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Abstract—A procedure based on the analytical model of a lumped-
element, crossover circulator has been developed to maximize its
operating bandwidth. The procedure considers the circulator as a
network and employs the circulation impedance — the load associated
with perfect circulation — as a metric to optimize the bandwidth.
Using this procedure, we find that a maximum 194% bandwidth can
be obtained for an ideal circulator for above-FMR operation. When
the same procedure is applied using a simulation model for the 225–
400MHz frequency range, we achieve 125% bandwidth. We have
verified this result from the measurement of a fabricated device; the
measured data reveals a bandwidth of 129%.

1. INTRODUCTION

Research on lumped-element, crossover circulators for RF communi-
cation applications commenced in the early 1960’s with the work of
Konishi [1], who articulated the theory of operation for the UHF and
VHF band. Soon thereafter considerable effort was expended on both
the crossover network and the matching network to widen its band-
width [2, 3]. In recent years a resurgence of activity in crossover circu-
lator research has occurred due to the advances in mobile communica-
tion devices.

Among the circulator’s many important properties, large
bandwidth is one of the most important. This leads us to the
question of how much bandwidth a crossover circulator can achieve.
Miura et al. [4] provided one answer using an eigenvalue analysis and
reported a 9.8% bandwidth (820–900 MHz) for miniature circulators.
Schloemann [5] provided a different perspective on bandwidth by
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relating bandwidth performance to the geometric design of the ferrite
crossover network. Using a quality factor analysis, he showed that
bandwidths on the order of one and two octaves are possible, but no
simulation or experimental results support this claim. A casual review
of circulators currently on the market indicates that the current state-
of-the-art is close to 100% for operating frequencies near 400 MHz.

In this paper we are interested in determining the upper bound
on bandwidth based upon theoretical considerations and optimization
methodologies. Particularly, using the concept of the circulation
impedance, which refers to the impedance load that results in perfect
isolation, in conjunction with an ideal electromagnetic field model,
we find that a 194% maximum bandwidth is theoretically possible.
This result is independent of the choice of center frequency for above-
FMR (ferromagnetic resonance) operation. Using more precise models
as obtained from simulation and typical values for the magnetic
saturation, we show that bandwidths on the order of 130% are realistic.
This latter result is also confirmed by experimentation.

In the following sections we provide some perspectives on the
optimization process and show how the notion of the circulation
impedance can be used to estimate device bandwidth. A theoretical
treatment, simulation data, and measurement data are provided to
support the claims made herein.

2. THEORETICAL ANALYSIS

2.1. Ideal Model

We start our analysis with the ideal network model of a lumped-
element, crossover circulator that was developed by Bergman [6]. The
basic configuration of a crossover circulator, which is shown in Figure 1,

Figure 1. A typical lumped-element, crossover ferrite circulator.
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consists of two ferrite pucks with three conductor traces between them.
The ferrite pucks are assumed to be fully saturated by an external
biasing field Ha whose direction is perpendicular to the trace plane.
The traces are placed at 120◦ intervals to form a crossover topology.
All three traces are assumed to be electrically isolated from each other
using air as an insulator. One end of any trace is used as the port
of the circulator while the other end is connected to the ground plane
that forms the housing of the structure (not shown for clarity). This
circulator device forms a three-port network. When one assumes that
the internal RF field is uniform, the Z-parameters of the ideal device
can be expressed as [6]

Z11 = Z22 = Z33 = jωL0µ

Z12 = Z23 = Z31 = −jωL0(µ− j
√

3κ)/2

Z13 = Z21 = Z32 = −jωL0(µ + j
√

3κ)/2,

(1)

where L0 is an effective inductance for each port and is defined by

L0 =
µ0Ae

le
. (2)

Here Ae and le are effective area and length parameters that satisfy
the dimensionality requirements of the previous equation. The effective
area is related to the trace area and the effective length to the trace
width, but their precise values are not needed at this time. However,
since Ae and le are only dependant on the physical dimensions of the
ferrite pucks and traces, L0 is a function of the geometrical layout of
the device. The other two parameters in Eq. (1), µ and κ, characterize
the ferrite material and are defined by [7]

µ = 1 +
ω0ωm

ω2
0 − ω2

(3)

and
κ =

ωmω

ω2
0 − ω2

. (4)

Here ωm is associated with the magnetic saturation of the ferrite such
that ωm = 2πfm, where fm = (2.8 × 106)(4πMs) (Hz/G). Also, ω0

is the Larmor angular frequency, which is a function of the internal
field H0 of the ferrite disks through the relationship ω0 = 2πf0, where
f0 = (2.8 × 106)(H0) (Hz/Oe). The internal field H0 is a function
of both the external biasing field Ha and the demagnetization field.
For non-ellipsoidal shapes (i.e., disks), the demagnetization field is
computed from a tensor demagnetization factor. For purposes of the
study, we make the usual assumption that the demagnetization tensor
is well approximated by a scalar such that

H0 ≈ Ha − 4πMsNz, (5)



216 Dong et al.

where Nz is the demagnetization scalar in the z direction. Although
Nz is technically a function of position, we treat it as a constant in
the context of the ideal model. The pros and cons of this assumption
have been discussed extensively in [12–14]. For thin disks, Nz ≈ 1 [15].
For above-FMR operation ω0 defines the upper frequency limit of the
operating range. When ω nearly equals ω◦ the losses in the ferrite are
excessive and the fields tend to be evanescent.

The Polder terms µ and κ defined in Eqs. (3) and (4) are written
for lossless ferrites. When ferrite loss is considered, we replace ω0 with
ω0+jαω, where α is a phenomenological loss coefficient calculated from
the linewidth of the ferrite material. For actual ferrites operating in
above-FMR mode, linewidths as small as 10Oe are available, resulting
in values of α less than 10−3. It is therefore reasonable to assume no
loss in our initial theoretical analysis of an ideal circulator. Moreover,
since loss tends to increase bandwidth, we choose to set α = 0 in order
to create a least upper bandwidth bound.

By inserting Eqs. (3) and (4) into (1), we obtain the following
impedance parameters:

Z11 = jωL0

(
1 +

ω0ωm

ω2
0 − ω2

)

Z21 = −Z11

2
+
√

3
2

(
ω2ωmL0

ω2
0 − ω2

)

Z31 = −Z11

2
−
√

3
2

(
ω2ωmL0

ω2
0 − ω2

)
.

(6)

These equations can be rewritten as

Z11 = jX

Z21 = −j
1
2
X + R

Z31 = −j
1
2
X −R

(7)

with

R =
√

3ωL0

2

(
ωωm

ω2
0 − ω2

)
(8)

and

X = ωL0

(
1 +

ω0ωm

ω2
0 − ω2

)
. (9)

These latter forms for Zij will simplify the ensuing mathematical
manipulations.
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2.2. Circulation Impedance and Bandwidth Estimation

From a three-port network point of view the circulation impedance Zc

is defined as the load that results in perfect isolation [10]. This same
load will also result in perfect return loss and insertion loss when the
network is lossless. The combined result is called perfect circulation.
According to [10], when port one is chosen as the input and port three
is isolated, the load impedance at port two must be of the form

Zc =
Z32Z21

Z31
− Z22. (10)

For the three-port symmetrical crossover network whose Z-parameters
are given by Eqs. (7), (8) and (9), this load impedance is also used for
the other two ports. In terms of R and X, we replace the previous
equation with

Zc =
Z2

21

Z31
− Z11 =

(
R− j

1
2
X

) (
3X2 − 4R2

X2 + 4R2

)
. (11)

Typically, perfect circulation is achievable at a few discrete frequencies
and partially achieved over a range of frequencies, say from fa to fb.
The bandwidth BW is defined using specified values of isolation I,
return loss RL, and insertion loss IL over the range fa to fb. For
purposes herein we arbitrarily regard 15 dB of isolation and return
loss along with 0.5 dB of insertion loss as acceptable when discussing
bandwidth. The following bandwidth metric relative to fa will be used:

% BW ≡ fb − fa

fa
× 100%. (12)

Such a definition allows us to say that one octave or 100% corresponds
to the same bandwidth.

A typical plot of Zc normalized by ω0L0 is shown in Figure 2.
To realize Zc a lossless matching network needs to be placed between
the crossover device and the load resistor RL to transform RL into Zc.
How well such a matching network can accomplish this task dictates
the operating bandwidth. It is obvious from Figure 2 that if perfect
circulation performance is desired in the range 0 < f < f0, a load with
negative reactance is needed. To realize this negative reactance of Zc

it behooves us to use a shunt capacitor C0 across each port. Also, it
is well known that a capacitor Cg placed between the common wire
of the ports and the ground of the circulator can widen the operating
bandwidth [8, 9]. According to Knerr, tuning components connected
to the ports can only affect two of the three eigenvalues of the three-
port network while Cg can influence the third eigenvalue. Hence,
this eigenvalue analysis appeals to the optimal topology of the tuning
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Figure 2. Typical Zc data of an ideal circulator; here ωm/ω0 = 4.
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Figure 3. Matching network realization of Zc.

network, as shown in Figure 3. The role of L1 and C1 will be discussed
in an ensuing paragraph.

The precise effect of C0 and Cg can be understood through the
following analysis. We start with the normalization of the impedance
matrix Z of the ideal crossover network:

N ≡ Z
ω0L0

=

[
N11 N31 N21

N21 N22 N31

N31 N21 N33

]
(13)

where

N11 =
Z11

ω0L0
= jX̄, (14)
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N21 =
Z21

ω0L0
= −j

1
2
X̄ + R̄, (15)

and
N31 =

Z31

ω0L0
= −j

1
2
X̄ − R̄, (16)

in which case

R̄ =
R

ω0L0
=
√

3
2

[
(ω/ω0)2(ωm/ω0)

1− (ω/ω0)2

]
(17)

and

X̄ =
X

ω0L0
=

ω

ω0

(
1 +

ωm/ω0

1− (ω/ω0)2

)
. (18)

By placing C0 across each port, the crossover network is transformed
into a new network whose Z-parameter matrix is Z′; the relationship
between Z and Z′ is

Z′ = [U + jωC0Z]−1 Z = ω0L0 [U + jωC0ω0L0N]−1 N. (19)
Here, U is the identity matrix. If we define

ωr ≡ 1√
L0C0

(20)

as the resonant frequency related to C0 and L0, through various
manipulations, Z′ can be equally written as

Z′ = ω0L0

[
U + j

(ω/ω0)
(ωr/ω0)2

N
]−1

N. (21)

Applying similar normalizations as in Eq. (13) to Z′, we obtain

N′ ≡ Z′

ω0L0
=

[
U + j

(ω/ω0)
(ωr/ω0)2

N
]−1

N. (22)

When Cg is connected to the network, the Z-parameters are
transformed from Z′ into Z′′ such that

Z′′ = Z′ +
1

jωCg
E = ω0L0

(
N′ +

1
jω0ωL0Cg

E
)

(23)

where

E =

[1 1 1
1 1 1
1 1 1

]
. (24)

If we define ωg as the grounding resonant frequency associated with
Cg and L0 by

ωg ≡ 1√
L0Cg

, (25)
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then Z′′ becomes

Z′′ = ω0L0

(
N′ − j(ωg/ω0)2

(ω/ω0)
E

)
. (26)

Again, it is desirable to normalize Z′′ and write

M ≡ Z′′

ω0L0
=

(
N′ − j(ωg/ω0)2

(ω/ω0)
E

)
. (27)

By definition M is the normalized Z-parameter matrix of the
crossover network together with C0 and Cg tuning. Although C0 and
Cg are part of the matching network, we refer to them as “tuning
elements” since their function is to shift the center frequency to the
desired frequency band. The normalized circulation impedance Zcm

for this transformed network, per Eq. (10), is therefore

Zcm

ω0L0
=

M2
21

M31
−M11. (28)

From Eqs. (13), (22) and (27), we can see that M depends on four
frequency ratios:

ω

ω0
,

ωm

ω0
,

ωr

ω0
, and

ωg

ω0
.

Moreover, since Zcm/(ω0L0) is a function of the matrix elements of M,
it is only controlled by these four ratios. For a given set of parameters
Zcm/(ω0L0) can be calculated and the operating bandwidth for the
corresponding device can be estimated.

Consider a typical plot of Zcm/(ω0L0) as shown in Figure 4. After
including the tuning elements C0 and Cg, our goal is to find a matching
network that can transform the resistive load RL into Zcm. This can
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Figure 4. A typical plot of Zc with C0 and Cg tuning.
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Zcm

Lossless Matching Network

L1C1RL

Figure 5. The matching network topology for a post-tuned crossover
network.

be accomplished using a series LC circuit, which is shown in Figure 5.
A comparison between Zcm and the impedance ZMat of this series
LC circuit and resistive load shows that in the frequency range fa to
fb good agreement is obtained (see Figure 6). The imaginary part
of ZMat matches the circulation reactance Xcm (i.e., the imaginary
part of Zcm) very well while the real part of ZMat, which is just the
load RL, matches the circulation resistance Rcm (i.e., the real part
of Zcm). From the definition of circulation impedance it is clear that
near-perfect circulation is achieved in the range fa to fb by having this
matching network connected between the crossover network and RL

on each port, even though Rcm is not perfectly matched with RL. The
mismatch between RL and Rcm determines the value of isolation since
the match between XMat and Xcm is nearly perfect. For example,
14 dB of isolation suggests that RL should be set to around 2/3 of the
peak value of Rcm.

Since we have circulation over the range fa to fb, the frequencies
fa and fb are the estimated bounds for the band of operation. These
frequencies, as discussed previously, are the zero slope points of Xcm.
However, if the maximum of Xcm occurs outside of the range [0, f0],
we set fb = f0 to avoid operating near resonance. As an example,
consider Figure 6 in which ωa/ω0 = 0.312 and ωb/ω0 = 0.664; for this
case BW = 112%.

2.3. Bandwidth Optimization

The preceding analysis reveals how the normalized circulation
impedance Zcm/(ω0L0) of the network is a function of the four
frequency ratios ω/ω0, ωm/ω0, ωr/ω0 and ωg/ω0. And since bandwidth
is estimated from the circulation impedance, it is therefore determined
by these four ratios. This suggests that optimal values for these ratios
exist that maximize bandwidth over the range 0 < ω/ω0 < 1. The
details of the optimization method are not the subject of this paper, but
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the results are. We found through an exhaustive search methodology
that the following design results in the widest bandwidth:

ωm/ω0 = 118
ωr/ω0 = 8.7
ωg/ω0 = 2
fa/f0 = 0.34
fb/f0 = 1.00
BW = 193.8%.

(29)

Therefore, based on the ideal model, bandwidths near 200% are
technically achievable. Whether an actual circulator can achieve such
high bandwidth values is the subject of the ensuing discussion. In
fact, we believe that the optimal value of ωm/ω0 approaches infinity,
albeit very slowly, in the search algorithm with almost no change in
the bandwidth result.

By using the normalized Z-parameters of the crossover network in
Eqs. (13), (22) and (27), we can choose any frequency band of interest.
For our research we are interested in the frequency range 225–400 MHz
and set ω0 = 800π r/s along with L0 = 1nH. From the ratios of
Eq. (29), we find that

4πMs = 16, 857 G
C0 = 2.1 pF
Cg = 39.6 pF
fa = 136 MHz
fb = 400 MHz

BW = 193.8%.

(30)

Figure 7 shows a plot of Zcm/(ω0L0) for this design. If we constrain
4πMs to a realizable value for practical applications (e.g., 4πMs =
2, 000G), a 180% maximum bandwidth is still achieved for the design
frequency range. The results for this case are

4πMs =2, 000G
C0 =16pF
Cg =323 pF
fa =143MHz
fb =400MHz

BW =180%.

(31)

With the optimal crossover network so determined, the last step
is to calculate the value of the matching components C1 and L1. The
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components C1 and L1 approximate the circulation reactance Xcm

through resonance. They can be estimated by recognizing that the
slope of XMat through resonance is 2L1; from this value and the
resonant frequency, C1 can be estimated. That is,

L1 ≈ 1
2

Xcm b −Xcm a

2π(fb − fa)
(32)

and
C1 =

1
(2πfr)2L1

, (33)

where Xcm a and Xcm b are values of the circulation reactance at
frequencies fa and fb, respectively, and fr is the frequency at which
Xcm crosses zero. Also, as mentioned before, the load RL is estimated
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Figure 6. Comparison of Zcm and the impedance of a series RLC
circuit.
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to be 2/3 of peak value of Rcm for a 14 dB isolation and return
loss. These estimations for L1, C1 and RL are excellent seed values
when searching for the optimal values. An optimization algorithm is
invoked that uses this set of seed values and employs the Pareto Front
population analysis [11] to find the optimal set. The optimization
method is based on the following steps: a) Search for values of every
component of the matching network; b) calculate minimum isolation
and minimum return loss of the circulator device over the frequency
range fa to fb for every solution and plot these isolations and return
losses on a Pareto population chart; c) choose a design point from the
chart that meets the specified requirements.

By applying this algorithm to the 400 MHz crossover network
associated with Eq. (30), we obtain the Pareto population chart shown
in Figure 8. The optimal matching network associated with this chart
is chosen and the corresponding component values are

C0 =2.13 pF
Cg =40.2 pF
C1 =5.98 pF
L1 =82.9 nH
RL =189.3Ω.

(34)

The corresponding frequency response of this circulator device is
shown in Figure 9. A performance with 15 dB isolation, 15.1 dB return
loss and 0.3 dB insertion loss is obtained over the frequency band
136MHz to 400 MHz, which is consistent with the 194% bandwidth
predicted by Eq. (30) previously.
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3. ACTUAL CIRCULATOR DEVICE OPTIMIZATION

The previous section provides the necessary insight on wide-band
operation of a ferrite circulator using an ideal model. For actual
circulator hardware the model fails, but the bandwidth optimizing
procedure (i.e., using the circulation impedance as a metric to
determine bandwidth) is still applicable. For actual hardware, a
better model, and hence a better estimate of the Z-parameters, can
be obtained from numerical simulation. Following the same procedure
developed for the ideal model, we discovered through simulation that
a bandwidth of 125% (i.e., 178–400 MHz) is indeed possible when
4πMs = 3275G. When fabricated and tested, we measured a 129%
bandwidth (175–400MHz). Figure 10 shows a picture of the fabricated
circulator and the HFSS simulation model. The frequency response
comparison between data obtained from measurement and simulation
is shown in Figure 11. Although both simulation and experimental
data failed to achieve the ideal value of 194%, this is to be expected

Figure 10. The fabricated circulator device and the HFSS model.
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due to the many deficiencies associated with the ideal model. More
importantly, the optimizing method proved to be a success by achieving
unprecedented bandwidth performance.

4. CONCLUSION

In this paper we discussed the optimization procedure for bandwidth
enhancement of an ideal crossover circulator. We demonstrated that
194% bandwidth is theoretically obtainable by optimizing both the
crossover structure and matching network. By using frequency-
normalization techniques, we show that the method is fully general
for any above-FMR circulator. Moreover, by using this same method
along with simulation tools, we were able to achieve bandwidths on the
order of 130%, as validated in hardware. The difference between the
theoretical performance verses the hardware performance is directly
traceable to the deficiencies of the ideal model (e.g., uniform field
assumption).
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