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Abstract—In this paper, we present a one-dimensional (1-D)
inversion algorithm for triaxial induction logging tools in multi-layered
transverse isotropic (TI) formation. A non-linear least-square model
based on Gauss-Newton algorithm is used in the inversion. Cholesky
factorization is implemented to improve the stability and the reliability
of the inversion. Zero-D inversion is conducted at the center of
each layer to provide a reasonable initial guess for the best efficiency
of the inversion procedure. Cross components are used to provide
sufficient information for determining the boundaries in the initial
guess. It will be illustrated that using all the nine components of
the conductivity/resistivity yield more reliable inversion results and
even faster convergence than using only the diagonal components.
The resultant algorithm can be used to obtain various geophysical
parameters such as layer boundaries, horizontal and vertical resistivity,
dipping angle and rotation angle etc. from triaxial logging data
automatically without any priori information. Several synthetic
examples are presented to demonstrate the capability and reliability of
the inversion algorithm.

1. INTRODUCTION

Electrical anisotropy has been recognized as one potential source
of error in traditional induction logging analysis [1]. A common
case is a thinly laminated sand-shale sequence where the horizontal
resistivity is much smaller than the vertical resistivity. When the
well is drilled perpendicular to the bedding planes, conventional
induction logging only measures the horizontal resistivity since the
tool contain only co-axial transmitter and receiver coils. Thus, the
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interpretation based on the measured data will either miss the pay-
zone or overestimate the water saturation [2]. The emerging triaxial
induction tool comprises three mutually perpendicular transmitters
and three mutually perpendicular receivers along the x, y and z
direction. By collecting sufficient information from multiple directions,
the triaxial induction tool is capable of detecting formation anisotropy.

For accurate interpretation of the measured data, an efficient
inversion procedure is crucial. Via inversion, we can retrieve various
geophysical parameters of the formation, such as location of the
boundaries, resistivity of each layer, the dipping angle etc. Then
petrophysicists are able to evaluate the hydrocarbon content and water
saturation based on these parameters. Nowadays, most inversion
algorithms are based on one-dimensional (1-D) modeling for the best
efficiency since the inversion process requires carrying out the forward
modeling repeatedly and thus is usually time consuming [3]. Yu et
al. developed an 1-D inversion algorithm based on turbo boosting
proposed by Hakvoort [4]. This method describes layered formation
using equally thick thin layers with known relative dipping angle and
azimuthal angle. In order to stabilize the process, dual frequency data
were used. Lu and Alumbaugh [5] performed a new 1-D inversion
algorithm using the method of singular value decomposition (SVD)
without calculating the sensitivity matrix. However, robust layer
position must be known as priori information. Later, Zhang et
al. presented three analytical methods for the determination of the
relative dipping angle and azimuthal angle [6]. Wang et al. introduced
an 1-D inversion algorithm by applying Gauss-Newton to retrieve the
transverse isotropic formation parameters [7]. But in this algorithm,
initial guess must be determined with some prior information.
Recently, Abubakar et al. [8] and Davydycheva et al. [9] developed
a three-dimensional (3-D) inversion for triaxial induction logging
based on a fully anisotropic 3-D finite-difference forward modeling.
The inversion is based on a constrained, regularized Gauss-Newton
minimization scheme proposed by Habashy and Abubakar [10]. This
inversion algorithm is very robust in extracting formation and invasion
anisotropic resistivities, invasion radii, bed boundary locations, relative
dip, and azimuth angle from logging data. However, as a full 3-D
inversion, the CPU time is still the bottleneck although a dual grid
approach was used to speed up the inversion procedure to some extent.

In this paper, we present a 1-D inversion algorithm based on the
Gauss-Newton algorithm. Note that we apply Cholesky factorization
to update the Hessian matrix from the Gauss-Newton algorithm.
Therefore, we are able to improve the reliability and stability of
the inversion. Additionally, in our inversion, we employ a Zero-D
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inversion which is conducted at the center of each layer to provide a
reliable initial model. The efficiency of the entire inversion procedure
can be definitely improved if a good initial guess is applied. In the
inversion procedure, our previously developed 1-D analytical forward
modeling [11] is used as the embedded forward engine. As a result,
the developed 1-D inversion algorithm can simultaneously determine
the horizontal resistivity, vertical resistivity, formation dip, azimuthal
angle and bed boundary position from the triaxial induction logging
data. The biggest advantage of the present algorithm is that no
priori information is required. Synthetic examples will be presented
to illustrate the robustness of the algorithm. We apply the noise in
terms of the field noise property into the synthetic data for further
testing. Additionally, we compare the efficiency between applying
the full triaxial responses and the diagonal terms respectively in the
synthetic examples.

2. THEORY

2.1. Triaxial Tool Configuration

A basic triaxial induction tool comprises three pairs of transmitters and
receivers oriented at the x, y, and z direction, respectively, as shown in
Fig. 1(a). Since the transmitter and receiver coils are infinitely small,
we can treat them as magnetic dipoles. The equivalent dipole model is
shown in Fig. 1(b). Thus, the magnetic source excitation of the triaxial
tool can be expressed as M = (Mx, My, Mz)δ(r).
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Figure 1. Basic structure of a triaxial induction tool. (a) The original
model. (b) The equivalent model.
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The tool is moving along the axis in the borehole and for each
logging point, a 3× 3 apparent conductivity tensor σa is measured at
each pair of transmitter-receiver spacing, i.e.,

σa =




σx
ax σy

ax σz
ax

σx
ay σy

ay σz
ay

σx
az σz

az σz
az


 , (1)

where σj
ai is the apparent conductivity measured at the j-directed

receiver from the i-directed transmitter.
The apparent conductivity is a function of the formation true

conductivity, formation geometry and the sonde system. In the
other words, the apparent conductivity is the convolution among the
formation function, the source excitation function and the borehole
function. Since our focus is the 1-D case, the borehole function can be
ignored. Fig. 2 presents the relative position between the sonde system
and the formation.

In Fig. 2, the primed coordinate is for the sonde system, while
the unprimed coordinate represents the formation. We have shown
three transmitters Tx, Ty, Tz and three receivers Rx, Ry, Rz. The
symbol α is a dipping angle between the Z axis and the Z’ axis. The
symbol β is an azimuthal angle between the x axis and the projection of
transmitter coils on the X-Y plane. And γ represents a rotation angle
that transmitter Tx is deviated from the X’ axis. It has been known
that in the transverse isotropic formation, the responses have little
sensitivity to the azimuthal angle β [12]. Therefore in our inversion,
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Figure 2. The relationship between tool coordinate and formation
coordinate.
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we do not have to take account for β. However, we still have to figure
out the dipping angle α and the rotation angle γ.

We measure magnetic fields from receivers, as shown (2).

H =




Hx
x Hy

x Hz
x

Hx
y Hy

y Hz
y

Hx
z Hy

z Hz
z


 . (2)

The magnetics are derived from the Maxwell equations, which
involves the Bessel function. In transverse isotropic formation, we
assume each formation layer contains a horizontal conductivity and
a vertical conductivity. The magnetic fields contain the information
of formation conductivity. We can convert the magnetic fields into
apparent conductivity by (3).

σ′a = K ·H′. (3)

K is the conversion matrix given by tool specific configuration,
shown as,

K =




j 8πL
ωµ j 8πL

ωµ j 16πL
ωµ

j 8πL
ωµ j 8πL

ωµ j 16πL
ωµ

j 16πL
ωµ j 16πL

ωµ j 4πL
ωµ


 . (4)

Although the apparent conductivity is linear to the magnetic fields
according to (3), the apparent conductivity is essentially nonlinear to
the true conductivity. Therefore we need the nonlinear inversion to
extract the true formation parameters.

2.2. Inversion Theory

2.2.1. Gauss-Newton Algorithm

Assume the vector M denote the measured conductivity at NR logging
points, M will be a 9NR×1 vector since the conductivity has 9
components at each logging point, i.e.,

M = [m1,m2, . . . , mNR]T

=
[
σx

x,1, σ
y
x,1, σ

z
x,1, σ

x
y,1, σ

y
y,1, . . . , σ

x
x,NR, . . . , σz

z,NR

]T
(5)

In the framework of the inversion, these measured data is assumed
to be borehole corrected but with the invasion effect ignored.

In the 1-D inversion model, each layer is characterized by its
horizontal conductivity, vertical conductivity and the bed boundary
position, yielding a total of 3×L-1 parameters for an L-layer formation
model. Plus the dipping angle and rotation angle, we will need to
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determine N = 3×L+1 parameters in the 1-D inversion. Assume the
parameter vector X is the vector composed of the unknown parameters
given by

X = [x1, x2, . . . , xN ]T

=
[
log(α), log(γ), log(Z1), . . . , log(ZL/3), log(σh,1), . . . , log(σh,L/3),

log(σv,L/3)
]T (6)

All parameters within the proper magnitude range are rescaled
due to the application of logarithm. Then we use the parameter vector
X to construct the following objective function (cost function)

C(X) =
1
2
R(X)T ·R(X) (7)

where R(X) is the residual function defined by R(X) = S(X) −
M. S(X) is the simulated tool response corresponding to a particular
forward model in terms of the vector X.

As we can see, the cost function measures the error between the
calculated log and the input log. The smaller the cost function is,
the more reliable inversion results we may obtain. Hence the most
critical procedure in the inversion is how to reduce the cost function.
We choose the classical nonlinear inversion approach, Gauss-Newton
minimization algorithm in our 1-D inversion. According to Taylor
expansion, we can approximate the cost function C(X) with a local
quadratic model as follows [13]

C(X)

≈ 1
2
RT(Xc)·R(Xc)+gT (Xc)·(X−Xc)+

1
2
(X−Xc)

T · ¯̄H(Xc)·(X−Xc)(8)

where g(X) = ∇C(X) = ¯̄JT(X)R(X) is the gradient of the cost
function C(X) and ¯̄H(X) = ∇∇C(X) is the Hessian of the cost
function C(X).

2.2.2. Cholesky Factorization

The Hessian matrix is given by
¯̄H(X) = ¯̄JT(X) · ¯̄J(X) + ¯̄S(X) (9)

where ¯̄S(X) =
9×NR∑

i=1
ri(X)∇2ri(X) denotes the second-order

information in ¯̄H(X). It is not efficient to apply (9) updating the
Hessian matrix since (9) also includes the second order information.
However, we can take advantage of known information of J(x) to
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approximate the Hessian matrix. The approximation can influence
the stability of the Hessian matrix. It is important to employ the right
approach to get the Hessian matrix. After comparison, we decide to
apply Cholesky factorization algorithm and rewrite the Hessian matrix
by

¯̄H(X) = ¯̄JT(X) · ¯̄J(X) + ¯̄S(X) ≈ ¯̄JT(X) · ¯̄J(X) + µI (10)

In the inversion, we should notice the sign of the Hessian.
The positive Hessian matrix guarantees the final answer is the local
minimum. That means the cost function approach to its minimum
value. We apply the Cholesky factorization algorithm to update µ

in (10). By determining µ > 0, ¯̄H(X) ≈ ¯̄JT(X) · ¯̄J(X) + µI is positive
definite, which guarantees the minimum of the cost function to be
found. Then (8) can be rewritten as

C(X) ≈ 1
2
RT(Xc) ·R(Xc) + RT(Xc) · ¯̄J(Xc) · (X−Xc)

+
1
2
(X−Xc)T ·

(
¯̄JT(Xc) · ¯̄J(Xc) + µI) · (X−Xc

)
(11)

Then the solution of (10) is given by

X+ ≈ Xc −
(
¯̄JT(Xc) · ¯̄J(Xc) + µI

)−1
· ¯̄JT(Xc) ·R(Xc) (12)

2.2.3. The Constrain Algorithm

The Gauss Newton algorithm only gets the global minimum value.
However, the parameters have physical meaning. It is necessary to
impose a priori maximum and minimum bounds for the unknown
parameters. By doing this, we can make sure the inverted parameters
are always reasonable. For this purpose, we introduce a nonlinear
transformation given by

Xi =
xmax

i + xmin
i

2
+

xmax
i − xmin

i

2
sin(ci), −∞< ci < +∞ (13)

where xmax
i , xmin

i are the upper and lower bounds on the physical model
parameter xi. It is clear that

xi → xmin
i , as sin(ci) → −1 (14)

xi → xmax
i , as sin(ci) → +1 (15)

Theoretically, by using this nonlinear transformation we should
update the artificial unknown parameters ci instead of the physical
model parameters xi. However, it is straightforward to show that

∂sj

∂cj
=

∂xi

∂cj

∂sj

∂xi
=

√
(xmax

i − xi)
(
xi − xmin

i

)∂sj

∂xi
(16)
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The two successive iterates xi,k+1 and xi,k of xi are related by

Xi,k+1 =
xmax

i + xmin
i

2
+

xmax
i − xmin

i

2
sin(ci,k+1)

=
xmax

i + xmin
i

2
+

xmax
i − xmin

i

2
sin(ci,k + qi,k) (17)

where

ci = arcsin
(

2xi,k − xmax
i − xmin

i

xmax
i − xmin

i

)
(18)

and qi,k = ci,k+1−ci,k is the Gauss-Newton search step in ci towards the
minimum of the cost functional in (7). This Gauss-Newton direction in
xi is related to the Gauss-Newton direction in ci through the following
relation

pi = qi
dxi

dci
(19)

Therefore, by applying the relationship in (19) to (17), we obtain
the following relationship between the two successive iterates xi,k+1 and
xi,k of xi (the step-length γk along the search direction xi is assumed
to be adjustable)

Xi,k+1

=
xmax

i +xmin
i

2
+

(
xi,k−xmax

i +xmin
i

2

)
cos

(
νkpi,k

γk

)
+γk sin

(
νkpi,k

γk

)
(20)

where
γk =

√
(xmax

i − xi,k)(xi,k − xmin
i ) (21)

Thus, in the inversion process there is no need to compute either
ci or qi explicitly. This will reduce the round-off errors caused by the
introduction of the nonlinear function.

2.2.4. Zero-D Inversion

Next, we will describe the choice of the initial model in the inversion
procedure since good initial model can significantly improve the
efficiency of the inversion. In practical, we do not know the exact
number of the layers; therefore we employ a whole space inversion
(also called Zero-D inversion) to get the initial model. Zero-D inversion
is receiving increasing interest in the study of inversion. Reasonable
Zero-D inversion can improve the efficiency of the inversion. Different
from the 1-D inversion, the Zero-D inversion inverts parameters based
on each logging point. In Zero-D inversion, at each logging point,
we should invert four parameters: the dipping angle, rotation angle,



Progress In Electromagnetics Research B, Vol. 44, 2012 391

horizontal conductivity and vertical conductivity. In order to be
distinguished from the 1-D inversion, the initial guess of the Zero-D
inversion is called as starting values. Next, we will explain the choice
of the starting values in the zero-D inversion.

Starting Values
In order to get an acceptable starting point for the Zero-D

inversion, we use the analytic expressions to compute the dipping angle
α and the rotation angle γ horizontal conductivity σh and vertical
conductivity σv directly [6, 14]:

α=a tan
(

2Ht
xz i

Ht
xx i −Ht

zz i

)
(22)

γ=a tan

(
2Hc

xy i

Hc
xx i −Hc

yy i

)
(23)

σh=
4πl

ωµ0

[
Im

(
Hx′

x′
)

+
1
2
Im

(
Hz′

z′
)

+

√(
Im

(
Hx′

x′
)− 1

2
Im

(
Hz′

z′
))2

+ 2Im
(
Hx′

z′
)2


 (24)

λ2=256π2l2σ2
ha/Im

(
Hz′

z′
)(

Im
(
Hx′

x′
)
+Im

(
Hy′

y′

)
+Im

(
Hz′

z′
)
−ωµ0

4πl
σh

)
(25)

σv=
1
λ2

σh (26)

where superscripts t and c represent the borehole and the tool
coordinates, respectively.

With the aid of the Zero-D inversion, the average values of α, γ
are assumed as the initial dipping and rotation angle.

Initial Boundary
After the initial dipping and rotation angle are determined, we

need to determine the initial boundary. The common way is to
determine the boundary according to the variance of 2σv − σh.

However, this method is instability. As we know, Zero-D inversion
results sometimes have large error. Completely relying on the variance
based method is ‘dangerous’. After sufficient sensitivity analysis and
simulation, we have found that the cross components σxz, σzx have
significant horn effect when the adjacent layers have different horizontal
conductivity.

On the other hand, for the layers with close horizontal
conductivity, the saddle point always shows the symmetric to the
boundary. Hence in this case the middle point can be treated as a
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good initial guess to the formation boundary. This is a remarkable
finding in determining the formation boundaries. It is more efficient
than the variance based method of 2σv−σh since we can directly detect
the boundaries based on cross components.

Therefore, we decide to employ the cross components as a good
supplement to determine the initial boundary. In the inversion, we
first apply an average filter to eliminate the noise in case computer
treated the noise pulse as a boundary. Then we pick up the initial
boundaries based on the horn effect of the cross components. Thirdly,
the turning points are determined to make sure sufficient boundaries
are collected. Finally, we simply merge those initial boundaries in
terms of a tolerance. In our inversion, it is 3 ft which matches with the
current commercial triaxial tool requirement.

The boundaries are updated after iteration. The next important
issue is how to detect and merge the redundant initial boundaries
during the 1-D inversion. We employ the golden section search to
merge redundant layers, which is based on the golden section rule.
The details can be referred to [15]. Since it is a very mature method,
we can omit it here.

2.2.5. Noise Analysis

Different from the other inversions with the white noise, we simulate
the real field noise and add it into our inversion in the testing.
According to Anderson [16], we incorporate two types of noises:
coherent noise and incoherent noise to simulate borehole noise, which
is the main source of the noise.

For coherent noise, since the triaxial array is assumed to be co-
located, the borehole noise will be correlated in all the measurements.
In this case, all coils should have the same noise level. Assume The
coherent noise can be written as

Noisecoherent(Ti, Rj) = S · ran · Ē(Ti, Rj) (27)
where S is the scale factor, and Ē(Ti, Rj) is the mean value of the jth
receiver with ith transmitter firing. Note that all the channels employ
the same random numbers ran between 0 and 1.

On the other hand, if the x, y, and z coils are not co-located, or if
the tool is moving at an irregular speed, the noise will be incoherent.
In order to simulate incoherent noise, an array of different random
numbers will be generated for each measure channel and then scaled
and added as above [16]. The incoherent noise is given by

Noisecoherent(Ti, Rj , k) = S · ran(Ti, Rj , k) · Ē(Ti, Rj , k) (28)
Different from (27), the random function ran(Ti, Rj , k) of (28) is

changed versus receiver channel.
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3. NUMERICAL RESULTS AND DISCUSSIONS

Based on the above theory, we developed a 1-D inversion code. In
this section, we will demonstrate the capability and robustness of the
inversion by synthetic data and a field log data. If without specific
illustration, in all the examples, initial models are provided by Zero-D
inversion. No priori information is required in our inversion procedure.
The conductivity σ, dipping angle α, rotation angle γ, and the bed-
boundary parameters Zi are enforced to be within the following range:

0.0005 < σ < 5
0.0001 < α < 89◦

0.0001 < γ < 180◦

Zi−1 < Zi < Zi+1 (2 ≤ i ≤ L− 2)
D0 < Z1 < Z2

ZL−2 < ZL−1 < DN

It should be noted that the limits on boundary are dynamic. Do

and DN are the depth of the first and last measured data, respectively.
Hence each layer can shift maximum between the adjacent boundaries.
The examples were run on a 2-core 2.61GHz, 1.87GB PC.

3.1. Example 1

First, we validate our inversion algorithm using the Oklahoma
benchmark model [17]. The formation has 21 layers. The distance
between the transmitter and the receiver is 20 inches and the operating
frequency is 20 kHz. The dipping angle is 60◦ and the rotation angle
is 0◦. The full magnetic responses are provided by a forward modeling
based on FEM from the University of Houston [18]. We employ this
benchmark model to fully test our inversion algorithm.

We apply the synthetic full matrix, synthetic data with 5%
coherent noise and synthetic data with 5% incoherent noise as the
input of the inversion, respectively.

Figure 3 shows the real conductivity and the inverted conductivity
obtained from the synthetic raw matrix, the contaminated data with
5% coherent noise and 5% incoherent noise. The dashed lines are initial
guesses of conductivity from Zero-D inversion. Although redundant
initial layers are given, the 1-D inversion still successfully converges
and provides reliable inversion results in all the three cases. As shown
in Fig. 3, the inverted anisotropic conductivity matches very well with
the true values, especially for the synthetic input and 5% incoherent
noise.
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Figure 3. Inverted conductivity with the synthetic raw data for the
Oklahoma benchmark model.

Table 1. Initial and inverted dipping angle, rotation angle with
different input data.

Angle
Initial
Guess

Synthetic
Full Matrix

Coherent
Noise

Incoherent
Noise

α (◦) 60.99 59.99 59.93 59.95
γ (◦) 0.005 0.005 0.005 0.005

Table 1 gives the initial guess of the dipping angle, rotation angle
and the inverted dipping and rotation angle for each case. The initial
guess is obtained by the Zero-D inversion with the synthetic raw data.
For all of the three different inputs, the 1-D inversion provides correct
dipping angle and rotation angle. Considering Fig. 3, the 1-D inversion
is proved to be reliable and meets our expectation which is to develop
a reliable inversion algorithm.

In Fig. 4, we show the convergence property of the three cases. It is
observed that the cost function with the 5% coherent noise is a slightly
higher than the other two cases due to the misfit between the eighth and
ninth layer. The inversion with 5% incoherent noise consumes the most
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Figure 4. The cost functions versus the iteration number for the three
inversion cases.

time. For this multilayer model, the inversion code took about 590,
491 and 650 minutes to obtain the final result under the three cases:
uncontaminated raw data, 5% coherent noise and 5% incoherent noise.
It is found that the third case cost the most time. Furthermore, we can
see from Fig. 3 that the error becomes larger for high resistive layers
(the conductivity is smaller than 0.01 S/m). This is reasonable since
the induction logging tool has a better sensitivity to the conductive
layer than the resistive layer, because the induction current source
depends on the formation conductivity. Weak conductivity induces less
current and hence gives less contribution to the tool responses. It is
well known that when the formation resistivity is larger than 100 ohm-
m, the resolution of the induction logging tool significantly decreased.
Therefore, it is reasonable that the 1-D inversion has slightly higher
misfit on the 10th, 12th, 15th and 17th layers.

According to the inversion results of this benchmark model, the
1-D inversion model works successfully and is demonstrated to be a
qualified inversion algorithm.

3.2. Example 2

In the second example, the formation model is a simple three-layer
anisotropic model, as shown in Fig. 5. The formation is characterized
by a high-resistivity pay zone surrounded by two symmetric isotropic
zones.

The synthetic data used in this example are sampled from 10 ft to
50 ft with a 0.25 ft step. We use the triaxial array as shown in Fig. 1
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Figure 5. A three-layer anisotropic model.

Table 2. The inverted dipping angle and rotation angle in Validation I.

Validation I Initial Guess Full Matrix Diagonal Matrix
α (◦) 32.29 30.00 30.00
γ (◦) 34.63 60.00 120.00

to collect data. The distance between the transmitter and receiver
is 40 inches. The working frequency is 20 kHz. In this example, the
dipping angle is 30◦ and the rotation angle is 60◦.

We apply the full matrix as well as the diagonal terms of the
apparent conductivity tensor as the input log data, respectively. By
comparing the inversion results from these two input data, we want
to investigate whether reducing input data can still guarantee the
accuracy of the 1-D inversion and also improve the inversion speed.

3.2.1. Validation I — Raw Data

We first apply the raw data without noise to do the inversion. The
initial guess is provided by the Zero-D inversion with the full matrix.

Figure 6 shows the initial guess and inverted conductivity profile.
The maximum relative error of the inverted horizontal and vertical
conductivities is less than 0.1%.

Table 2 presents the initial guess and inversion results of the
dipping angle, rotation angle obtained from the full matrix and the
diagonal terms, respectively. We can see that the inversion results
from the full matrix and the diagonal terms match well with the
true parameters except the rotation angle given by the diagonal terms
is different from the true value. The inverted rotation angle (120◦)
becomes the coangle of the true rotation angle (60◦).

In Fig. 6, we compare the raw data and the calculated responses
from the inverted formations. As can be seen, the components σxx,
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Figure 6. Inverted conductivity profile with the synthetic raw data
for the model in Fig. 5. The true dipping angle and rotation angle
are 30◦ and 60◦, respectively. The solid black line represents true
anisotropic resistivity. The initial guess is shown by the gray dotted
line. The green dashed line with square mark represents the inverted
results using the full resistivity matrix. The purple dashed line with
star mark represents the inverted result using the diagonal terms.

Table 3. The CPU time cost in Validation I.

Inversion model Full Matrix Diagonal Matrix
Time (s) 92 106

σyy, σzz, σyz, and σzy from the inverted formation obtained both the
full matrix and diagonal terms coincide with the raw data. However
the cross components σxz, σxz, σyz and σzy obtained from the diagonal
term inversion model are exactly in the reverse direction of the raw log
since the inverted rotation angle is the coangle of the true one. Thus
we can conclude that eliminating the cross components in inversion
will introduce uncertainty when determining the rotation angle.

Table 3 shows the total CPU time cost by the inversions using
the full conductivity matrix and the diagonal terms, respectively. We
can see that the when using the full matrix to do the inversion, the
procedure converges faster and cost less time. In Fig. 7 we compare
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Figure 7. Comparison of the apparent conductivity simulated from
the two inverted model and the raw data.

the cost functions of the two inversion models versus the iteration
numbers. Compared with the full-matrix model, the diagonal-term
model requires more iteration to converge. As a result, the diagonal-
term model still yields slower behavior than the full-matrix model even
the iteration costs less computational time.

Based on above analysis, we can conclude that eliminating the
cross components cannot bring any benefit on the inversion speed as
well as efficiency. As we discussed, only replying on the diagonal-term
model will introduce uncertain effect on the rotation angle and slow
down the inversion speed.

3.2.2. Validation II — 5% Coherent Noise

Next, we add 5% coherent noise to the raw data and repeat the
inversion procedure. Table 4 presents the initial guess and inversion
results of the dipping angle and the rotation angle, which presents
accurate angles. Table 5 shows the cost time. Fig. 9 compares the
inverted conductivity with the true parameters. Very good agreement
is observed. The maximum error of the inverted horizontal and vertical
conductivity is about 3%.
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Figure 8. The cost function of the two inversion models versus the
number of iterations.
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Figure 9. Inverted conductivity obtained from the synthetic data for
the model in Fig. 5 with the input log contaminated by 5% coherent
noise.

3.2.3. Validation III — 5% Incoherent Noise

Next, we add 5% incoherent noise to the input log data and repeat
the inversion. Fig. 10 presents the inverted horizontal and vertical
conductivities. The maximum relative error of the inverted horizontal
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Table 4. The inverted dipping angle and rotation angle in
Validations II & III.

Validation I Initial Guess Validation II Validation III
α (◦) 30.53 30.16◦ 30.5◦

γ (◦) 27.54 60.04◦ 59.33◦

Table 5. The CPU time cost in Validations II & III.

Inversion model 5% Coherent (II) 5% Incoherent (III)
Time (s) 220 508
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Figure 10. Inverted conductivity obtained from the synthetic data for
the model in Fig. 5 with the input log contaminated by 5% incoherent
noise.

and vertical conductivities is about 8%. From Fig. 10, we can see
that the presence of the incoherent noise cause a stronger negative
impact on the Zero-D inversion than the coherent noise and more layers
are generated in the initial guess. However, the inversion still yields
satisfactory results despite the bad initial guess.
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4. CONCLUSION

In this paper, we presented an inversion algorithm for triaxial induction
logging in 1-D layered transverse isotropic formation. The Gauss-
Newton algorithm is employed to modify Newton step from Gauss-
Newton algorithm and thus reduces the cost function. In order to
improve the effectiveness of the Gauss-Newton algorithm, Gill and
Murray Cholesky factorization is used to calculate the Hessian matrix
in the quadratic model of the cost function. Zero-D inversion is used
to generate the initial guess. In order to obtain good initial guess, both
the variance-based method and the horn effect of the cross components
are used to determine the initial boundary. Then golden section
search is applied to merge redundant initial boundaries during the
inversion. The resultant inversion algorithm was validated by synthetic
data from our forward modeling and other different forward modeling.
Satisfactory inversion results can be obtained in various cases despite
of the noise. We also demonstrate the capability of our code in the
application of the real field log inversion.

ACKNOWLEDGMENT

Manuscript received August 10, 2012. This work was supported in
part by Well Logging Laboratory, University of Houston.

REFERENCES

1. Weiss, C. J. and G. A. Newman, “Electromagnetic induction in
a fully 3-D anisotropic earth,” Geophysics, Vol. 67, No. 4, 1104–
1114, Jul. 2002.

2. Abubakar, A., T. M. Habashy, V. Druskin, L. Knizhnerman,
and S. Davydycheva, “A 3D parametric inversion algorithm for
tri-axial induction data,” Geophysics, Vol. 71, No. 1, G1–G9,
Jan. 2006.

3. Cheryauka, A. B. and M. S. Zhdanov, “Fast modeling of
a tensor induction logging response in a horizontal well in
inhomogeneous anisotropic formations,” SPWLA 42nd Annual
Logging Symposium, Jun. 2001.

4. Yu, L., B. Kriegshauser, O. Fanini, and J. Xiao, “A fast inversion
method for multicomponent induction log data,” 71st Annual
International Meeting, SEG, Expanded Abstracts, 361–364, 2001.

5. Lu, X. and D. Alumbaugh, “One-dimensional inversion of three



402 Zhang, Yuan, and Liu

component induction logging in anisotropic media,” 71st Annual
International Meeting, SEG, Expanded Abstracts, 376–380, 2001.

6. Zhang, Z., L. Yu, B. Kriegshauser, and L. Tabarovsky,
“Determination of relative angles and anisotropic resistivity using
multicomponent induction logging data,” Geophysics, Vol. 69,
898–908, Jul. 2004.

7. Wang, H., T. Barber, R. Rosthal, J. Tabanou, B. Anderson, and
T. M. Habashy, “Fast and rigorous inversion of triaxial induction
logging data to determine formation resistivity anisotropy, bed
boundary position, relative dip and azimuth angles,” 73rd Annual
International Meeting, SEG, Expanded Abstracts, 514–517, 2003.

8. Abubakar, A., P. M. van den Berg, and S.Y. Semenov, “Two- and
three-dimensional algorithms for microwave imaging and inverse
scattering,” Journal of Electromagnetic Waves and Applications,
Vol. 17, No. 2, 209–231, 2003.

9. Davydycheva, S., V. Druskin, and T. M. Habashy, “An
efficient finite-difference scheme for electromagnetic logging in
3D anisotropic inhomogeneous media” Geophysics, Vol. 68, 1525–
1536, Sep. 2003.

10. Habashy, T. M. and A. Abubakar, “A general framework for
constraint minimization for the inversion of electromagnetic
measurements,” Progress In Electromagnetic Research, Vol. 46,
265–312, 2004.

11. Zhong, L. L., J. Ling, A. Bhardwaj, S. C. Liang, and R. C. Liu,
“Computation of triaxial induction logging tools in layered
anisotropic dipping formations,” IEEE Trans. on Geosci. Remote
Sens., Vol. 46, No. 4, 1148–1163, Mar. 2008.

12. Wang, H. M., S. Davydycheva, J. J. Zhou, M. Frey, T. Barber,
A. Abubakar, and T. Habashy, “Sensitivity study and inversion
of the fully-triaxial induction logging in cross-bedded anisotropic
formation,” SEG Las Vegas 2008 Annual Meeting, 284–288,
University of Houston, 2008.

13. Gill, P. E. and W. Murray, “Newton-type methods for uncon-
strained and linearly constrained optimization,” Mathematical
Programming, No. 28, 311–350, Jul. 1974.

14. Zhdanov, M., D. Kennedy, and E. Peksen, “Foundations of tensor
induction well-logging,” Petrophysics, Vol. 42, 588–610, 2001.

15. Hans, W., “The golden section. Peter hilton trans,” The
Mathematical Association of America, 2001.

16. Anderson, B. I., T. D. Barber, and T. M. Habashy, “The
interpretation and inversion of fully triaxial induction data; a



Progress In Electromagnetics Research B, Vol. 44, 2012 403

sensitivity study,” SPWLA 43rd Annual Logging Symposium,
2002.

17. Rosthal, R., T. Barber, and S. Bonner, “Field test results of an
experimental fully-triaxial induction tool,” SPWLA 44th Annual
Logging Symposium, 2003.

18. Yuan, N., X. C. Nie, and R. Liu, “Improvement of 1-D simulation
codes for induction, MWD and triaxial tools in Multi-layered
dipping beds,” Well Logging Laboratory Technical Report, 32–71,
Oct. 2010.


