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A METHOD BASED ON PARTICLE SWARM OPTIMIZA-
TION TO RETRIEVE THE SHAPE OF RED BLOOD
CELLS: A PRELIMINARY ASSESSMENT
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Abstract—The particle swarm optimization (PSO) algorithm, a
global optimization technique based on cooperative swarming strategy,
has been used to solve inverse scattering problem for red blood cells
(RBCs) and detect possible anomalies. The inverse scattering problem
is recast as an iterative optimization one by defining a suitable cost
function. With this method is possible to estimate the morphological
parameters of a red blood cell and to distinguish healthy RBCs from
diseased ones. This work lays the basis for a new approach to make
diagnosis. Preliminary numerical experiments show the potential
effectiveness and the reliability of the proposed method as diagnostic
tools.

1. INTRODUCTION

Recently, there has been growing interest in light scattering
properties of biological tissues that are exploited in many diagnostic
applications [1–3]. In particular, there is great attention in recovering
the morphological parameters of a RBC from light scattering data.

This problem can be formulated as an inverse light scattering
problem (ILSP) [1, 4]. Similarly to other inverse problems, e.g., [5, 6],
this kind of problem is non-linear and ill-posed: in other words, the
ILSP for a single RBC does not have a closed form solution. Until now,
there are two main strategies to solve the ILSP for a single biological
particle. The first one distinguishes diseased cells with a methodology
based on scattering statistics. This approach determines guidelines to
identify healthy and diseased RBCs [1]. The second method, is an
empirical approach based on a direct comparison of light scattering
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patters with simulated ones from a reference database [7]. Both [1]
and [7] depend on data that are used as reference and indirectly bias
the ILSP results.

In this work, a new approach based on a stochastic global
optimization technique called particle swarm optimizer (PSO) is
presented. Recently, the PSO has been successfully adopted for the
solution of complex electromagnetic problems [13–16]. The original
ILSP is recast as a problem of optimization by defining a suitable cost
function. Then, the cost function is minimized using the PSO and at
the end of this iterative procedure, the morphological parameters of
the investigated RBC are retrieved, allowing the diagnosis of possible
diseases.

This article describes briefly the mathematical modeling of light
scattering from a cell, i.e., the solution of the direct problem, and
the cell shape model. Afterwards, the description of the PSO and
the definition of the cost function used to recast the problem as an
optimization one are introduced. Finally, some results are provided
considering some of the most significative examples. This gives a
preliminary assessment to the proposed inversion method and the basis
for future practical application as diagnosis tool.

2. INVERSE LIGHT SCATTERING PROBLEM FOR RBC

In this section, the inverse scattering problem will be addressed and
the methodology based on the PSO optimizer summarized.

To obtain scattering data of a single RBC, different methods
have been used in the scientific literature: the finite-difference time-
domain (FDTD) approach, the multilevel fast multipole algorithm
(MLFMA) and others [4]. In this paper, we consider the
discrete dipole approximation (DDA) [8, 9] that has shown good
performance [3, 7, 8]. DDA is a method to compute scattering and
absorption of electromagnetic wave by particles of arbitrary geometry
and composition. In more detail, DDA replaces the solid particle
by an array of M oscillating dipoles. Each dipole has an oscillating
polarization in response both to an incident plane wave and to the
electric fields due to all of the other dipoles in the array; the self-
consistent solution for the dipole polarizations can be obtained as the
solution to a set of coupled linear equations [7–9]. The optical cell
shape model is the same of [7, 10], where a 4-parametric shape model
has been proposed. The cell shape is described by as follows:

z4 +
[
2R4 (p) ρ2 + R2 (p)

]
z2 + ρ4 + R1 (p) ρ2 + R3 (p) = 0 (1)

where R1, R2, R3 and R4 depend on the morphological parameters of
RBC, p = {pl, l = 1, . . . , 4} = {D, h, b, c} [7, 10]. D is the diameter of
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Figure 1. Comparison of the actual profile of the healthy RBC model
vs the recovered profile after the PSO iterative procedure (z and ρ are
cylindrical coordinates).

the RBC, h the maximum thickness, b the thickness at the center of
the cell and c the diameter of a ring corresponding to the maximum
thickness of a RBC (e.g., Fig. 1). The diameter D of a healthy RBC
varies from 6.0µm to 9.0µm [3, 7]. If the diameter is larger than
9.0µm, the RBC is called macrocyte. Conversely, a RBC diameter
less than 6.0µm identifies a microcyte. The presence of microcyte
may reveal disorder in iron metabolism or deficiencies in hemoglobin
synthesis. Macrocytes may identify drug use, leukemia or other
diseases [1].

This is the main reason for which it is important to develop an
accurate and effective strategy to determine morphological parameters
of a RBC and in particular its diameter D.

3. PSO-BASED INVERSION PROCEDURE

The goal of the proposed inversion procedure is to determine the
vector of unknowns x = {D, h, b, c}, that defines the morphological
parameters of a RBC, defining a suitable cost fitness function and then
minimizing it with an optimization algorithm. The cost function is
formulated to estimate the error between the scattering data, obtained
from the actual configuration Sactual

11 (θ) and the current trial solution
S11 (x, θ), as shown in the following relation

Ψ (x) =
1

θmax−θmin

∫ θmax

θmin

[
log

(
Sactual

11 (θ)+1
)
−log(S11 (x, θ)+1)

]
dθ

(2)
where x = {D, h, b, c} is the n-th vector of unknowns, θmin = 0 [deg]
and θmax = 180 [deg]. The above relation has been chosen following
the guidelines described in [5, 14–17]. To minimize (2), there are
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different approaches. Local searching techniques such as gradient based
methods have a reduced computational burden, but can be trapped
in local minima and can lead to false solutions. Consequently, we
address to global optimization techniques. The most widely used are
genetic algorithms (GAs) but in this work a swarm based methodology,
namely the particle swarm optimizer (PSO) has been considered. The
choice has been motivated by the advantages exhibited by PSO when
compared to GAs [6]. The advantages are mainly concerned with the
ability to control the convergence and avoid the stagnation of the
optimization process, an easier implementation and calibration, and
the exploitation of the cooperation among the trial solutions. However,
it is worth noting that, for the “No Free Lunch Theorem” [11], an
optimization strategy able to handle all the possible classes of problems
does not exist. Moreover, for the problem at hand, the use of PSO gives
better performance in respect to GA.

In PSO a swarm consists of a set of n = 1, . . . , N particles
xt

n = {xt
n,k, k = 1, . . . , K}, being t = 1, . . . , T . A position vector

and a velocity one (xt
n,vt

n) are associated to each particle of the
swarm. In more detail, vt

n models the capacity of the particle to fly,
at iteration t-th, from a given position in the solution space xt

n to the
next one xt+1

n . The positions and the velocities of the N particles in
the swarm are initialized by a random number generator. How well a
trial solution solves the problem is determined by the evaluation of the
cost function. At each iteration, position and velocity vectors of each
particle are updated by the action of a force attracting them towards
both their own previous positions xpb and that of the entire swarm xgb:
vt+1

n = αvt
n + C1γ1(xt

n − xpb) + C2γ2(xt
n − xgb), where α is the inertia

factor, C1 and C2 are constants called cognition and social acceleration,
γ1 and γ2 are two randomly generated positive numbers between 0 and
1. The particle’s position is then updated: xt+1

n = xt
n + vt+1

n . If the
maximum number of iterations T is reached, or if the fitness of the
best particle is within a predefined tolerance, the optimization process
is stopped and the solution has been reached.

4. NUMERICAL RESULTS

The proposed inversion strategy to solve the ILSP is validated
considering three different RBC profiles, each of them representing
a significative example: a healthy RBC, a microcyte and a macrocyte
whose actual morphological parameters are summarized in Table 1.
This validation does not pretend to be exhaustive but has only the
aim to give a preliminary assessment for a possible future use of this
technique as diagnostic tools.



Progress In Electromagnetics Research M, Vol. 27, 2012 113

Table 1. Comparison of morphological RBC properties: actual vs
recovered parameters (dimensions are in µm).

RBC Type
Healty Microcyte Macrocyte

Dactual 7.00 5.00 12.00
Drecovered 6.93 4.98 11.89

hactual 3.15 2.10 3.50
hrecovered 3.14 2.07 3.51

bactual 1.05 0.90 1.50
brecovered 1.09 0.86 1.46
cactual 4.20 2.90 7.44

crecovered 4.16 2.83 7.37

Concerning the PSO parameters, their values have been chosen
following the guidelines provided in [13–15]. The number of particles
in the swarm is set to N = 6, the maximum iterations T = 200 and the
threshold η = 10−1. The inertial weight α has been set equal to 0.4
to damp oscillations of the optimizer around the optimal solution and
speed up the convergence rate, while C1 and C2 have been set equal
to 2.0. The refractive index of the RBC is set mRBC = (1.406, 10−4)
and the refractive index of the host medium, the blood plasma, is
mplasma = (1.345, 0). As in [3], the imaginary part of the refractive
index is considered negligible. The relative index of refraction becomes
mRBC

mplasma
= 1.045 while the the wavelength in the plasma is set to

λ = 0.497µm (in vacuum is λ = 0.668µm). The incident wave
propagates along z-direction and the S11 element of the Mueller matrix
is calculated [3]. The dependence of the S11 on the scattering angle
θ in the x-z plane is computed considering the investigated RBC
symmetric to the z axis, with the Euler angle β = 0. The authors
of [7–9, 12] have introduced a rule for discretization that is widely
considered sufficient to get accurate results: the minimum number of
dipoles in the medium per lambda (dpl) is 10. To avoid inverse crime,
the investigated RBC is discretized with dpl = 12 for the preliminary
direct problem to obtain actual scattering data with DDA, while during
numerical simulations in the inversion procedure, the synthetic data are
generated with dpl = 11. The dpl value has been empirically chosen
after a calibration procedure and the considered value represents a
good compromise between computational burden and accuracy. The
three test profiles show that the approach allows good estimation of the
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unknown morphological parameters. This is confirmed by the relative
error values (Fig. 3), defined for the parameter pl

∆(pl) =

∣∣pactual
l − precovered

l

∣∣
pactual

l

× 100%, l = 1, . . . , 4 (3)

The geometrical profiles of the actual and the recovered healthy
RBC are depicted in Fig. 1. The two profiles have an almost negligible
difference and the maximum error is associated to the parameter
b with a relative error 3.8%. In Figs. 2 and 3, the actual and
the recovered profiles of healthy and microcyte RBC are traced in
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Figure 2. The actual profile of the microcyte RBC compared with
the recovered one. The proposed PSO approach correctly identifies the
descriptive parameters (z and ρ are cylindrical coordinates).
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Figure 3. Relative errors in the reconstruction of the morphological
parameters of the three RBCs. The relative error associated to
diameter D, that allows to identify possible diseases, is at maximum
equal to 1%.
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Figure 4. Microcyte test case: S11 values associated to the proposed
solution generated after the iterative process.
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Figure 5. Macrocyte test case. For θ < 60 [deg] and θ > 140 [deg]
the agreement between the two curves is satisfactory. In the interval
60 [deg] < θ < 140 [deg] the matching is not perfect but anyway is
considered acceptable.

cylindrical coordinates and compared.
In Fig. 4, there are the S11 values, depending on θ, for the actual

and recovered microcyte test case. As previously stated, S11 is used to
define the cost function and we can observe that for θ < 50 [deg] and
θ > 150 [deg] there is a good agreement between the two curves. In the
interval 50 [deg] < θ < 150 [deg] the agreement is quite satisfactory.
This is due to the difference of the morphological parameters (actual
vs recovered) and the different number of dpl used in the direct and
inverse procedure.

In a similar way, in Fig. 5, we have S11 values for the macrocyte
RBC. Also in this third example, i.e., the macrocyte, the estimation
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is satisfactory since the maximum relative error is 2.7% for RBC
parameter b (Fig. 3).

5. CONCLUSION

In conclusion, we have applied the PSO algorithm to solve ILPS
and retrieve the morphological profile of an RBC under investigation.
In this preliminary assessment with ideal conditions and synthetic
measures, the proposed approach has been able to correctly identify
three different profiles of RBC and identify anomalies. In particular,
the error associated to the diameter D is at maximum equal to 1%
and this allows to correctly identify the different types of RBCs and
make a diagnosis of possible diseases. Future work will be devoted to
investigate the potentialities of the PSO approach in a more realistic
scenario.
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