings. These are used
in many applications such as flywheels, turbo molecular pumps,
turbomachines and conveyor systems [4–7]. It is proposed that the
force and stiffness of the permanent magnet bearing can be increased if
layers of rings are stacked with specific magnetization pattern [8]. The
analytical equations for calculating the magnetic field [9–14], force and
stiffness [15–20] in bearings for both axial and radial magnetization
are widely available in the recent past. However in these works, the
ring magnets are concentric, which might not be prevailing in actual
scenario. The expressions for evaluating the moments on the rotor in an
axially polarized bearings are presented by Jiang et al. [21, 22]. These
analytical expressions involve elliptical integrals which are tedious to
deal. The present work focuses on the mathematical treatment for
evaluating force, moment and stiffness characteristics of a permanent
magnet bearing considering three translational (x, y and z) and two
angular (ξ and γ) degrees of freedom of the rotor magnet ring using a
simple vector approach [23]. A MATLAB code is written for estimating
the forces, moments, stiffness and cross coupled stiffnesses between the
stator-rotor made of two non-concentric ring magnets and for multiple
rings based on the Coulombian model. The results of mathematical
model are compared with a case available in the literature [24] and with
the results of 3D finite element analysis using ANSYS. Finally, a full
5 × 5 stiffness matrix (Eq. (1)) representing five degrees of freedom
is developed for elementary structures of the bearings and stacked
structure with three ring permanent magnets.

K =




KXX KXY KXZ KXξ KXγ

KY X KY Y KY Z KY ξ KY γ

KZX KZY KZZ KZξ KZγ

KξX KξY KξZ Kξξ Kξγ

KγX KγY KγZ Kγξ Kγγ




(1)

2. FORCE, STIFFNESS AND MOMENT ESTIMATION

The forces between the two ring magnets, one fixed to the rotor
and the other to the stator, need to be calculated to estimate the
bearing characteristics. Two different methods, namely, a dipole and
surface charge density are used to calculate the forces between the
two magnets. The dipole method is limited to specific cases, as this
provides results for the dimensions of magnets which are equal to or less
than the air gap. The latter method is used in the permanent magnet
bearings where magnet dimensions are larger than the bearing rotor-
stator gap, thereby utilized in the present analysis. In this method,
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Figure 1. Configuration of permanent magnet bearing.

it is assumed that the permanent magnet surface is charged with a
positive and negative charge according to the direction of polarization.
The forces of attraction or repulsion between the polarized surfaces of
the magnets are calculated using the Coulomb’s law of force. The basic
configuration of a permanent magnet bearing is shown in Fig. 1.

The inner magnet is fixed to the rotor and the stator to the
outer magnet. In the present analysis it is assumed that the inner
magnet can move in x, y and z translational directions and ξ and
γ angular directions with respect to the outer magnet. The inner
and outer radii of the inner permanent magnet ring are R1 and R2
respectively. The inner and outer radii of the outer permanent magnet
ring are R3 and R4 respectively. The thicknesses of the outer and inner
magnets are L = Z1 − Z0 and L = Z3 − Z2 respectively. Magnetic
polarizations (J) of both the magnets are in the axial direction as
depicted by Fig. 1. Modeling of the bearing is carried out by knowing
the forces acting on the rotor magnet which in turn can be utilized
to estimate the bearing stiffness. The Coulombian model of the
magnets is adopted, wherein each permanent magnet is represented by
surfaces with fictitious magnetic pole surface densities in the direction
of polarization. Fig. 2(a) shows the arrangement of rotor and stator
magnets with magnetization in the axial direction. Surfaces A and C
are the fictitious charged surfaces of rotor magnet and surfaces B and D
are for the stator magnet. There are magnetic forces of attraction and
repulsion between the charged surfaces of the rotor and stator magnet.
The net force acting is the bearing reactions for various positions of
the rotor. In literature, analytical or semi-analytical expressions are
derived and used for the purpose of calculating the bearing forces and
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stiffness values [15–20]. The rotor magnet is displaced from its nominal
position by a distance of ‘e’ in XY Z coordinate system as shown in
Figs. 2(a) and (b). Fig. 3 represents the positions of the rotor when it
is concentric with stator and with an angular displacement of ‘ξ’ about
X-axis in the anticlockwise direction.

The elemental force on discrete surface element ‘A1’ of the rotor
magnet surface ‘A’ due to the surface element ‘B1’ on the stator
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Figure 2. Force and moment calculation model. (a) Arrangement
of rotor and stator magnets with respect to translational degrees of
freedom (x, y and z). (b) Elements.
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magnet surface ‘B’ can be expressed as [25],

~FA1B1 =
J2SA1SB1

4πµ0 r3
A1B1

~rA1B1 (2)

where, J is the magnet surface flux density (equal for both the
magnets), SA1 the surface area of element A1, SB1 the surface area
of element B1, ~rA1B1 the distance vector between elements A1 and
B1, and µ0 the absolute magnetic permeability. The vector ~rA1B1 can
be expressed in XY Z coordinate system as,

~rA1B1 = (XA1 −XB1) i + (YA1 − YB1) j + (ZA1 − ZB1)k (3)

where, i, j and k are the unit vectors in X, Y and Z axes, XA1,YA1,ZA1

the coordinate of element A1, and XB1,YB1,ZB1 the coordinate of
element B1. The coordinates of the discrete elements are expressed
by considering the movement of the rotor magnet e = xi+ yj+ zk and
the positions of the elements in terms of the mean and equivalent radii
and the angles α, β, φ and ξ can be expressed as:

s =
√

(0.5L)2+(rA1M sin(β))2 tan(φ) =
rA1M sin(β)

0.5L
rel = s sin(φ− ξ) rer = s sin(φ + ξ)
Lel = s cos(φ− ξ) Ler = s cos(φ + ξ)
~XA1 = (x + rA1M cos(β))i ~XB1 = (x+rB1M cos(α))i
~YA1 = (y + rel)j ~YB1 = (y+rB1M sin(α)) j
~ZA1 = (z − (Lel − 0.5L))k ~ZB1 = 0

(4)

where, α and β are referred in XY plane (Figs. 2(a) and (b)), and φ
and ξ are in Y Z plane (Fig. 3). rA1M is the mean radius of element
A1 from inner magnet centre ‘O′’, rB1M the mean radius of element
B1 from outer magnet centre ‘O’, rel the equivalent radius of element
A1 from the axis of rotor magnet, and Lel an equivalent distance of
element A1 from the centre of the magnet in Z direction. Combining
Eqs. (2) and (3), the elemental force in terms of components in the
XY Z coordinate system can be written as,

~FA1B1 = FA1B1X i + FA1B1Y j + FA1B1Zk (5)

Similarly, elemental forces ~FA1D1, ~FC1B1 and ~FC1D1 due to
elements on the rotor and stator magnet surfaces B, C and D can
be written by considering the respective vector distances (Fig. 2(a)).
Considering ‘n’ number of discrete surface elements in the inner magnet
and ‘m’ number of discrete surface elements in the outer magnet, the



332 Bekinal, Anil, and Jana

resultant forces in X, Y and Z axes, on the rotor magnet can be
expressed as a summation of all the elemental forces which is presented
below (Eqs. (6)–(8)).

FX =
∑p=n, q=m

p=1, q=1
FApBqX +

∑p=n, q=m

p=1, q=1
FApDqX

+
∑p=n, q=m

p=1, q=1
FCpBqX +

∑p=n, q=m

p=1, q=1
FCpDqX (6)

FY =
∑p=n, q=m

p=1, q=1
FApBqY +

∑p=n, q=m

p=1, q=1
FApDqY

+
∑p=n, q=m

p=1, q=1
FCpBqY +

∑p=n, q=m

p=1, q=1
FCpDqY (7)

FZ =
∑p=n, q=m

p=1, q=1
FApBqZ +

∑p=n, q=m

p=1, q=1
FApDqZ

+
∑p=n, q=m

p=1, q=1
FCpBqZ +

∑p=n, q=m

p=1, q=1
FCpDqZ (8)

The stiffness of the bearing in Cartesian coordinate system can be
obtained by the numerical differentiation scheme, once the resultant
forces are computed. A three-point midpoint formula for differentiation
is used to obtain stiffness values in radial, axial and angular directions.
In general, a three-point midpoint formula can be written as,

f ′ (X0) =
1
2h

[f (X0 + h)− f (X0 − h)]− h2

6
f (3) (ξ1) (9)

where ξ1 lies between (X0 − h) and (X0 + h).
The principal radial stiffness exerted between two ring permanent

magnets along X direction at x can be expressed as follows:

KXX =
dFX

dX
=

1
2 ∆x

[FX (x + ∆x)− FX (x−∆x)]− ∆x

6

2

F 3
X (ξ) (10)

where ξ lies between (x−∆x) and (x + ∆x) and for smaller values of
∆x. Eq. (10) can be expressed as:

KXX
∼= dFX

dX
=

1
2 ∆x

[FX (x + ∆x)− FX (x−∆x)] (11)

Similarly, principal radial stiffness along Y and principal axial stiffness
in Z direction can be written as follows (Eqs. (12) and (13)):

KY Y
∼= dFY

dY
=

1
2 ∆y

[FY (y + ∆y)− FY (y −∆y)] (12)

KZZ
∼= dFZ

dZ
=

1
2 ∆z

[FZ (z + ∆z)− FZ (z −∆z)] (13)
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Cross coupled radial and axial-radial stiffnesses can be expressed as
(Eqs. (14)–(16)):

KXY = KY X
∼= dFX

dY
=

1
2 ∆y

[FX (x + ∆x)− FX (x−∆x)] (14)

KXZ = KZX
∼= dFX

dZ
=

1
2 ∆z

[FX (x + ∆x)− FX (x−∆x)] (15)

KY Z = KZY
∼= dFZ

dY
=

1
2 ∆y

[FZ (z + ∆z)− FZ (z −∆z)] (16)

Movements inside the bearing necessitates estimation of moment
acting on the rotor. In practical cases the rotor magnet movement
can be assumed as a rigid body movement, thus the moment of the
forces acting on the rotor magnet calculated about its centre of gravity
(geometric centre for axisymmetric and isotropic magnets) provides
useful information about the dynamics of the rotor magnet. The
moment due to elemental force ~FA1B1 about the centre of gravity of
the inner magnet can be written as,

MA1B1X = FA1B1Y × Lel + FA1B1Z × rel

MA1B1Y = FA1B1X × Lel − FA1B1Z × rA1M cos(β)
MA1B1Z = −FA1B1X × rel + FA1B1Y × rA1M cos(β)

(17)

Similarly, the moments due to elemental forces ~FA1D1, ~FC1B1 and
~FC1D1 about the centre of gravity of the rotor magnet can be written
by following the proper sign convention.

The net moment acting on the rotor magnet are expressed using
Eq. (17) as,

MX =
∑p=n, q=m

p=1, q=1
MApBqX +

∑p=n, q=m

p=1, q=1
MApDqX

+
∑p=n, q=m

p=1, q=1
MCpBqX +

∑p=n, q=m

p=1, q=1
MCpDqX (18)

MY =
∑p=n, q=m

p=1, q=1
MApBqY +

∑p=n, q=m

p=1, q=1
MApDqY

+
∑p=n, q=m

p=1, q=1
MCpBqY +

∑p=n, q=m

p=1, q=1
MCpDqY (19)

MZ =
∑p=n, q=m

p=1, q=1
MApBqZ +

∑p=n, q=m

p=1, q=1
MApDqZ

+
∑p=n, q=m

p=1, q=1
MCpBqZ +

∑p=n, q=m

p=1, q=1
MCpDqZ (20)

The principal moment stiffnesses exerted between the two ring
permanent magnets can be expressed as,

Kξξ = Kγγ
∼= dMξ

dξ
=

1
2 ∆ξ

[Mξ (ξ + ∆ξ)−Mξ (ξ −∆ξ)] (21)
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The cross coupled angular, axial-angular and radial-angular stiffnesses
can be expressed as (Eqs. (22)–(25)):

Kξγ = Kγξ
∼= dMξ

dγ
=

1
2 ∆γ

[Mξ (ξ + ∆ξ)−Mξ (ξ −∆ξ)] (22)

KξZ = KZξ
∼= dMZ

dξ
=

1
2 ∆ξ

[MZ (Z + ∆Z)−MZ (Z −∆Z)] (23)

KξX = KXξ = KY γ = KγY
∼= dMξ

dX

=
1

2∆X
[Mξ (ξ + ∆ξ)−Mξ (ξ −∆ξ)] (24)

KξY = KY ξ
∼= dMξ

dY
=

1
2 ∆Y

[Mξ (ξ + ∆ξ)−Mξ (ξ −∆ξ)] (25)

The forces and moment acting on the rotor magnet as well as the
radial, axial and moment stiffness of the bearing for two different
configurations are calculated and presented in the following section.
This mathematical model can be used for different configurations of
permanent magnet bearings made of axially magnetized ring magnets.

3. VALIDATION OF PROPOSED MODEL

The proposed mathematical model is used to determine the axial
force and stiffness of an axially magnetized permanent magnet bearing
shown in Fig. 1. Geometrical parameters considered for the analysis
are presented in Table 1.

The inner magnet is placed in such a way that its magnetization
direction is same as that of the stator magnet. This configuration
produces positive radial stiffness; however, axial stiffness becomes
negative. The axial force and stiffness values along with the results
of [24] are graphed in Fig. 4. Table 2 presents a comparison of the
proposed model with that reported in Ravaud and Lemarquand [24].
MATLAB code developed for the mathematical model includes the
calculation of forces, stiffnesses and moments in axial, radial and

Table 1. Dimensions of the configuration.

Inner ring dimensions Outer ring dimensions

Inner radius [mm] R1 = 10 R3 = 22

Outer radius [mm] R2 = 20 R4 = 32

Thickness, L [mm] Z1− Z0 = 10 Z3− Z2 = 10

Flux density [T] J1 = 1 J2 = 1



Progress In Electromagnetics Research B, Vol. 44, 2012 335

-0.04 -0.02 0 0.02 0.04
-200

-100

0

100

200

Axial Displacement [m]

A
x
ia

l 
F

o
rc

e
 [
N

]

Present Work

Ref. [24]

-0.04 -0.02 0 0.02 0.04
-4

-2

0

2
x 10

4

Axial Displacement [m]

A
x
ia

l 
S

ti
ff
n

e
s
s
 [
N

/m
]

Present Work

Ref. [24]

Figure 4. Characteristics of permanent magnet bearing. (a) Axial
force. (b) Axial stiffness.

Table 2. Comparison of results.

Results of

present work

Results of Ravaud

and Lemarquand [24]
Variation (%)

Axial Force [N] 126.59 125 1.2

Axial Stiffness

|KZ | [N/m]
38881 39848 2.48

angular directions, so computational cost is 0.7 s for a bearing made of
two ring permanent magnets for one iteration. The computational
cost of the code is significantly low as compared to evaluating
the parameters using Finite Element Analysis tools like ANSYS,
COMSOL, MAXWELL 3D etc.

The calculations of Fig. 4 and Table 2 demonstrate that the
evaluated axial force and stiffness values match very closely with that
of reported analytical results for the same bearing configuration. A
finite element model was built in ANSYS to validate the results of
mathematical model. The model is analysed with linear brick 8488
elements and 2090 nodes (Fig. 5(a)). The properties of the magnetic
material considered for the analysis are: Br = 1.05T, Hc = 796 kA/m
and µr = 1.049. A magneto static solver was used to compute the
distribution of magnetic field. The Maxwell stress tensor was used for
integrating the surface of the inner ring magnet to compute the force
in ANSYS (Fig. 5(b)). The force exerted by the stator ring on the
rotor is plotted for its different axial positions in Fig. 6.

It can be observed from Fig. 6 that not only the results of axial
force obtained with 3D FEA match very closely with the results of
mathematical model, but two methods also predict the same optimal
point. The mismatch between the results from the mathematical model
and those from FEA is less than 4%.
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(a) (b)

Figure 5. Results of finite element analysis in ANSYS. (a) Finite
element model of ring magnets. (b) Force exerted on the inner ring.

-0.01 -0.005 0
-150

-100

-50

0

50

100

150

Mathematical model

3D FEA

Axial Displacement [m]

A
x

ia
l 

F
o

rc
e 

[N
]

-0.005 -0.01

Figure 6. Axial force comparison.

4. ANALYSIS OF AXIALLY MAGNETIZED BEARING
CONFIGURATIONS

4.1. Elementary Structures

Two elementary configurations, as shown in Fig. 7 are analysed for
force, moment and stiffness parameters. The configuration in Fig. 7(a)
is suitable for radial bearing application developing positive radial
stiffness having negative axial stiffness. The configuration presented
in Fig. 7(b) is suitable for axial bearing application (positive axial
stiffness and negative radial stiffness).

The axial force and stiffness computed for various axial positions
of the rotor magnet in the configurations I and II are presented in Fig. 8
and Fig. 9 respectively. The axial force and stiffness are calculated at
different radial offset values (0.5, 0.75 and 1 mm) of the rotor magnet
in the positive X direction.

The results presented in Figs. 8 and 9 show that there is a least
influence of radial offset on the axial force and stiffness values. The
moment acting on the rotor magnet as a result of radial displacements
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Configuration I Configuration II

(a) (b)

Figure 7. Configurations of permanent magnet bearing. (a) Polariza-
tion in the same direction. (b) Polarization in the opposite direction.
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(0.5, 0.75 and 1 mm) are calculated as a function of various axial
positions of the rotor for configurations I and II and are plotted in
Fig. 10.

It has been observed from analysis that the radial displacement
of the rotor in X-axis generates moment about the Y -axis of the
rotor magnet and vice-versa. The resultant moment about the Z-axis
of the rotor magnet is zero. The results show that the magnitudes
of moment increase with the higher radial offset value in both the
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configurations and they vanish when the inner magnet is concentric
with the outer magnet. Direction of the moment changes according
to the magnetization direction of the inner magnet with respect to the
outer magnet. The radial forces and stiffness values of both the bearing
configuration are calculated as a function of radial displacement and
are presented in Fig. 11.

The results shown in Fig. 11 demonstrate that the bearing
configuration I generates positive radial stiffness and configuration II
generates negative radial stiffness showing a similar trend as cited by
earlier researcher [3]. A full 5 × 5 stiffness matrix at an axial offset
of 2.8 mm for the configuration I is presented in Table 3. The angular
displacements of the rotor ξ about X-axis and γ about Y -axis are
considered when the rotor is radially centred.

The calculations shown in Table 3 demonstrate that no cross
coupling of stiffnesses between X and Y as well as between ξ and
γ directions. Results of configuration II are obtained by changing the
sign of respective cell values of Table 3.
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Table 3. Results of configuration I.

X Y Z ξ γ

X 11.3N/mm 0 * 0 0

Y 0 11.3N/mm ** 0 0

Z * ** −22.61N/mm # ##

ξ 0 0 # −1.15Nm/rad 0

γ 0 0 ## 0 −1.15Nm/rad

where ∗ = −2.03N/mm at x = 0.5mm # = 179.8 Nm/rad at ξ = 10◦

= −3.99N/mm at x = 1.0 mm = 191.8Nm/rad at ξ = 15◦

= −5.98N/mm at x = 1.5mm, = 195Nm/rad at ξ = 20◦

∗∗ = −2.03N/mm at y = 0.5mm ## = 179.8Nm/rad at γ = 10◦

= −3.99N/mm at y = 1.0mm = 191.8Nm/rad at γ = 15◦

= −5.98N/mm at y = 1.5mm, = 195 Nm/rad at γ = 20◦.

Figure 12. Cross-section view of a permanent magnet bearing
composed of three ring pairs with alternate axial polarizations: R1 =
10mm, R2 = 20mm, R3 = 22 mm, R4 = 32mm, J = 1T, the height
of each ring permanent magnet = 10mm.

4.2. Stacked Structures with Three Ring Permanent
Magnets

The configuration composed of three ring pairs with alternate axial
polarizations is presented in Fig. 12. The variation of axial force
and stiffness of the configuration with radial offset for different axial
positions of the rotor is depicted by Fig. 13.

The proposed mathematical approach leads to following observa-
tions:
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Figure 13. Characteristics of permanent magnet bearing made of
three ring pairs. (a) Axial force. (b) Axial stiffness.
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Figure 14. Moment about Y -axis at various radial displacements in
X-axis.

• The maximum axial force exerted by the outer rings on the inner
rings = 544N and maximum axial stiffness, |KZ | = 183990 N/m
(for concentric rings).

• For a radial offset of 1 mm in X direction, maximum force =
552.85N and stiffness, |KZ | = 193300 N/m.

Negative axial stiffness implies, suitability for radial bearing
application. The moment acting on the rotor magnet as the result
of radial displacements are plotted in Fig. 14. The maximum moment
acting on the rotor about Y -axis is estimated as 0.4Nm for a radial
offset of 1mm in X direction. A full 5× 5 stiffness matrix at an axial
offset of 3.0 mm for the configuration shown in Fig. 12 is presented in
Table 4. The angular displacements of the rotor ξ about X-axis and γ
about Y -axis are considered when the rotor is radially centred.
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Table 4. Results of configuration composed of three ring pairs with
alternate axial polarizations (Fig. 12).

X Y Z ξ γ

X 49.73N/mm 0 * 0 0

Y 0 49.73N/mm ** 0 0

Z * ** −99.46N/mm # ##

ξ 0 0 # −34Nm/rad 0

γ 0 0 ## 0 −34Nm/rad

where ∗ = −9.79N/mm at x = 0.5 mm # = 1077.8Nm/rad at ξ = 10◦

= −20N/mm at x = 1.0mm = 1088Nm/rad at ξ = 15◦

= −30N/mm at x = 1.5mm, = 1571Nm/rad at ξ = 20◦

∗∗ = −9.79N/mm at y = 0.5mm ## = 1077.8Nm/rad at γ = 10◦

= −20N/mm at y = 1.0mm = 1088Nm/rad at γ = 15◦

= −30N/mm at y = 1.5mm, = 1571Nm/rad at γ = 20◦.

5. CONCLUSION

A simple mathematical formulation employing the Coulombian model
using a vector approach is presented for the investigation of forces
(radial and axial), moments on the rotor and stiffness of a permanent
magnet bearing. Comparison of the results obtained for an axially
magnetized permanent magnet bearing with that reported in the
literature and 3D FEA shows very good agreement. An attempt has
been made to determine the effect of radial and axial displacements
of the rotor on force, stiffness and moment in a permanent magnet
bearing. It is observed that the effect of radial displacement on the
force and stiffness is least, whereas on the moment is quite prominent
(magnitude of moment about X or Y -axis increases with the higher
radial offset value). The magnitude of moment increases with an
increase in the number of rings in the stack. Full evaluation of the
permanent magnet bearing performance is presented by calculating
5 × 5 stiffness matrix representing five degrees of freedom. The
presented work can be used for optimizing the design of an axially
magnetized permanent magnet bearing for wide applications and also,
this method involves less computations than the approaches utilizing
elliptical integrals.
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