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Abstract—Diagonal loading has been regarded as an efficient manner
to tackle the finite sample effect or the steering vector imprecision
problem on adaptive array beamforming. However, the reason of the
robustness improvement by the loading factor is still unknown and
rarely discussed. In this paper, we consider the finite sample effect
and derive the approximated output signal-to-interference-plus-noise
ratio (SINR) of minimum variance distortionless response (MVDR)
beamformers with diagonal loading. The obtained SINR expression is
more explicit and compact than the existing formulas in the literature.
Based on the theoretical results, we investigate the effects of a loading
factor on the output SINR of MVDR beamformers. The theoretical
analysis shows the effectiveness of diagonal loading on alleviating finite
sample effect. Moreover, the price of using diagonal loading is also
discussed. Simulation results are presented for confirming the validity
of the research work.

1. INTRODUCTION

Adaptive arrays have been utilized in a variety of fields due to the anti-
interference abilities and superior resolutions. Among the techniques

Received 20 September 2012, Accepted 21 November 2012, Scheduled 6 December 2012
* Corresponding author: Ju-Hong Lee (juhong@cc.ee.ntu.edu.tw).



476 Chen and Lee

for adaptive array beamforming, the minimum variance distortionless
response (MVDR) technique [1] is the most popular one used for finding
the required adaptive weights. When the second-order statistics of
the received array data vector and the steering vector of the desired
signal are exactly known, a MVDR beamformer can eliminate the
interferers and noise efficiently without imposing distortion in the
reception of the desired signal. However, the performance of a MVDR
beamformer could be deteriorated by several unavoidable errors in
practical situations, such as finite sample effect [2–12], mutual coupling
effect [13, 14], steering vector uncertainty [15–19], etc.. To alleviate
the effects due to the errors on adaptive arrays, many robust methods
for improving array performance were proposed and analyzed during
the past decades. Notable among them are the eigenspace-based
methods [19, 20], spatial smoothing technique [21], signal blocking
based beamformer [22], and diagonal loading techniques [23–27].

A diagonal loading technique is carried out by adding a real
value called loading factor on the diagonal entries of the correlation
matrix of the received array data vector. It has been shown that
the diagonal loading techniques are effective in dealing with steering
vector errors and finite sample effect if an appropriate loading factor is
used. Research endeavor has been devoted to finding an optimum
loading factor [28–30]. However, it is also critical to evaluate the
effects of a loading factor on the performance of a MVDR beamformer.
Several reports regarding the performance of MVDR beamformers
with diagonal loading under finite samples can be found in [8–11].
Fertig [8] derived the probability density function of the beam response
of MVDR beamformers with diagonal loading. Liu et al. [9] gave a
short discussion on the impact of diagonal loading on the detection
probability and output waveform for space-time adaptive processing.
Dilsavor and Moses [10] analyzed the mean and variance of the
weight, the output power, the output SINR, and the interference-
to-noise ratio. The formulas in [10] are derived by approximating
the higher order terms of the power series. However, the effects of
positive loading factors were rarely discussed. Recently, Mestre and
Lagunas [11] presented an output signal-to-interference-plus-noise ratio
(SINR) formula for the MVDR beamformer with diagonal loading
and proposed a feasible method to compute the optimum loading
factor. Based on the random matrix theory, this formula is obtained
under the assumptions of both the number m of snapshots and the
number p of array elements increasing without bound and the ratio
m/p fixed at a constant. Although the formula proposed in [11] can
be used under finite sample effect and steering vector errors, it is
difficult to realize how the loading factor mitigates the performance
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degradation according to the complicated expression. Besides, the
analytical result in [11] sometimes fails to predict the actual output
SINR well, especially when the desired signal is strong.

In this paper, we derive approximated expressions for the output
SINR of MVDR beamformers with diagonal loading. Utilizing the
approximation for the weight vector presented by Wax and Anu [5],
a general output SINR formula in terms of interference-plus-noise
correlation matrix is first derived. Then, we narrow the scope to one
desired signal and two interferers and obtain a more explicit output
SINR expression in terms of system parameters. Based on this explicit
result, the effects of the loading factor on the output SINR under finite
samples are discussed in detail. The pros and cons of using diagonal
loading are shown clearly. Moreover, the possibility of generalizing the
explicit formula to the multi-interference case is explored. The validity
of the theoretical work is confirmed by simulation results.

The remaining part of this paper is organized as follows. The
principles of MVDR beamformers with diagonal loading and the
definition of output SINR are described in Section 2. The output
SINR of MVDR beamformers with diagonal loading is derived in
Section 3. Discussions on the theoretical results are presented in
Section 4. Simulations are performed in Section 5 to confirm the
theoretical results. Finally, we make a conclusion in Section 6.

2. PROBLEM FORMULATION

2.1. Principles of MVDR Beamformers

Consider a p-element array beamformer impinged by q narrowband
signals including one desired signal and (q − 1) interferers, q < p. The
received data vector can be expressed as

x (t) = s1 (t)a1 +
q∑

r=2

sr (t)ar + n (t) = s1 (t)a1 + v (t) , (1)

where si(t) is the complex waveform of the ith signal source with zero
mean and variance σ2

si, ai the corresponding steering vector, n(t) the
additive white Gaussian noise vector with zero mean and variance σ2

n,
and v(t) the undesired component including the interference and noise.
Assume that the q signal sources and noise are mutually independent.
The ensemble correlation matrices of x(t) and v(t) are respectively
given by

R ≡ E
[
x (t)xH (t)

]
= σ2

s1a1aH
1 + Q (2)
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and Q ≡ E
[
v (t)vH (t)

]
=

q∑

r=2

σ2
sraraH

r + σ2
nI, (3)

where E[·] is the mathematical expectation, {·}H denotes the conjugate
and transpose operation, and I is the identity matrix with appropriate
size. The weight vector of a MVDR beamformer can be found by
solving the following optimization problem [1]:

Minimize wHRw Subject to wHa1 = 1. (4)

From (4), we have the optimal weight vector wo given by [1]

wo =
R−1a1

aH
1 R−1a1

, (5)

where {·}−1 denotes the inverse of a matrix. Using (2) and applying
the matrix inversion lemma, the optimal weight vector in (5) can also
be written as

wo =
Q−1a1

aH
1 Q−1a1

. (6)

In practice, only finite data samples are available. The ensemble
matrix R is approximated by a sample correlation matrix using m data
samples as follows:

R̂ =
1
m

m∑

i=1

x (ti)xH (ti), (7)

where x(ti) denotes the data vector x(t) taken at the time instant ti.
The weight vector in (5) becomes

ŵ =
R̂−1a1

aH
1 R̂−1a1

. (8)

Although the weight vector ŵ satisfies the unit-gain constraint in (4),
it does not minimize the array output power due to the use of finite
data samples. The diagonal loading technique adding a loading factor
κ to all diagonal entries of R̂ could provide robustness against the
finite sample effect [6]. The weight vector of a MVDR beamformer
with diagonal loading is given by [25, 29]

ŵD =

(
R̂ + κ · I

)−1
a1

aH
1

(
R̂ + κ · I

)−1
a1

=
R̂−1

D a1

aH
1 R̂−1

D a1

, (9)

where the subscript D denotes the MVDR beamformer with diagonal
loading and R̂D ≡ R̂ + κ · I is the diagonal-loaded correlation matrix.
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The ŵD of (9) still holds the unit-gain constraint in (4). However, its
output power is different from that produced by ŵ. Substituting (1)
into (7), we have R̂ and R̂D given by

R̂ = σ̂2
s1a1aH

1 + a1r̂H + r̂aH
1 + Q̂ (10)

and R̂D = σ̂2
s1a1aH

1 + a1r̂H + r̂aH
1 + Q̂D, (11)

where σ̂2
s1 = (1/m)

∑m
i=1 |s1 (ti)|2, r̂ = (1/m)

∑m
i=1 s∗1 (ti)v (ti), Q̂ =

(1/m)
∑m

i=1 v (ti)vH (ti), and Q̂D ≡ Q̂ + κ · I. Using the assumptions
of independence and zero mean for the signal sources and noise, two
statistical properties of r̂ are given as follows [5, 12]:

E [̂r] = 0 (12)

and E
[
r̂r̂H

]
=

σ2
s1

m
Q. (13)

2.2. The Output SINR and the Existing Analysis Results

The SINR of an array output is one of the most popular quantities
to evaluate the performance of adaptive beamforming. Let the weight
vector of an array beamformer be denoted by w. The output signal
and the corresponding output power are given by

y (t) = wHx (t) (14)

and E
[
|y (t)|2

]
= E

[
σ2

s1

∣∣wHa1

∣∣2
]

+ E

[
q∑

r=2

σ2
sr

∣∣wHar

∣∣2
]

+E
[
σ2

nw
Hw

] ≡ Ps + Pi + Pn, (15)

where Ps, Pi, and Pn are the output powers of the desired signal,
interference, and noise, respectively. Accordingly, the output SINR of
the beamformer w is given by [5, 11]

SINR (w) =
Ps

Pi + Pn
. (16)

If the desired signal is received without distortion, i.e., wHa1 = 1, the
output SINR of (16) can be further written as

SINR (w) =
σ2

s1

E

[
q∑

r=2
σ2

sr |wHar|2
]

+ E [σ2
nwHw]

. (17)

Let 0 < c ≡ p/m < ∞ denote the ratio between the number of
antenna elements and the number of snapshots and assume κ > 0. It
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was presented in [11] that the asymptotic behavior of the output SINR
for ŵD in (9) is given by

SINR (ŵD) =
(

u (κ)
σ2

s1

− 1
)−1

, (18)

where u (κ) =
1

1− cξ
· a

H
1 (R + γI)−1 R (R + γI)−1 a1[

aH
1 (R + γI)−1 a1

]2 ,

ξ =
1
p

p∑

i=1

(
λi

λi + γ

)2

, γ = κ (1 + cb) , (19)

λmax = λ1 ≥ λ2 ≥ . . . ≥ λp = λmin denote the eigenvalues of R, and b
in (19) is the unique positive solution to the following equation:

b =
1
p

p∑

i=1

λi (1 + cb)
λi + κ (1 + cb)

. (20)

Although the expression of (18) is suitable for a general spatial
correlation matrix R and the case with steering vector errors, it is
not easy to see how the loading factor κ affects the performance of
the array beamformer. To get insights into the output SINR, one
might usually resort to computer computations and the plotted curves.
The main reason of this drawback is ascribed to the matrix operations
in (19), which is hardly been realized by humans. Moreover, it is
inconvenient to use (18) since the nonlinear equation in (20) has to be
solved. In the next section, we derive the output SINR of ŵD based
on (9) and attempt to obtain a more explicit expression. Similar to the
assumption in [11], the case of positive loading factors is considered in
this paper. Negative loading factors are effective for tackling weak
interferers on array beamforming [7]. However, the loading factor
should be higher than −σ2

n to maintain the positive definite property
of the correlation matrix. The more details about negative loading
factors can be found in [7, 10].

3. PERFORMANCE OF A MVDR BEAMFORMER
WITH DIAGONAL LOADING

Based on the derivation in [5, pp. 929], the weight vector ŵ of the
conventional MVDR beamformer in (8) can be derived to

ŵ =
Q̂−1a1

aH
1 Q̂−1a1

− P̂Q̂
−1

r̂, (21)
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where P̂ = I − Q̂−1a1aH
1 /(aH

1 Q̂−1a1) is a projection matrix.
Equation (21) shows that ŵ can be expressed by the sum of a MVDR
weight vector ŵQ ≡ Q̂−1a1/aH

1 Q̂−1a1 without desired signal in the
received data vector and a term related to the cross correlation r̂
between the desired signal and undesired component. According to
the analysis in [2], the output SINR difference of ŵQ and wo is within
3 dB when the number of samples is larger than twice of the number
of elements. Then, Anu and Wax [5, pp. 929-930] extended this result
and claimed that the r̂ in (21) captures the most finite sample effect as
compared with the other random quantities Q̂ and P̂. For a moderate
sample size m > 3p, it is also shown in [5, Eq. (21)] that ŵ in (21) can
be approximated by

ŵ ≈ Q−1a1

aH
1 Q−1a1

−PQ−1r̂ ≡ wo + ŵc, (22)

where P = I −Q−1a1aH
1 /aH

1 Q−1a1 and ŵc represents the redundant
weight vector due to finite samples. Analogous to the ŵ in (21), ŵD

in (9) can be derived to

ŵD =
Q̂−1

D a1

aH
1 Q̂−1

D a1

− P̂DQ̂−1
D r̂, P̂D = I− Q̂−1

D a1aH
1

aH
1 Q̂−1

D a1

. (23)

Applying the approximation Q̂ ≈ Q in (22) and assuming a positive
loading factor, we have Q̂D = Q̂ + κ · I ≈ Q + κ · I ≡ QD and the
approximated ŵD given by

ŵD≈
Q−1

D a1

aH
1 Q−1

D a1

−PDQ−1
D r̂ ≡ wD + ŵc,D, PD =I− Q−1

D a1aH
1

aH
1 Q−1

D a1

, (24)

where wD = wo and ŵc,D = ŵc for κ = 0. To confirm the validity of
the approximation used in (24), four examples for the output SINR
computed by (9), (23), and (24) versus number of snapshots are
presented in Figure 1. An eight-element uniform linear array (ULA)
with half-wavelength spacing is considered, and the four different
settings for source powers σ2

si, directions θi, and loading factors κ are
indicated with different colors. Note that the results corresponding
to different number of snapshots are computed with independent data
samples. As we see from Figure 1, the approximation used in (24)
leads to acceptable errors but still preserves the most finite sample
effect even if the output SINRs have not reached to their steady-state.
To facilitate and simplify the analysis, we adopt this approximation
in the following derivations. It was reported in [5] and [12] that the
ŵc in (22) deteriorates the performance of the conventional MVDR
beamformer. In the following analysis, we will explore how the loading
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Figure 1. The simulated output SINR versus number of snapshots.
‘◦’: using the ŵD in (9). ‘×’: using the ŵD in (23). ‘– –’: using the
ŵD in (24).

factor mitigates the degradation due to ŵc. The influence of modifying
wo to wD when κ 6= 0 will be discussed as well.

3.1. Expressing Output SINR in Terms of Q and QD

After some algebra manipulations, it can be shown easily that the
approximated ŵD of (24) satisfies the unit-gain constraint in the look
direction. Therefore, the output SINR of a MVDR beamformer with
diagonal loading can be obtained from (17) as follows:

SINR (ŵD)=
σ2

s1

Pi,D+Pn,D
=

σ2
s1

E

[
q∑

r=2
σ2

sr

∣∣ŵH
Dar

∣∣2
]
+E

[
σ2

nŵH
DŵD

] . (25)

Using (24) and the property of r̂ in (12), the interference output power
Pi,D is given by

Pi,D ≈
q∑

r=2

σ2
sr

∣∣wH
Dar

∣∣2 +
q∑

r=2

σ2
srE

[∣∣ŵH
c,Dar

∣∣2
]
≡ Pid + Pic, (26)

where Pid and Pic are the interference output powers associated with
wD and ŵc,D, respectively. Using wD and ŵc,D of (24) and the
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property of r̂ given by (13), we have

Pid =
q∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D ar

aH
1 Q−1

D a1

∣∣∣∣∣
2

(27)

and Pic =
q∑

r=2

σ2
srE

[∣∣̂rHQ−1
D PH

Dar

∣∣2
]

=
σ2

s1

m

q∑

r=2

σ2
sra

H
r PDQ−1

D QQ−1
D PH

Dar. (28)

Similar to the calculation in (26)–(28), we have the noise output power
Pn,D given as follows:

Pn,D ≈ σ2
nw

H
DwD + σ2

nE
[
ŵH

c,Dŵc,D

] ≡ Pnd + Pnc, (29)

Pnd = σ2
n

∥∥Q−1
D a1

∥∥2

(
aH

1 Q−1
D a1

)2 , (30)

and Pnc = σ2
ntr

(
Q−1

D PH
DPDQ−1

D E
[
r̂r̂H

])

=
σ2

s1σ
2
n

m
tr

(
Q−1

D PH
DPDQ−1

D Q
)
, (31)

where || · || and tr(·) are the Euclidean norm of a vector and the trace
of a matrix, respectively. Note that Pid, Pnd, Pic, and Pnc are all
positive by definition. Using the expression of Q in (3), the relationship
Q−1

D PH
D = PDQ−1

D , and PD of (24), the interference-plus-noise output
power Pic + Pnc due to ŵc,D can be written as

Pic + Pnc =
σ2

s1

m

[
tr

(
Q−1

D QQ−1
D Q

)− 2
aH

1 Q−1
D QQ−1

D QQ−1
D a1

aH
1 Q−1

D a1

+

(
aH

1 Q−1
D QQ−1

D a1

aH
1 Q−1

D a1

)2 ]
. (32)

Substituting (26), (27), (29), (30), and (32) into (25), we have an
approximated formula for SINR (ŵD) in terms of Q and QD given by

SINR (ŵD) ≈ σ2
s1

Pid + Pnd + Pic + Pnc

= σ2
s1




q∑
r=2

σ2
sr

∣∣∣a
H
1 Q−1

D ar

aH
1 Q−1

D a1

∣∣∣
2

+σ2
n
‖Q−1

D a1‖2

(aH
1 Q−1

D a1)2 + σ2
s1
m tr

(
Q−1

D QQ−1
D Q

)

−2σ2
s1
m · aH

1 Q−1
D QQ−1

D QQ−1
D a1

aH
1 Q−1

D a1
+ σ2

s1
m

(
aH
1 Q−1

D QQ−1
D a1

aH
1 Q−1

D a1

)2




−1

.(33)



484 Chen and Lee

In contrast to (18), Equation (33) provides a straightforward closed-
form to the output SINR of a MVDR beamformer with diagonal
loading. Especially, no cumbersome nonlinear equation has to be
solved before using (33), which prevents the potential possibility of
computational burden. However, one should notice that the formula
in (33) is valid only when the approximation used in (24) is a reasonable
one. The output SINRs of ŵ (the conventional MVDR beamformer)
and wD (the diagonal-loaded MVDR beamformer without finite
sample effect) can be obtained by substituting κ = 0 (QD = Q) and
m →∞, respectively, into (33) as follows:

SINR (ŵ) ≈ σ2
s1

q∑
r=2

σ2
sr

∣∣∣aH
1 Q−1ar

aH
1 Q−1a1

∣∣∣
2
+ σ2

n
‖Q−1a1‖2

(aH
1 Q−1a1)2 + (p−1)σ2

s1
m

, (34)

SINR (wD) ≈ σ2
s1




q∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D ar

aH
1 Q−1

D a1

∣∣∣∣∣
2

+ σ2
n

∥∥Q−1
D a1

∥∥2

(
aH

1 Q−1
D a1

)2



−1

. (35)

3.2. Output SINR Expression for Two Interferers

In spite of the advantages over (18), it is not easy to realize the influence
of system parameters and loading factors on the output SINR from (33)
due to the matrix manipulations. To get more insights into SINR (ŵD),
we further expand Q and Q−1

D in this section. However, the number q
of sources should be specified for further derivation. Here, we consider
q= 3 and derive Pid, Pnd, and Pic + Pnc, respectively.

For q = 3, Q and QD are reduced to

Q = σ2
s2a2aH

2 + σ2
s3a3aH

3 + σ2
nI (36)

and QD = σ2
s2a2aH

2 + σ2
s3a3aH

3 + σ̃2
nI, (37)

where σ̃2
n ≡ σ2

n + κ. Letting dij ≡ aH
i aj/p for i < j and applying the

matrix inversion lemma twice, we get the following expression for Q−1
D :

Q−1
D =

[
σ̃4

nI + σ2
s2σ̃

2
n

(
pI− a2aH

2

)
+ σ2

s3σ̃
2
n

(
pI− a3aH

3

)

+σ2
s2σ

2
s3

(
p2zbI− pZa

)
]

σ̃2
n

(
σ̃4

n + pσ2
s2σ̃

2
n + pσ2

s3σ̃
2
n + p2σ2

s2σ
2
s3zb

) , (38)

where Za ≡ a2aH
2 + a3aH

3 − d∗23a3aH
2 − d23a2aH

3 , zb ≡ 1 − |d23|2
are defined for simplicity, and {·}∗ denotes complex conjugate.
Using the expression of Q−1

D in (38), it is straightforward to obtain
the expressions for aH

1 Q−1
D a1, aH

1 Q−1
D a2, aH

1 Q−1
D a3, and ||Q−1

D a1||2
presented in Appendix A. When the angular separation for each pair
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of the incident signal sources is larger than a beamwidth and the
inter-element spacing of the array is appropriate, we can assume
that |dij |2 ¿ 1 for i 6= j [4, 31], which implies the adaptive array
is capable of differentiating the signal sources in the environment
normally. Applying this assumption and substituting (A1)–(A4) into
the Pid and Pnd of (33) yields

Pid ≈
σ2

s2

(
σ2

n + κ
)2 |d12|2(

σ2
n + κ + pσ2

s2

)2 +
σ2

s3

(
σ2

n + κ
)2 |d13|2(

σ2
n + κ + pσ2

s3

)2 (39)

and Pnd ≈ σ2
n

p
. (40)

Next, we derive Pic +Pnc under q = 3. For simplicity, let the three
terms in Pic + Pnc of (32) be defined as

Ω1 ≡ tr
(
Q−1

D QQ−1
D Q

)
, Ω2 ≡

aH
1 Q−1

D QQ−1
D QQ−1

D a1

aH
1 Q−1

D a1

,

and Ω3 ≡
aH

1 Q−1
D QQ−1

D a1

aH
1 Q−1

D a1

. (41)

Utilizing Q−1
D in (38) and Q in (36) and performing some algebraic

manipulations, we have Q−1
D Q and Q−1

D QQ−1
D Q shown in Appendix A.

Based on (36)–(38), (A1)–(A6) and after some lengthy algebraic
manipulations, it is straightforward to derive the expressions for Ω1,
Ω2, and Ω3. Similarly, using |dij |2 ¿1 for i 6= j, we obtain the
approximated Ω1, Ω2, and Ω3 given by (A7)–(A9). Combining the
terms in the square bracket of (32) and neglecting the higher order
terms of dij for i 6= j, we have the approximated Pic + Pnc given by

Pic + Pnc ≈ σ2
s1

m




3∑
r=2

κpσ2
sr

(σ2
n+κ)(pσ2

sr+σ2
n+κ)

(
σ2

n
σ2

n+κ
+ pσ2

sr+σ2
n

pσ2
sr+σ2

n+κ

)

+
2p2σ2

s2σ2
s3(σ2

n+κ)2|d23|2

(pσ2
s2+σ2

n+κ)2(pσ2
s3+σ2

n+κ)2 + σ4
n

(σ2
n+κ)2

(p− 1)


 . (42)

Moreover, it is shown in Appendix B that the term 2p2σ2
s2σ

2
s3(σ

2
n +

κ)2|d23|2/[(pσ2
s2 + σ2

n + κ)2(pσ2
s3 + σ2

n + κ)2] in the square bracket is
marginal and can be neglected when assuming 2|d23|2 ¿ 1. Hence, an
appropriate approximation for Pic + Pnc is given as follows:

Pic + Pnc ≈ σ2
s1

m

σ4
n

(σ2
n + κ)2

(p− 1)

+
σ2

s1

m

3∑

r=2

κpσ2
sr

(σ2
n + κ) (pσ2

sr + σ2
n + κ)

(
σ2

n

σ2
n + κ

+
pσ2

sr + σ2
n

pσ2
sr + σ2

n + κ

)
. (43)
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Based on the derived results in (39), (40), and (43), we obtain the
approximated SINR (ŵD) for q = 3 given by

SINR (ŵD) |q=3 ≈ σ2
s1

Pid + Pnd + Pic + Pnc

≈ σ2
s1




3∑
r=2

σ2
sr(σ2

n+κ)2|d1r|2
(σ2

n+κ+pσ2
sr)2

+ σ2
n
p + σ2

s1
m · σ4

n

(σ2
n+κ)2

(p− 1)

+σ2
s1
m

3∑
r=2

κpσ2
sr

(σ2
n+κ)(pσ2

sr+σ2
n+κ)

(
σ2

n
σ2

n+κ
+ pσ2

sr+σ2
n

pσ2
sr+σ2

n+κ

)




−1

. (44)

Since the output SINR in (44) is expressed in terms of system
parameters and loading factors, it provides more insights and is more
comprehensive than the expression in (18) or (33). The explicit formula
facilitates the analysis of distinct factors in the performance of MVDR
beamformers. Similar to (33)–(35), the more explicit formula for ŵ and
wD can be obtained by substituting κ = 0 and m → ∞, respectively,
into (44) as follows:

SINR (ŵ) |q=3 ≈ σ2
s1

[
3∑

r=2

σ2
srσ

4
n |d1r|2

(σ2
n + pσ2

sr)
2 +

σ2
n

p
+

σ2
s1

m
(p− 1)

]−1

, (45)

SINR (wD) |q=3 ≈ σ2
s1

[
3∑

r=2

σ2
sr

(
σ2

n + κ
)2 |d1r|2

(σ2
n + κ + pσ2

sr)
2 +

σ2
n

p

]−1

. (46)

For convenience, the derived formulas and corresponding assumptions
are summarized in Table 1.

Table 1. The summary of the derived output SINR formulas.

SINR (wD) SINR (ŵD) Assumptions

SINR in terms

of Q and QD

(35) (33)
1. 2 ≤ q < p

2. ŵD ≈ wD + ŵc,D

Explicit SINR

for q = 3
(46) (44)

1. q = 3

2. ŵD ≈ wD + ŵc,D

3. |dij |2 ¿ 1 for SINR (wD)

2|dij |2 ¿ 1 for SINR (ŵD)

Explicit SINR

for general q
(61) (62)

1. 2 ≤ q < p

2. ŵD ≈ wD + ŵc,D

3. |dij |2 ¿ 1 for SINR (wD)

2|dij |2 ¿ 1 for SINR (ŵD)
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4. DISCUSSIONS REGARDING THE THEORETICAL
RESULTS

In this section, we discuss the influence of the loading factor κ on Pid

associated with the infinite data performance and Pic +Pnc associated
with finite sample effect based on the approximated output SINR
expression in (44). In addition, the possibility of extending the scope
of (44)–(46) to the more general scenario 2 ≤ q < p is considered in
Section 4.3. For simplicity, the “≈” in (44) is replaced by “=” in the
following discussions.

4.1. The Characteristic of Pid

Based on (39), we have

Pid|κ→∞ =
3∑

r=2

σ2
sr |d1r|2 (47)

and Pid|κ=0 =
3∑

r=2

σ2
srσ

4
n |d1r|2

(σ2
n + pσ2

sr)
2 . (48)

The Pid in (47) and (48) are the interference output powers of a
phased array and a fully adaptive array without finite sample effect,
respectively. We note that Pid|κ=0 is always smaller than Pid|κ→∞
because of pσ2

sr. Using (39), the first derivative of Pid with respect to
κ is given by

P ′
id = 2p

3∑

r=2

σ4
sr

(
σ2

n + κ
) |d1r|2

(σ2
n + κ + pσ2

sr)
3 > 0. (49)

Based on the facts of Pid|κ→∞ > Pid|κ=0 and P ′
id > 0, it is found that

Pid is a monotonic increasing function of κ. This reveals that increasing
the loading level always leads to a larger Pid and is detrimental to the
performance of MVDR beamformers. In other words, the infinite data
performance in (46) always drops with the growth of the loading level.

Next, we explore the increasing rate of Pid with κ by evaluating
the upper bound of P ′

id. First, the second derivative of Pid is given by

P ′′
id = 2p

3∑

r=2

σ4
sr |d1r|2 pσ2

sr − 2σ2
n − 2κ

(σ2
n + κ + pσ2

sr)
4 , (50)

which indicates the variation of the slope of Pid. Let P ′
id,r and P ′′

id,r,
r = 2, 3, be the (r − 1)th term of the summations in (49) and
(50), respectively. It is found that P ′′

id,r is greater than zero for κ
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lower than (pσ2
sr − 2σ2

n)/2, and vice versa. That is, P ′
id,r increases

for κ < (pσ2
sr − 2σ2

n)/2 and decreases for κ > (pσ2
sr − 2σ2

n)/2. The
maximum P ′

id,r is located at κ = (pσ2
sr − 2σ2

n)/2 and is given by

maxP ′
id,r = P ′

id,r|κ=(pσ2
sr−2σ2

n)/2 =
8 |d1r|2

27p
. (51)

Therefore, the upper bound of P ′
id is

maxP ′
id =

8
27p

3∑

r=2

|d1r|2. (52)

Equation (52) implies that Pid increases slowly as κ increases because
of the assumption |d1r|2 ¿ 1, r 6= 1. In summary, increasing the
loading level results in a slight growth on Pid in (44). Under infinite
data samples, the weight vector wD can never be the optimal one in
the sense of maximum SINR unless κ = 0.

4.2. The Characteristics of Pic + Pnc

Using the result of (43), the term Pic + Pnc for κ →∞ and κ = 0 can
be derived to

Pic + Pnc|κ→∞ = 0 (53)

and

Pic + Pnc|κ=0 =
(p− 1)σ2

s1

m
, (54)

respectively. When the data sample size m is deficient, the Pic +Pnc of
the conventional MVDR beamformer in (45) may be substantial and
degrade the performance. On the other hand, it disappears when the
system is reduced to a phased array. Taking the first derivative of
Pic + Pnc and performing some necessary algebraic manipulations, we
obtain

(Pic+Pnc)
′ =

−2σ2
s1σ

4
n

m (σ2
n + κ)3

[
p− 1−

3∑

r=2

pσ2
sr

(
pσ2

sr + σ2
n

)2

(pσ2
sr + σ2

n + κ)3

]

−2pσ2
s1

m

3∑

r=2

κ2σ2
sr

[
3σ2

n

(
pσ2

sr+σ2
n

)
+κ

(
pσ2

sr+2σ2
n

)]

(σ2
n+κ)3 (pσ2

sr + σ2
n + κ)3

. (55)

Obviously, the second term on the right-hand side of (55) is non-
positive for κ ≥ 0. Moreover, the assumption of q = 3 < p and the fact
pσ2

sr(pσ2
sr + σ2

n)2/(pσ2
sr + σ2

n + κ)3 < 1 make the value of the square
bracket in (55) positive. Hence, the first term of (55) is negative, and
Pic + Pnc is a monotonic decreasing function of κ. This indicates that
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Pic+Pnc due to finite sample effect can always be reduced by increasing
the loading level at the price of increasing Pid. To enhance the output
SINR, it would be worth increasing κ if the reduction of Pic + Pnc is
much greater than the growth of Pid.

The slopes of Pic + Pnc for κ →∞ and κ = 0 are given by

(Pic + Pnc)
′ |κ→∞ = 0 (56)

and (Pic + Pnc)
′ |κ=0 =

−2σ2
s1

mσ2
n

(
p− 1−

3∑

r=2

pσ2
sr

pσ2
sr + σ2

n

)
, (57)

respectively. From (57), we note that the absolute value of the slope
for κ = 0 is large and Pic + Pnc decreases rapidly as κ increases in
the case of deficient sample size or strong desired signal power. A
small increment of κ would suppress the Pic + Pnc of the conventional
MVDR beamformer efficiently when the finite sample effect is severe.
For κ → ∞, both the magnitude and variation of Pic + Pnc are equal
to zero and hence, there is no finite sample effect on the output SINR
because the beamformer becomes a phased array without adaptation.
To examine the variation of the slope, we take the second derivative of
Pic + Pnc as follows:

(Pic + Pnc)
′′ =

6σ2
s1σ

4
n

m (σ2
n + κ)4

[
(p− 1)−

3∑

r=2

pσ2
srδ

2
r

(
4κ + δr + σ2

n

)

(δr + κ)4

]

+
6pσ2

s1

m

3∑

r=2

σ2
sr

(
4κ3δrσ

2
n + κ4σ2

n + κ4δr

)

(σ2
n + κ)4 (δr + κ)4

, (58)

where δr ≡ pσ2
sr + σ2

n > 0. The second term on the right-hand side
of (58) is nonnegative. After some algebraic manipulations, it can be
proved that each term of the summation in the square bracket of the
first term must be lower than 1. Similar to the condition in (55), the
first term on the right-hand side of (58) is positive since q = 3 < p.
Therefore, the second derivative of Pic + Pnc is positive, and the slope
of Pic + Pnc increases monotonically when κ increases from zero to
positive infinity. This fact implies the efficiency of eliminating Pic+Pnc

by increasing loading level is getting lower and lower. As a result,
applying a modest positive loading factor to a MVDR beamformer can
eliminate the Pic+Pnc due to finite sample effect efficiently at the price
of slight growth of Pid. However, excessive loading level may lead to
a larger Pid and depress the performance contrarily. A good choice of
the loading factor κ should lie in the range where Pic + Pnc has been
reduced greatly and Pid has not become significant yet.
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4.3. Generalize the Explicit Expressions to the q-sources
Scenario

It is possible to generalize the formula of (46) from q = 3 to any
2 ≤ q < p. The SINR(wD) for q = 2 and 1 can be obtained readily
by substituting σ2

s3 = 0 and σ2
s2 = σ2

s3 = 0 into (46), respectively, as
follows:

SINR (wD) |q=2 ≈ σ2
s1

[
σ2

s2

(
σ2

n + κ
)2 |d12|2(

σ2
n + κ + pσ2

s2

)2 +
σ2

n

p

]−1

, (59)

SINR (wD) |q=1 ≈ σ2
s1

[
σ2

n

p

]−1

. (60)

From (46), (59), and (60), we find that one term is produced in Pid

once an interferer is added. Based on this regularity, the approximated
formula of SINR(wD) for any 2 ≤ q < p could be generalized as follows:

SINR (wD)≈ σ2
s1

Pid + Pnd
≈ σ2

s1

[
q∑

r=2

σ2
sr

(
σ2

n+κ
)2 |d1r|2

(σ2
n+κ+pσ2

sr)
2 +

σ2
n

p

]−1

. (61)

Note that the restriction of q < p is required to satisfy |dij |2 ¿ 1 for
i 6= j, which was used to derive (46). It is proved by mathematical
induction [32, 33] in Appendix C that the Pid and Pnd in (33) or (35)
are approximately equal to those in (61), respectively, which confirms
the validity of (61).

Similar to the extension of SINR(wD) above, the SINR (ŵD)
in (44) could be generalized to the scenario of 2 ≤ q < p as follows:

SINR (ŵD) ≈ σ2
s1

Pid + Pnd + Pic + Pnc

≈ σ2
s1




q∑
r=2

σ2
sr(σ2

n+κ)2|d1r|2
(σ2

n+κ+pσ2
sr)2

+ σ2
n
p + σ2

s1
m · σ4

n

(σ2
n+κ)2

(p− 1)

+σ2
s1
m

q∑
r=2

κpσ2
sr

(σ2
n+κ)(pσ2

sr+σ2
n+κ)

(
σ2

n
σ2

n+κ
+ pσ2

sr+σ2
n

pσ2
sr+σ2

n+κ

)




−1

. (62)

In contrast to the implicit formula presented in (18), the output SINR
expression in (62) shows the influence of different parameters on the
performance explicitly. According to our investigation, it is not an easy
task to show that the Pic+Pnc in (62) can be derived from the Pic+Pnc

in (33) by mathematical induction. Instead of the mathematical proof,
we confirm the validity of generalizing Pic + Pnc experimentally in
the next section. As we will see from the simulations, the formula
in (62) usually meets the actual output SINR well for q > 3. Besides,
the results computed by (62) are sometimes more accurate than those
computed by (18).
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5. SIMULATION RESULTS

In this section, we present an example to confirm the validity of the
theoretical work. In this example, an eight-element ULA with half-
wavelength spacing is considered. The noise is complex white Gaussian
with zero mean and unit variance (σ2

n = 1). Seven zero mean complex
Gaussian signal sources with variances σ2

s1 ∼ σ2
s7 = [5 10 10 8 15 20 20]

(dB) and incident angles θ1 ∼ θ7 = [20◦ 40◦ 60◦ −3◦ −30◦ −35◦ −50◦]
off broadside are of interest in the following demonstration, where the
first one characterizes the single desired signal. The default settings
for the number of snapshots and the loading factor are 30 and 10 (i.e.,
10 dB above noise power), respectively. For all simulation results, the
output SINRs obtained from data samples are computed by (17) where
the mathematical expectation is replaced by the sample-average of 100
Monte Carlo trials. The theoretical results computed according to (62)
and (18) are presented for comparison.

First, we consider the case of q = 3 and examine the accuracy
of (44). The output SINR versus loading factor is shown in Figure 2.
The theoretical results computed by (44) are closer to the simulated
ones for κ < 60, while (18) provides more accurate results in the other
range. In spite of the bias for κ > 60, the differences between (44)
and the simulated results are within 0.5 dB. The curves of the output
SINR in Figure 2 are sharp when κ approaches zero. It achieves its
maximum for κ ≈ 50 and then drops gradually. This phenomenon

Figure 2. The output SINR versus loading factor for q = 3.
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can be explained by the theoretical terms Pid, Pnd, and Pic + Pnc

plotted in Figure 3. As we expected from the theoretical work in
Sections 4.1 and 4.2, Pid is a monotonically increasing function of κ
with a small increasing rate, and Pic+Pnc is a monotonically decreasing
one with a large decreasing rate for smaller κ’s. Since Pid is almost
invariant as compared with Pic+Pnc for κ approaching zero, the output

Figure 3. The theoretical terms versus loading factor for q = 3.

Figure 4. The output SINR versus desired signal power for q = 3.
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SINR is dominated by Pic + Pnc and increased rapidly. However, the
increasing Pid deteriorates the array performance when Pic + Pnc has
been reduced to a small level. An appropriate loading factor offering
desirable performance should be in the region where Pic +Pnc has been
suppressed greatly and Pid has not become significant yet. For κ equal

Figure 5. The theoretical terms versus desired signal power for q = 3.

Figure 6. The output SINR versus number of data snapshots for
q = 3.
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to 0 and 10, the output SINRs and theoretical terms Pid, Pnd, and
Pic + Pnc with varying desired signal power and number of snapshots
are presented in Figures 4–7, respectively. In Figure 4, the theoretical
results computed by (44) are almost the same as the simulated ones
for κ = 10 in contrast to (18), especially for σ2

s1 ≥ 8 dB. However,
using (44) causes more errors than (18) for κ = 0. These errors are
due to the approximations of ŵ ≈ wo + ŵc in (22) and |dij |2 ¿ 1
in derivation. The reason why the MVDR beamformer with κ = 10
is superior to the same beamformer without diagonal loading can be
seen from Figure 5. The curves of Pid or Pnd for κ = 0 and κ = 10
are almost undistinguishable. Nonetheless, setting κ = 10 eliminates
Pic + Pnc efficiently for large σ2

s1 and therefore, improves the output
SINR as we discussed in Section 4.2. In Figure 6, the proposed formula
of (44) predicts the simulated output SINR for κ = 10 and m < 150
well, but the results computed by (18) are more accurate for κ = 0 and
m < 60. Likewise, the reason of the performance improvement in the
presence of diagonal loading can be interpreted with Figure 7. Again,
the suppression of Pic + Pnc with a nonzero loading factor leads to
higher output SINRs since Pid + Pnd for κ = 0 and κ = 10 are almost
the same.

Next, we consider the more general scenario of 3 ≤ q < p and
confirm the extension in Section 4.3. Figure 8 gives a comparison of the
Pid+Pnd in (33) and (62) according to different q’s, and Figure 9 shows

Figure 7. The theoretical terms versus number of data snapshots for
q = 3.



Progress In Electromagnetics Research, Vol. 134, 2013 495

Figure 8. The Pid + Pnd versus loading factor with different q’s. –:
using the Pid + Pnd of (33). ◦: using the Pid + Pnd of (62).

Figure 9. The Pic + Pnc versus loading factor with different q’s. –:
using the Pic + Pnc of (33). ◦: using the Pic + Pnc of (62).

the Pic + Pnc. It is observed that the curves of the theoretical terms
in (33) and (62) are close for 3 ≤ q ≤ 5 but different for 6 ≤ q ≤ 7. The
errors for 6 ≤ q ≤ 7 are attributed to the smaller angular separation
between θ5 and θ6. The corresponding |d56|2 is about 0.75, which
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breaks the assumption 2|dij |2 ¿ 1 in deriving (62) and therefore, leads
to more significant errors. However, the consistency between (33) and
(62) for 3 ≤ q ≤ 5 in this example confirms the validity of the extension
from q = 3 to q > 3. Moreover, it is seen from Figures 8–9 that Pid+Pnd

is in general an increasing function and Pic + Pnc is a decreasing one
as we analyzed the case of q = 3 in Sections 4.1–4.2. The accuracy

Figure 10. The output SINR versus number of sources.

Figure 11. The output SINR versus loading factor for q = 5.
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of (62) for 2 ≤ q < p is examined in Figure 10, where the output
SINR versus number of sources is plotted. The curve of (62) predicts
the output SINR well in the presence of loading factor. It is noted
that the performance of the MVDR beamformer with diagonal loading
could be degraded with the growth of q. On the other hand, the output

Figure 12. The output SINR versus desired signal power for q = 5.

Figure 13. The output SINR versus number of data snapshots for
q = 5.
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SINR of the conventional MVDR beamformer is almost invariant to the
number of interferers. Figures 11–13 are corresponding to Figures 2, 4,
and 6, respectively, but with q equal to 5. The effects of the diagonal
loading factor on the array performance in Figures 11–13 are similar
to Figures 2–7. Again, the validity of the extension in Section 4.3 and
the accuracy of the proposed formula (62) for q = 5 are confirmed.

6. CONCLUSION

In this paper, approximated closed-form formulas for the output SINR
of MVDR array beamformers with diagonal loading under finite data
samples are derived. The conventional MVDR beamformer without
diagonal loading and the diagonal-loaded MVDR beamformer without
finite sample effect are special cases of our research work. The provided
output SINR expressions are more useful and comprehensive than
the existing formula in the literature. According to the theoretical
analysis, the effects of the positive loading factor on the performance
of MVDR beamformers can be clearly explained. Moreover, the
presented closed-form could be applied to a general situation with
one desired signal and multiple interferers. Simulation results have
been presented for confirming the validity of the theoretical results
and making comparison with the existing results.

APPENDIX A.

The functions mentioned in Section 3 are provided in this appendix.
The variables Za, zb, zc, zd, ze, zf , and zg are defined as Za ≡
a2aH

2 + a3aH
3 − d∗23a3aH

2 − d23a2aH
3 , zb ≡ 1 − |d23|2, zc ≡ 1 −

|d23|2 − |d12|2 − |d13|2 + zd, zd ≡ 2Re(d12d
∗
13d23), ze ≡ d12 − d13d

∗
23,

zf ≡ d13 − d12d23, and zg ≡ zba1 − z∗ea2 − z∗fa3, respectively. Re{·}
denotes the real part of a complex number.
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]

+p3σ4
s2σ

4
s3σ̃

4
nzbZa + p3σ4

s2σ
4
s3σ

4
nzb (pzbI− Za)





σ̃4
n

(
σ̃4

n + pσ2
s2σ̃

2
n + pσ2

s3σ̃
2
n + p2σ2

s2σ
2
s3zb

)2 , (A6)

Ω1 ≈





pσ4
nσ̃8

n + 2pσ2
s2σ

2
nσ̃6

n

[
σ̃2

n + (p− 1)σ2
n

]

+2pσ2
s3σ

2
nσ̃6

n

[
σ̃2

n + (p− 1) σ2
n

]

+p2σ4
s2σ̃

4
n

[
σ̃4

n+(p−1) σ4
n

]
+p2σ4

s3σ̃
4
n

[
σ̃4

n+(p− 1) σ4
n

]

+2p2σ2
s2σ

2
s3σ̃

4
n

[
|d23|2 σ̃4

n + 4σ2
nσ̃2

n + (2p− 4)σ4
n

]

+p4σ4
s2σ

4
s3

[
2σ̃4

n + (p− 2)σ4
n

]

+2p3σ4
s2σ

2
s3σ̃

2
n

[
σ̃4

n + σ2
nσ̃2

n + (p− 2)σ4
n

]

+2p3σ2
s2σ

4
s3σ̃

2
n

[
σ̃4

n + σ2
nσ̃2

n + (p− 2)σ4
n

]





σ̃4
n

(
pσ2

s2 + σ̃2
n

)2 (
pσ2

s3 + σ̃2
n

)2 , (A7)
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Ω2≈





σ4
nσ̃12

n + pσ2
s2σ

2
nσ̃10

n

(
2 |d12|2 σ̃2

n + 3σ2
n

)

+pσ2
s3σ

2
nσ̃10

n

(
2 |d13|2 σ̃2

n + 3σ2
n

)

+p2σ4
s2σ̃

8
n

(
|d12|2 σ̃4

n + 3σ4
n

)

+p2σ4
s3σ̃

8
n

(
|d13|2 σ̃4

n + 3σ4
n

)

+p2σ2
s2σ

2
s3σ̃

8
n

[
zdσ̃

4
n+9σ4

n+6
(
|d12|2+|d13|2−zd

)
σ2

nσ̃2
n

]

+p3σ4
s2σ

2
s3σ̃

6
n

[
3 |d12|2 σ̃4

n+9σ4
n+6

(
|d13|2 − zd

)
σ2

nσ̃2
n

]

+p3σ2
s2σ

4
s3σ̃

6
n

[
3 |d13|2 σ̃4

n+9σ4
n+6

(
|d12|2 − zd

)
σ2

nσ̃2
n

]

+p3σ6
s2σ

4
nσ̃6

n + p3σ6
s3σ

4
nσ̃6

n

+p4σ4
s2σ

4
s3σ̃

4
n

[
3

(
|d12|2 + |d13|2 − zd

)
σ̃4

n + 9σ4
n

+2
(
2 |d12|2 |d23|2 + 2 |d13|2 |d23|2 − zd

)
σ2

nσ̃2
n

]

+p4σ2
s2σ

6
s3σ̃

4
n

[
2

(
|d12|2 − zd

)
σ2

nσ̃2
n + 3σ4

n

]

+p4σ6
s2σ

2
s3σ̃

4
n

[
2

(
|d13|2 − zd

)
σ2

nσ̃2
n + 3σ4

n

]

+p5σ4
s2σ

6
s3σ̃

2
n

[(
|d12|2 − zd

)
σ̃4

n + 3σ4
n

]

+p5σ6
s2σ

4
s3σ̃

2
n

[(
|d13|2 − zd

)
σ̃4

n + 3σ4
n

]
+ p6σ6

s2σ
6
s3σ

4
n





σ̃4
n

(
pσ2

s2 + σ̃2
n

)3 (
pσ2

s3 + σ̃2
n

)3 ,(A8)

Ω3≈





σ2
nσ̃8

n + pσ2
s2σ̃

6
n

(
σ̃2

n |d12|2 + 2σ2
n

)

+pσ2
s3σ̃

6
n

(
σ̃2

n |d13|2 + 2σ2
n

)

+2p2σ2
s2σ

2
s3σ̃

4
n

[
σ̃2

n

(
|d12|2 + |d13|2 − zd

)
+ 2σ2

n

]

+p2σ4
s2σ

2
nσ̃4

n + p2σ4
s3σ

2
nσ̃4

n + p4σ4
s2σ

4
s3σ

2
n

+p3σ4
s2σ

2
s3σ̃

2
n

[
σ̃2

n

(
|d13|2 − zd

)
+ 2σ2

n

]

+p3σ2
s2σ

4
s3σ̃

2
n

[
σ̃2

n

(
|d12|2 − zd

)
+ 2σ2

n

]





σ̃2
n

(
pσ2

s2 + σ̃2
n

)2 (
pσ2

s3 + σ̃2
n

)2 . (A9)

APPENDIX B.

In this appendix, we explain the details about the approximation
from (42) to (43). Reorganizing the terms in the square bracket of (42),
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Pic + Pnc can be expressed by

Pic + Pnc ≈ σ2
s1

m
(Ψ1 + Ψ2 + Ψ3 + Ψ4) , (B1)

where

Ψ1≡
3∑

r=2

κpσ2
srσ

2
n

(σ2
n+κ)2 (pσ2

sr+σ2
n+κ)

, Ψ2≡
3∑

r=2

κpσ2
sr

(
pσ2

sr+σ2
n

)

(σ2
n+κ) (pσ2

sr+σ2
n+κ)2

,

Ψ3≡
2p2σ2

s2σ
2
s3

(
σ2

n+κ
)2 |d23|2(

pσ2
s2+σ2

n+κ
)2 (

pσ2
s3+σ2

n+κ
)2 , and Ψ4 ≡ σ4

n

(σ2
n+κ)2

(p−1) (B2)

are defined for the ease of discussion. First, we compare the magnitudes
of Ψ2 and Ψ3. According to the inequality of arithmetic and geometric
means, the lower bound of Ψ2 is given by

Ψ2 ≥
2pσs2σs3

√(
pσ2

s2+σ2
n

) (
pσ2

s3+σ2
n

)(
pσ2

s2+σ2
n+κ

)(
pσ2

s3+σ2
n+κ

)
(
pσ2

s2+σ2
n+κ

)2 (
pσ2

s3 + σ2
n + κ

)2

× κ

σ2
n + κ

. (B3)

It can be shown that κ/(σ2
n + κ) is an increasing function of κ for

κ ≥ 0 by examining its first derivative. Comparing (B3) and Ψ3 in
(B2), we notice that Ψ3 can be neglected when κ ≥ σ2

n and 2|d23|2 ¿ 1
hold. Besides, the condition 2|d23|2 ¿ 1 can be relaxed with the
growth of interference powers. For instance, if pσ2

s2 ≥ (σ2
n + κ) and

pσ2
s3 ≥ (σ2

n +κ), the condition required for approximating Ψ3 would be
relaxed to |d23|2 ¿ 2. As to the case of κ ≤ σ2

n, we consider Ψ3 + Ψ4

given by

Ψ3 + Ψ4 =

2p2σ2
s2σ

2
s3

(
σ2

n + κ
)4 |d23|2

+ (p− 1)
(
pσ2

s2 + σ2
n + κ

)2 (
pσ2

s3 + σ2
n + κ

)2
σ4

n(
pσ2

s2 + σ2
n + κ

)2 (
pσ2

s3 + σ2
n + κ

)2 (σ2
n + κ)2

. (B4)

In the numerator of (B4), it is easy to show that (σ2
n + κ)4 is an

increasing function of κ for κ ≥ 0. Therefore, the maximum of
2p2σ2

s2σ
2
s3(σ

2
n +κ)4|d23|2 for 0 ≤ κ ≤ σ2

n is 32p2σ2
s2σ

2
s3σ

4
n×σ4

n|d23|2. On
the other hand, applying the inequality of arithmetic and geometric
means to the second term of the numerator yields

(p− 1)
(
pσ2

s2 + σ2
n + κ

)2 (
pσ2

s3 + σ2
n + κ

)2
σ4

n

≥ (p− 1) 16p2σ2
s2σ

2
s3σ

4
n ×

(
σ2

n + κ
)2

. (B5)
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From the assumptions of q = 3 < p and |d23|2 ¿ 1, the comparison
of Ψ3 + Ψ4 indicates that Ψ3 ¿ Ψ4 for 0 ≤ κ ≤ σ2

n. Based on the
observation and discussion above, we conclude Ψ3 is relative marginal
in Pic + Pnc and can be neglected by assuming 2|d23|2 ¿ 1.

APPENDIX C.

In this appendix, we apply the well-known mathematical induc-
tion [32, 33] to prove the output SINR in (61) is a reasonable approx-
imated result of (35) after expanding Q−1

D . First, substituting q = 2
into (61) yields the result of (59), which is shown to be true in Sec-
tion 4.3. Next, we suppose that the Pid and Pnd in (35) can be derived
and simplified to those in (61) for q = v. Then, we have

Pid(v) =
v∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v)ar

aH
1 Q−1

D(v)a1

∣∣∣∣∣

2

≈
v∑

r=2

σ2
sr

(
σ2

n + κ
)2 |d1r|2

(σ2
n + κ + pσ2

sr)
2 , (C1)

Pnd(v) = σ2
n

∥∥∥Q−1
D(v)a1

∥∥∥
2

(
aH

1 Q−1
D(v)a1

)2 ≈
σ2

n

p
, (C2)

where the subscript (v) denotes the particular case of q = v. Based
on (C1) and (C2), we then show that the output SINR of (61) can be
derived from (35) under q = v + 1.

Since the analysis in Section 3.1 is suitable for a general q, we
apply (27) to obtain the Pid for q = v + 1 as follows:

Pid(v+1)=
v+1∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v+1)ar

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

=
v∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v+1)ar

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

+ σ2
s(v+1)

∣∣∣∣∣
aH

1 Q−1
D(v+1)av+1

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

. (C3)

Applying the matrix inversion lemma to Q−1
D(v+1), we have

Q−1
D(v+1) = Q−1

D(v)

(
I−

av+1aH
v+1Q

−1
D(v)

σ−2
s(v+1) + aH

v+1Q
−1
D(v)av+1

)
. (C4)

Pre-multiplying aH
1 and post-multiplying a1 and ar, r=2, 3, . . . , v, to

Q−1
D(v+1), we obtain

aH
1 Q−1

D(v+1)a1=aH
1 Q−1

D(v)a1−
aH

1 Q−1
D(v)av+1aH

v+1Q
−1
D(v)a1

σ−2
s(v+1) + aH

v+1Q
−1
D(v)av+1

(C5)
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and aH
1 Q−1

D(v+1)ar =aH
1 Q−1

D(v)ar−
aH

1 Q−1
D(v)av+1aH

v+1Q
−1
D(v)ar

σ−2
s(v+1) + aH

v+1Q
−1
D(v)av+1

. (C6)

Now, consider the diagonal-loaded weight vector w1 = Q−1
D(v)a1

without normalized scalar. Since QD(v) contains the 2nd to vth
signal sources, the directions of a1, av+1, and ar, r = 2, 3, . . . , v, are
regarded as the desired signal, noise, and interference, respectively.
The responses of w1 in the three directions are different and in general,
wH

1 a1 is much larger than wH
1 av+1 and wH

1 ar. Therefore,

aH
1 Q−1

D(v)a1 À aH
1 Q−1

D(v)av+1

and aH
1 Q−1

D(v)a1 À aH
1 Q−1

D(v)ar. (C7)

On the other hand, if the steering vector of the desired signal becomes
av+1, the according weight vector is w2= Q−1

D(v)av+1. To w2, the
directions of a1, av+1, and ar are identified as the noise, desired signal,
and interference, respectively. Similarly, we have

aH
v+1Q

−1
D(v)av+1 À aH

v+1Q
−1
D(v)a1

and aH
v+1Q

−1
D(v)av+1 À aH

v+1Q
−1
D(v)ar. (C8)

Note that (C7) and (C8) hold because the 1st and (v+1)th sources
are excluded from QD(v) and all the (v+1) sources are assumed to be
separate enough so that |dij |2 ¿ 1, i 6= j. Combining (C7) and (C8)
yields

aH
1 Q−1

D(v)a1 ≈ aH
v+1Q

−1
D(v)av+1 À aH

1 Q−1
D(v)av+1 ≈ aH

v+1Q
−1
D(v)a1

and
aH

1 Q−1
D(v)a1 ≈ aH

v+1Q
−1
D(v)av+1 À aH

1 Q−1
D(v)ar ≈ aH

v+1Q
−1
D(v)ar. (C9)

According to (C9), aH
1 Q−1

D(v+1)a1 in (C5) and aH
1 Q−1

D(v+1)ar in (C6)
can be approximated to

aH
1 Q−1

D(v+1)a1 ≈ aH
1 Q−1

D(v)a1 (C10)

and aH
1 Q−1

D(v+1)ar ≈ aH
1 Q−1

D(v)ar, (C11)

respectively. Using (C1), (C10), and (C11), the summation term on
the right-hand side of (C3) can be approximated to

v∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v+1)ar

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

≈
v∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v)ar

aH
1 Q−1

D(v)a1

∣∣∣∣∣

2

≈
v∑

r=2

σ2
sr

(
σ2

n + κ
)2 |d1r|2

(σ2
n + κ + pσ2

sr)
2 . (C12)
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Further, applying the results of (C10) and (C11), we have

aH
1 Q−1

D(v+1)a1 ≈ aH
1 Q̇−1

D(v)a1 (C13)

and
aH

1 Q−1
D(v+1)av+1 ≈ aH

1 Q̇−1
D(v)av+1, (C14)

where Q̇D(v) is obtained by removing one of the 2nd to vth sources
from QD(v+1). Analogous to each term of (C12), the second term on
the right-hand side of (C3) can be approximated to

σ2
s(v+1)

∣∣∣∣∣
aH

1 Q−1
D(v+1)av+1

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

≈ σ2
s(v+1)

∣∣∣∣∣
aH

1 Q̇−1
D(v)av+1

aH
1 Q̇−1

D(v)a1

∣∣∣∣∣

2

≈
σ2

s(v+1)

(
σ2

n + κ
)2 ∣∣d1(v+1)

∣∣2
(
σ2

n + κ + pσ2
s(v+1)

)2 . (C15)

It follows from (C12) and (C15) that the Pid for q = v + 1 is given by

Pid(v+1) =
v+1∑

r=2

σ2
sr

∣∣∣∣∣
aH

1 Q−1
D(v+1)ar

aH
1 Q−1

D(v+1)a1

∣∣∣∣∣

2

≈
v+1∑

r=2

σ2
sr

(
σ2

n + κ
)2 |d1r|2

(σ2
n + κ + pσ2

sr)
2 . (C16)

Next, consider the Pnd in (30) for q = v + 1 as follows:

Pnd(v+1) = σ2
n

∥∥∥Q−1
D(v+1)a1

∥∥∥
2

(
aH

1 Q−1
D(v+1)a1

)2 , (C17)

where the squared norm of Q−1
D(v+1)a1 can be derived to

∥∥∥Q−1
D(v+1)a1

∥∥∥
2
=

∥∥∥Q−1
D(v)a1

∥∥∥
2
+

∣∣∣∣∣
aH

v+1Q
−1
D(v)a1

σ−2
s(v+1)+aH

v+1Q
−1
D(v)av+1

∣∣∣∣∣

2 ∥∥∥Q−1
D(v)av+1

∥∥∥
2

−2Re

(
aH

v+1Q
−1
D(v)a1

σ−2
s(v+1)+aH

v+1Q
−1
D(v)av+1

aH
1 Q−1

D(v)Q
−1
D(v)av+1

)
(C18)

according to (C4). Again, utilizing the relationship of (C9), equation
(C18) can be approximated to

∥∥∥Q−1
D(v+1)a1

∥∥∥
2
≈

∥∥∥Q−1
D(v)a1

∥∥∥
2
. (C19)



Progress In Electromagnetics Research, Vol. 134, 2013 505

Substituting (C19) and (C10) into (C17) and utilizing (C2) yield

Pnd(v+1) = σ2
n

∥∥∥Q−1
D(v+1)a1

∥∥∥
2

(
aH

1 Q−1
D(v+1)a1

)2 ≈ σ2
n

∥∥∥Q−1
D(v)a1

∥∥∥
2

(
aH

1 Q−1
D(v)a1

)2 ≈
σ2

n

p
. (C20)

From the Pid in (C16) and Pnd in (C20), we have the approximated
output SINR for q = v+ 1 given by

SINR (wD) |q=v+1 =
σ2

s1

Pid(v+1) + Pnd(v+1)

≈ σ2
s1

[
v+1∑

r=2

σ2
sr

(
σ2

n + κ
)2 |d1r|2

(σ2
n + κ + pσ2

sr)
2 +

σ2
n

p

]−1

, (C21)

which is the same as (61) with q replaced by v+1. Therefore, it is
proved by mathematical induction that the approximated SINR(wD)
in (61) is valid for 2 ≤ q < p, which also confirms the validity of the
Pid and Pnd in (61) and (62).
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