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Abstract—Two efficient unconditionally-stable four-stages split-
step (SS) finite-difference time-domain (FDTD) methods based on
controlling parameters are presented, which provide low numerical
dispersion. Firstly, in the first proposed method, the Maxwell’s
matrix is split into four sub-matrices. Simultaneously, two controlling
parameters are introduced to decrease the numerical dispersion error.
Accordingly, the time step is divided into four sub-steps. The second
proposed method is obtained by adjusting the sequence of the sub-
matrices deduced in the first method. Secondly, the theoretical
proofs of the unconditional stability and dispersion relations of the
proposed methods are given. Furthermore, the processes of obtaining
the controlling parameters for the proposed methods are shown.
Thirdly, the dispersion characteristics of the proposed methods are also
investigated, and numerical dispersion errors of the proposed methods
can be decreased significantly. Finally, to substantiate the efficiency of
the proposed methods, numerical experiments are presented.

1. INTRODUCTION

Recently, to remove the Courant-Friedrichs-Lewy (CFL) [1] limita-
tion on the time step size of the finite-difference time-domain (FDTD)
method [2], an unconditionally-stable FDTD method based on the al-
ternating direction implicit (ADI) technique has been developed [3, 4].
The ADI-FDTD method has second-order accuracy both in time and
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space. Moreover, the numerical dispersion of the ADI-FDTD method
was analyzed in [5]. Nevertheless, it presents large numerical disper-
sion error with large time steps. To improve the dispersion perfor-
mance, several methods were proposed, such as error-reduced [6], iter-
ative [7, 8], parameter-optimized [9–12], and artificial-anisotropy meth-
ods [13–18].

Along the same line, other unconditionally stable methods such
as split-step [19–27], locally-one-dimensional (LOD) [28] and leapfrog
ADI [29, 30] FDTD methods were developed. The high-order split-
step FDTD method in [21] has six stages and is represented as 6-
stages SS-FDTD herein. Moreover, the method in [22] has four stages
and is denoted as 4-stages SS-FDTD 1 herein, and the four-stages
split-step FDTD method for low anisotropy in [23] is denoted as 4-
stages SS-FDTD 2. An improved six-stages split-step FDTD method
was presented in [27]. The LOD-FDTD method can be considered
as the split-step approach (SS1) with first-order accuracy in time,
which consumes less CPU time than that of the ADI-FDTD method.
Moreover, 3-D LOD-FDTD methods were shown in [31, 32]. The
fourth-order LOD-FDTD was presented in [33]. An arbitrary-order
3-D LOD-FDTD method was proposed in [34]. However, similar
to the ADI-FDTD method, the LOD-FDTD method also has a
larger numerical dispersion error at larger time steps. Subsequently,
modified LOD-FDTD methods with low dispersion proposed in [35–
38]. Moreover, an efficient method to reduce the numerical dispersion
in the LOD-FDTD method based on the (2, 4) stencil was proposed
in [39].

To reduce the numerical dispersion error further, two efficient four-
stages split-step FDTD methods in two dimensions are proposed in this
paper. Firstly, the Maxwell’s matrix is split into four sub-matrices.
Simultaneously, the controlling parameters are added to reduce the
numerical dispersion error. Accordingly, the time step is divided into
four sub-steps. Then, the first proposed method is generated, which
is denoted by efficient 4-stages SS-FDTD 1. The second proposed
method is deduced by adjusting the sequence of the sub-matrices,
denoted by efficient 4-stages SS-FDTD 2. Secondly, the proposed
methods are proven to be unconditionally stable by using the Fourier
method. Furthermore, the dispersion analyses are given. Moreover, the
processes of obtaining the controlling parameters are shown. Thirdly,
the numerical dispersion characteristics of the proposed methods are
analyzed and compared with the ADI-FDTD, 3-stages SS-FDTD, 6-
stages SS-FDTD, and the initial 4-stages SS-FDTD methods, which
can be improved significantly. Finally, numerical experiments are
presented to verify the properties of the proposed methods.
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2. NEW NUMERICAL FORMULATIONS

2.1. The Efficient 4-stages SS-FDTD 1 Method

For simplicity, the 2-D TMz wave propagation in a linear, isotropic,
non-dispersive and lossless medium is considered here. ε and µ are the
electric permittivity and magnetic permeability, respectively. Then,
the Maxwell’s equations can be written in a matrix form as

∂~u/∂t = [M ] ~u. (1)

where ~u = [Ez,Hx,Hy]T , and [M ] is the Maxwell’s matrix as

[M ] =




0 −1
ε

∂
∂y

1
ε

∂
∂x

− 1
µ

∂
∂y 0 0

1
µ

∂
∂x 0 0


 [A] =




0 0 1
ε

∂
∂x

0 0 0
1
µ

∂
∂x 0 0


 [B]

=




0 −1
ε

∂
∂y 0

− 1
µ

∂
∂y 0 0

0 0 0




According to x and y directions, the matrix [M ] is decomposed into
four parts [A]/2, [B]/2, [A]/2, [B]/2. Simultaneously, controlling
parameters of Cx and Cy are introduced to decrease the numerical
dispersion error. Then, (1) can be written as

∂~u/∂t = Cx · [A]/2 ·~u+Cy · [B]/2 ·~u+Cx · [A]/2 ·~u+Cy · [B]/2 ·~u. (2)

By using the split-step scheme [19], (2) is divided into four sub-
equations. From n to n+1, one time step is divided into four sub-steps
accordingly, n → n + 1/4, n + 1/4 → n + 2/4, n + 2/4 → n + 3/4, and
n + 3/4 → n + 1, by successively solving

sub-step 1: ∂~u/∂t=4 · Cx · [A]/2 · ~u n → n + 1/4 (3a)
sub-step 2: ∂~u/∂t=4 · Cy · [B]/2 · ~u n + 1/4 → n + 2/4 (3b)
sub-step 3: ∂~u/∂t=4 · Cx · [A]/2 · ~u n + 2/4 → n + 3/4 (3c)
sub-step 4: ∂~u/∂t=4 · Cy · [B]/2 · ~u. n + 3/4 → n + 1 (3d)

Moreover, the right side of the above equations can be
approximated by using the Crank-Nicolson scheme. Subsequently, four
sub-procedures are generated as follows

([I]−∆t/4 · Cx · [A]) ~un+1/4 = ([I] + ∆t/4 · Cx · [A]) ~un (4a)

([I]−∆t/4 · Cy · [B]) ~un+2/4 = ([I] + ∆t/4 · Cy · [B]) ~un+1/4 (4b)

([I]−∆t/4 · Cx · [A]) ~un+3/4 = ([I] + ∆t/4 · Cx · [A]) ~un+2/4 (4c)

([I]−∆t/4 · Cy · [B]) ~un+1 = ([I] + ∆t/4 · Cy · [B]) ~un+3/4. (4d)
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where [I] is a 3× 3 identity matrix. (4a)–(4d) are the formulations of
the efficient 4-stages SS-FDTD 1 method. The number of sub-steps of
this proposed method is four, same as that of the 4-stages SS-FDTD 1
method in [22], except those of controlling parameters Cx and Cy.
Specifically, when Cx = Cy = 1, (4a)–(4d) can simply be reduced to
the formulation of 4-stages SS-FDTD 1 method. In other words, the
execution procedure of this proposed method is similar to the 4-stages
SS-FDTD 1 method, which means that there is no extra computational
complexity involved. For instance, for the sub-step 1, after a series of
manipulation, (4a) can be expressed as[

1+
(Cx∆t)2

8µε (∆x)2

]
Ez

∣∣∣n+1/4
i,j −

[
(Cx∆t)2

16µε (∆x)2

](
Ez

∣∣∣n+1/4
i+1,j +Ez

∣∣∣n+1/4
i−1,j

)

=

[
1− (Cx∆t)2

8µε (∆x)2

]
Ez

∣∣n
i,j +

[
(Cx∆t)2

16µε (∆x)2

]
(
Ez

∣∣n
i+1,j + Ez

∣∣n
i−1,j

)

+
Cx∆t

2ε∆x

(
Hy

∣∣∣ni+1/2,j −Hy

∣∣∣ni−1/2,j

)
(5a)

Hx

∣∣∣n+1/4
i,j+1/2 = Hx

∣∣∣ni,j+1/2 (5b)

Hy

∣∣∣n+1/4
i+1/2,j = Hy

∣∣∣ni+1/2,j +
Cx∆t

4µ∆x

(
Ez

∣∣∣n+1/4
i+1,j − Ez

∣∣∣n+1/4
i,j

)

+
Cx∆t

4µ∆x

(
Ez

∣∣n
i+1,j− Ez

∣∣n
i,j

)
. (5c)

It can be found that only (5a) and (5c) need to be solved in this
sub-step. (5a) is a linear system with a tri-diagonal coefficient matrix;
it can be solved efficiently with special numerical packages. In addition,
(5c) is an explicit equation that can be computed directly. Similar
update equations can be achieved for other sub-steps.

2.2. The Efficient 4-stages SS-FDTD 2 Method

Adjusting the sequence of the sub-matrices in the form of [A]/2, [B]/2,
[B]/2, [A]/2, which is different from the sequence in the first proposed
method, a series of operations are taken, which are similar to the
efficient 4-stages SS-FDTD 1 method, four sub procedures are acquired
as follows

([I]−∆t/4 · Cx · [A]) ~un+1/4 = ([I] + ∆t/4 · Cx · [A]) ~un (6a)

([I]−∆t/4 · Cy · [B]) ~un+2/4 = ([I] + ∆t/4 · Cy · [B]) ~un+1/4 (6b)

([I]−∆t/4 · Cy · [B]) ~un+3/4 = ([I] + ∆t/4 · Cy · [B]) ~un+2/4 (6c)

([I]−∆t/4 · Cx · [A]) ~un+1 = ([I] + ∆t/4 · Cx · [A]) ~un+3/4. (6d)
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Then, the formulation of the efficient 4-stages SS-FDTD 2 method
is generated. A similar manipulation is adopted for the above
equations, which is mentioned in the efficient 4-stages SS-FDTD 1
method. Therefore, two proposed methods have similar formulations.
Moreover, the number of sub-steps of the second proposed method is
four, and it is the same as that of the 4-stages SS-FDTD 2 method
in [23], except those of controlling parameters Cx and Cy. Specifically,
when Cx = Cy = 1, (6a)–(6d) can simply be reduced to the formulation
of the 4-stages SS-FDTD 2 method.

Note that in the above formulations of (5a)–(5c), there are one
implicit equation and one explicit equation; therefore, there are eight
equations to be computed in total for four sub-steps (i.e., a whole time
step). However, in the 2-D ADI-FDTD method [3] and 2-D LOD-
FDTD method [28], six and four equations to be computed in two
sub-steps, respectively. In the 2-D 3-stages SS-FDTD method [19] and
2-D 6-stages SS-FDTD method [21], six and twelve equations to be

Table 1. Number of arithmetic operations and tri-diagonal matrices.

Method
ADI-

FDTD

LOD-

FDTD

3-stages

SS-FDTD

Number of tri-

Diagonal matrices
2 2 3

Implicit
M/D 4 6 9

A/S 8 8 12

Explicit
M/D 4 2 3

A/S 8 8 12

Total
M/D 8 8 12

A/S 16 16 24

Method
6-stages

SS-FDTD

4-stages

SS-FDTD 1/

first proposed

4-stages

SS-FDTD 2/

second proposed

Number of tri-

Diagonal matrices
6 4 4

Implicit
M/D 18 12 12

A/S 24 16 16

Explicit
M/D 6 4 4

A/S 24 16 16

Total
M/D 24 16 16

A/S 48 32 32
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computed in a full time step, respectively.
In order to investigate the computational requirements of two

proposed methods and some previously published FDTD methods, the
number of arithmetic operations and tri-diagonal matrices is shown
in Table 1, in which M/D and A/S indicate multiplication/division
and addition/subtraction, respectively. From Table 1, at each time
step, more arithmetic operations and tri-diagonal matrices are involved
in the computations of the proposed methods. Therefore, the
computational requirement of the proposed methods is then larger than
the ADI-FDTD, LOD-FDTD and 3-stages SS-FDTD methods at each
time step. However, the proposed methods have higher order accuracy,
a larger time step and a coarser mesh can be used. Therefore, the total
number of iterations required by the proposed methods can be reduced.
Consequently, the computational requirement of the proposed methods
is lesser.

3. NUMERICAL STABILITY ANALYSIS

To analyze the stability condition of the proposed methods, the
Fourier method is employed, which has been employed to prove
the unconditionally stable ADI-FDTD method [4, 18], 3-stages SS-
FDTD method [19], 4-stages SS-FDTD method [25], and LOD-FDTD
method [32, 34]. With the method, the amplification matrix of the
proposed methods is first obtained through projection of (5) into the
spatial domain with Fourier transformation applied in space. Then
modules of all the eigenvalues of the amplification matrix are examined:
if every one of them is not larger than unity in magnitude, the method
is considered unconditionally stable. In this section, the Fourier
method is applied to prove the unconditional stability of the proposed
methods described in this paper.

3.1. The Efficient 4-stages SS-FDTD 1 Method

By using the Fourier method, assume that a wave propagating at
angle φ is in the spherical coordinate system. Then, kx = k cosφ,
ky = k sinφ, the field components in spectral domain at the nth time
step can be denoted as

U
∣∣n
I,J = Une−j(kxI∆x+kyJ∆y). (7)

Equations (4a)–(4d) in each sub-step can be represented as the
following matrices form

sub-step 1: Un+1/4 = [ΛA] Un (8a)

sub-step 2: Un+2/4 = [ΛB] Un+1/4 (8b)
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sub-step 3: Un+3/4 = [ΛA] Un+2/4 (8c)

sub-step 4: Un+1 = [ΛB] Un+3/4. (8d)

[ΛA] =




Bx
Ax

0 4jbCxPx

Ax

0 1 0
4jdCxPx

Ax
0 Bx

Ax


 [ΛB] =




By

Ay
−4jbCyPy

Ay
0

−4jdCyPy

Ay

By

Ay
0

0 0 1




where b = ∆t/2ε), d = ∆t/(2µ), Pα = −2 sin(kα∆α)/∆α, Bα =
4− 4bdC2

αP 2
α, Aα = 4 + 4bdC2

αP 2
α, α = x or y.

Substituting (8a)–(8c) into (8d), the matrix form in one whole
time step is generated as

Un+1 = [ΛB] [ΛA] [ΛB] [ΛA]Un = [Λ1] Un. (9)

where [Λ1] is the amplification matrix of the first proposed method.
By using Maple 9.0, the eigenvalues of [Λ1] can be found, as

λ1, 1 = 1, λ1, 2 = λ∗1, 3 = ξ1 + j
√

1− ξ2
1 . (10)

where ξ1 = R1/S1, and

R1= 256−384bd
(
C2

xP 2
x +C2

yP 2
y

)
+16b2d2

(
C4

xP 4
x +C4

yP 4
y −4C2

xC2
yP 2

xP 2
y

)

+8b3d3
(
C2

xC4
yP 2

xP 4
y +C4

xC2
yP 4

xP 2
y

)
+b4d4C4

xC4
yP 4

xP 4
y (11a)

S1= 256+128bd
(
C2

xP 2
x +C2

yP 2
y

)
+16b2d2

(
C4

xP 4
x +C4

yP 4
y +4C2

xC2
yP 2

xP 2
y

)

+8b3d3
(
C2

xC4
yP 2

xP 4
y +C4

xC2
yP 4

xP 2
y

)
+b4d4C4

xC4
yP 4

xP 4
y . (11b)

Since |λ1, 1| = |λ1, 2| = |λ1, 3| = 1, we can conclude that the
efficient 4-stages SS-FDTD 1 method is unconditionally stable for all
cases.

3.2. The Efficient 4-stages SS-FDTD 2 Method

By using the Fourier method, a series of operations are taken, which
are similar to the efficient 4-stages SS-FDTD 1 method in Section 3.1,
substituting (7) into (6a)–(6d), the matrix form in one whole time step
is generated as

Un+1 = [ΛA] [ΛB] [ΛB] [ΛA]Un = [Λ2] Un. (12)

where [Λ2] is the amplification matrix of the second proposed method.
By using Maple 9.0, the eigenvalues of [Λ2] also can be found, as

λ2, 1 = 1, λ2, 2 = λ∗2, 3 = ξ2 + j
√

1− ξ2
2 . (13)

where ξ2 = R2/S2, and

R2=256−384bd
(
C2

xP 2
x +C2

yP 2
y

)
+16b2d2

(
C4

xP 4
x +C4

yP 4
y +4C2

xC2
yP 2

xP 2
y

)
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−24b3d3
(
C2

xC4
yP 2

xP 4
y +C4

xC2
yP 4

xP 2
y

)
+b4d4C4

xC4
yP 4

xP 4
y (14a)

S2= 256+128bd
(
C2

xP 2
x +C2

yP 2
y

)
+16b2d2

(
C4

xP 4
x +C4

yP 4
y +4C2

xC2
yP 2

xP 2
y

)

+8b3d3
(
C2

xC4
yP 2

xP 4
y +C4

xC2
yP 4

xP 2
y

)
+b4d4C4

xC4
yP 4

xP 4
y . (14b)

Similar to the efficient 4-stages SS-FDTD 1 method, since |λ2, 1| =
|λ2, 2| = |λ2, 3| = 1, the efficient 4-stages SS-FDTD 2 method is also
unconditionally stable for all cases.

4. NUMERICAL DISPERSION ANALYSIS

In this section, the dispersion relations of the proposed methods are
derived by following a similar procedure described in [5].

4.1. The Efficient 4-stages SS-FDTD 1 Method

To analyze the dispersion characteristic, the field is assumed to be
a monochromatic wave with angular frequency ω. Then, the field
components become

En
z = Eze

jω∆tn, Hn
α = Hαejω∆tn, α = x, y. (15)

Then, (9) can be expressed as
(
ejω∆t[I]− [Λ1]

)
Un = 0. (16)

where Un is related to the initial field vector U0 and defined by

Un = U0ejω∆tn. (17)

For a nontrivial solution of (16), the determinant of the coefficient
matrix should be zero as follows

det
(
ejω∆t[I]− [Λ1]

)
= 0. (18)

With reference to the eigenvalues of [Λ1] above, the dispersion
relationship of the efficient 4-stages SS-FDTD 1 method can be
deduced in (19).

tan2 (ω∆t/2) = P1/Q1. (19)

where

P1 = 256bd
(
C2

xP 2
x + C2

yP 2
y

)
+ 64b2d2C2

xC2
yP 2

xP 2
y (20a)

Q1 = 256− 128bd
(
C2

xP 2
x + C2

yP 2
y

)
+ 16b2d2

(
C4

xP 4
x + C4

yP 4
y

)

+8b3d3
(
C2

xC4
yP 2

xP 4
y +C4

xC2
yP 4

xP 2
y

)
+b4d4C4

xC4
yP 4

xP 4
y . (20b)

when Cx = Cy = 1, (19) can simply be reduced to the numerical
dispersion expression of the initial 4-stages SS-FDTD 1 method in [22].
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4.2. The Efficient 4-stages SS-FDTD 2 Method

The numerical dispersion relation of the efficient 4-stages SS-FDTD 2
method is studied in this subsection. A series of operations are
taken, which are similar to the efficient 4-stages SS-FDTD 1 method in
Section 4.1, (15) is introduced into (12), and then (12) can be expressed
as (

ejω∆t[I]− [Λ2]
)
Un = 0. (21)

For a nontrivial solution of (21), the determinant of the coefficient
matrix should be zero as follows

det
(
ejω∆t[I]− [Λ2]

)
= 0. (22)

With reference to the eigenvalues of [Λ2] above, the dispersion
relationship of the efficient 4-stages SS-FDTD 2 method can be
deduced in (23).

tan2 (ω∆t/2) = P2/Q2. (23)

where

P2 = 256bd
(
C2

xP 2
x + C2

yP 2
y

)
+ 16b3d3

(
C4

xC2
yP 4

xP 2
y + C2

xC4
yP 2

xP 4
y

)
(24a)

Q2 = 256−128bd
(
C2

xP 2
x +C2

yP 2
y

)
+16b2d2

(
C4

xP 4
x +C4

yP 4
y +4C2

xC2
yP 2

xP 2
y

)

−8b3d3
(
C2

xC4
yP 2

xP 4
y + C4

xC2
yP 4

xP 2
y

)
+ b4d4C4

xC4
yP 4

xP 4
y . (24b)

when Cx = Cy = 1, (23) can simply be reduced to the numerical
dispersion expression of the initial 4-stages SS-FDTD 2 method in [23].

5. DETERMINATION OF CONTROLLING
PARAMETERS

In this section, our strategy is to optimize the controlling parameters
such that the normalized numerical phase velocity A(φ) = ṽp(φ)/v

closes to 1 in all propagation directions, where ṽp = ω/k̃ is the
numerical phase velocity, and v is the speed of light in the medium. We
start by determining the initial parameter values Cx0 and Cy0 that yield
A = 1 along axial directions. By sweeping the wave propagation angle
φ, we can find the maximum value Amax at φm. Thus, the maximum
deviation of A from 1 is Q = (Amax − 1). Setting A′ = 1−Q/2 along
axial directions, which can be ensured that the corrected normalized
phase velocity has its minimum in all propagation directions and the
corrected controlling parameter values Cx and Cy are obtained. The
efficient 4-stages SS-FDTD 1 method and the efficient 4-stages SS-
FDTD 2 method have the similar processes of controlling parameters.
For simplify, only the detailed processes of controlling parameters of
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the efficient 4-stages SS-FDTD 1 method are given in this paper, which
is shown as follows.

Before the descriptions, several notations are introduced for
clarity. The normalized numerical phase velocity error (NNPVE) is
defined as |ṽp(φ)/v − 1| × 100%. Here, in the entire range of φ, the
maximum value of the NNPVE is denoted as the maximum NNPVE.
For clarity, CFLN is used: it is defined as the ratio between the time
step taken and the maximum CFL limit of the explicit FDTD method
originally proposed in [2]. In addition, the cell per wavelength (CPW):
λ/∆x, where λ is the wavelength with no numerical anisotropy. For
simplicity, uniform cells are considered here (∆x = ∆y).
(a) Determination of the initial parameter values Cx0 and Cy0.

Firstly, assume A = 1 along axial directions. Let φ = 0◦, then
kx = k, ky = 0, Px = −2 · (1/∆x) · sin(kx∆x/2), Py = 0. Therefore,
(19) can be simplified as

tan (ω∆t/2) = −4
√

bdCxPx/
∣∣bdC2

xP 2
x − 4

∣∣. (25)
Then, we can obtain

A =
ṽp

v
=
√

2CPW
πCFLN

a tan

(
−4
√

bdCxPx

|bdC2
xP 2

x − 4|

)
. (26)

Since the initial parameter of A is equals to 1, and then the initial
parameter value Cx0 can be obtained, as shown in (27).

Cx0 =
−2+2

√
1+tan2

[
(1·πCFLN)/

(√
2CPW

)]

tan
[
(1·πCFLN)/

(√
2CPW

)] (
CFLN/

√
2
)·sin (π/CPW)

. (27)

Secondly, let φ = 90◦, then kx = 0, ky = k, Px = 0, Py =
−2 · (1/∆y) · sin(ky∆y/2). Then, (19) can be simplified as

tan (ω∆t/2) = −4Cy

√
bdPy/

∣∣bdC2
yP 2

y − 4
∣∣. (28)

Therefore, we can obtain

A =
ṽp

v
=
√

2CPW
πCFLN

a tan

(
−4
√

bdCyPy∣∣bdC2
yP 2

y − 4
∣∣

)
. (29)

As the initial parameter of A is equals to 1, and then the initial
parameter value Cy0 can be obtained, as shown in (30).

Cy0 =
−2+2

√
1+tan2

[
(1·πCFLN)/

(√
2CPW

)]

tan
[
(1·πCFLN)/

(√
2CPW

)]·(CFLN/
√

2
)·sin (π/CPW)

. (30)

(b) By sweeping the wave propagation angle φ from 0◦ to 90◦, the
maximum value Amax at φm can be generated.
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(c) The maximum deviation of A from 1 is Q = (Amax − 1).
(d) Setting A′ = 1−Q/2 along axial directions, which can be ensured
that the corrected normalized phase velocity has its minimum in all
propagation directions.
(e) The corrected controlling parameter values Cx and Cy are obtained,
as shown in (31).

Cx, y =
−2+2

√
1+tan2

[
(A′πCFLN)/

(√
2CPW

)]

tan
[
(A′πCFLN)/

(√
2CPW

)]·(CFLN/
√

2
)·sin (π/CPW)

. (31)

When CFLN = 5 and CPW = 30, the processes of controlling
parameters of the efficient 4-stages SS-FDTD 1 method and the
efficient 4-stages SS-FDTD 2 method are shown in Table 2. It can
be seen that the values of Cx and Cy are equal for the efficient 4-stages
SS-FDTD 1 method or the efficient 4-stages SS-FDTD 2 method. This
is because uniform cells are used.

6. NUMERICAL DISPERSION CHARACTERISTICS

In this section, to verify the superiority of two proposed methods,
the numerical dispersion characteristics of two proposed methods are

Table 2. The process of the controlling parameters with CFLN = 5
and CPW = 30.

Efficient 4-stages

SS-FDTD 1

Efficient 4-stages

SS-FDTD 2

Initial value A0 1 1

Initial values Cx0 = Cy0 1.013433 1.013433

Amax 1.005179 1.000743

Corrected value A′ 0.997411 0.999629

Corrected values Cx = Cy 1.010749 1.013048

Table 3. The information of the controlling parameters with CPW =
20.

Method CFLN Cx Cy

Efficient 4-stages SS-FDTD 1
1 1.003927 1.003927
5 1.024461 1.024461

Efficient 4-stages SS-FDTD 2
1 1.004122 1.004122
5 1.030121 1.030121
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investigated, and compared with other unconditionally stable FDTD
methods, i.e., the ADI-FDTD method, LOD-FDTD method, 3-stages
SS-FDTD method, 4-stages SS-FDTD 1 method, 4-stages SS-FDTD 2
method, and 6-stages SS-FDTD method. Since the accuracy of the
LOD-FDTD method is similar to that of the ADI-FDTD method, in
order to have a clear view, the results of comparison with the LOD-
FDTD method are omitted in this paper.

6.1. Normalized Numerical Phase Velocity Versus
Propagation Angle

When CPW = 20 and CFLN = 1, 5, the information on the
controlling parameters of the efficient 4-stages SS-FDTD 1 method
and the efficient 4-stages SS-FDTD 2 method are shown in Table 3.
From Table 3, it can be seen that the values of Cx and Cy of the
efficient 4-stages SS-FDTD methods with CFLN = 5 are larger than
those of the efficient 4-stages SS-FDTD methods with CFLN = 1. It
can be explained by a simple physical argument. Compared with the
efficient 4-stages SS-FDTD methods with CFLN = 1, the efficient 4-
stages SS-FDTD methods with CFLN = 5 have more serious numerical
dispersion errors. Therefore, the efficient 4-stages SS-FDTD methods
with CFLN = 5 need larger values of controlling parameters to speed
up the wave propagation velocity further.

Figures 1 and 2 show the normalized numerical phase velocity and
normalized numerical phase velocity error (NNPVE) versus φ with
CPW = 20 and CFLN = 1, 5 for seven kinds of FDTD methods,
respectively. As can be seen from Figure 1(a), for seven kinds of

(a) (b)

Figure 1. Normalized numerical phase velocity versus φ with CPW =
20 for seven kinds of FDTD methods. (a) CFLN = 1; (b) CFLN = 5.
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(a) (b)

Figure 2. Normalized numerical phase velocity error (NNPVE) versus
φ with CPW = 20 for seven kinds of FDTD methods. (a) CFLN = 1;
(b) CFLN = 5.

FDTD methods, except that of the 3-stages SS-FDTD method, the
normalized numerical phase velocity reaches minimum at φ = 0◦, 90◦
and maximum at φ = 45◦. Specifically, for the 3-stages SS-FDTD
method, the normalized numerical phase velocity reaches minimum at
φ = 90◦ and maximum at φ = 45◦. On the other hand, the normalized
numerical phase velocities of the proposed methods are higher than
other five kinds of FDTD methods. From Figure 1(b), it can be seen
that Figure 1(b) is similar to Figure 1(a), except that the normalized
numerical phase velocities of the efficient 4-stages SS-FDTD 2 method
and the 4-stages SS-FDTD 2 method almost have not change as the
propagation angle increases.

As can be seen from Figure 2(a), the NNPVE of the proposed
methods are lower than other five kinds of FDTD methods. For
instance, the values of the maximum NNPVE for the ADI-FDTD
method, the 3-stages SS-FDTD method, 6-stages SS-FDTD method,
the 4-stages SS-FDTD 1 method, the 4-stages SS-FDTD 2 method,
the efficient 4-stages SS-FDTD 1 method, and the efficient 4-stages
SS-FDTD 2 method are 0.8%, 0.8%, 0.50%, 0.50%, 0.47%, 0.12%, and
0.10%, respectively. On the other hand, the NNPVE of the ADI-FDTD
method, the 6-stages SS-FDTD method, the 4-stages SS-FDTD 1
method, and the 4-stages SS-FDTD 2 method reaches minimum at
φ = 45◦ and maximum at φ = 0◦, 90◦. However, the NNPVE of the
proposed methods reaches minimum at φ = 22.5◦, 67.5◦ and maximum
at φ = 0◦, 45◦, 90◦. Figure 2(b) is similar to Figure 2(a) except that the
NNPVE of the efficient 4-stages SS-FDTD 2 method is almost zero for
all the propagation angles, which has the better numerical dispersion
characteristics.
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6.2. Maximum NNPVE Versus CFLN

Figure 3 presents the maximum NNPVE of seven kinds of FDTD
methods versus CFLN with CPW = 40. As can be seen from Figure 3,
the maximum NNPVE of seven kinds of FDTD methods increases as
CFLN increases. However, the increase of the maximum NNPVE of
the proposed methods is much less pronounced than other five kinds of
FDTD methods. Specially, the values of the maximum NNPVE of the
proposed methods are lower than other five kinds of FDTD methods.
In addition, the ADI-FDTD method and 3-stages SS-FDTD method
have the same value of maximum NNPVE, and the initial 4-stages SS-
FDTD methods have the same value of maximum NNPVE. Moreover,
the value of the maximum NNPVE of the efficient 4-stages SS-FDTD 2
method is almost zero for CFLN = 1 ∼ 10. The efficient 4-stages SS-
FDTD 1 method and the efficient 4-stages SS-FDTD 2 method show
a significant reduction of the maximum NNPVE when compared with
the initial 4-stages SS-FDTD methods at a larger time step.

Subsequently, when CFLN = 10, the values of the maximum
NNPVE of the ADI-FDTD method, 3-stages SS-FDTD method,
6-stages SS-FDTD method, 4-stages SS-FDTD 1 method, and 4-
stages SS-FDTD 2 method are 8.8%, 8.8%, 1.6%, 2.5%, and 2.5%,
respectively. However, the values of the maximum NNPVE of the
efficient 4-stages SS-FDTD 1 method and the efficient 4-stages SS-
FDTD 2 method are 0.5% and 0.05%, respectively, which are lower
than other five kinds of FDTD methods. On the other hand, when
CFLN = 5, the values of the maximum NNPVE of the 6-stages SS-
FDTD method, the 4-stages SS-FDTD 1 method, and the 4-stages

Figure 3. Maximum NNPVE
versus CFLN with CPW = 40 for
seven kinds of FDTD methods.

Figure 4. Maximum NNPVE
versus CPW with CFLN = 5 for
seven kinds of FDTD methods.
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SS-FDTD 2 method are 0.5%, 0.75%, and 0.75%, respectively, which
are similar to the efficient 4-stages SS-FDTD 1 method and efficient
4-stages SS-FDTD 2 method with CFLN = 10. Consequently, it is
concluded that the proposed methods with the larger CFLN value lead
to the better accuracy in comparisons with the 4-stages SS-FDTD 1
method and the 4-stages SS-FDTD 2 method with the smaller CFLN
value. Such an improvement leads to other advantages, such as higher
computational efficiency.

6.3. Maximum NNPVE Versus CPW

Figure 4 presents the maximum NNPVE of seven kinds of FDTD
methods versus CPW with CFLN = 5. It can be seen that the
maximum NNPVE of seven kinds of FDTD methods reduces as CPW
increases. However, the reduction of the maximum NNPVE of the
proposed methods is much more pronounced than other five kinds of
FDTD methods.

Specially, when CPW = 20, the values of the maximum NNPVE
of the ADI-FDTD method, 3-stages SS-FDTD method, 6-stages
SS-FDTD method, 4-stages SS-FDTD 1 method, and 4-stages SS-
FDTD 2 method are 9.0%, 9.0%, 1.9%, 2.8%, and 2.8%, respectively.
However, the values of the maximum NNPVE of the efficient 4-stages
SS-FDTD 1 method and the efficient 4-stages SS-FDTD 2 method are
0.6% and 0.1%, respectively, which are lower than other five kinds of
FDTD methods. On the other hand, when CPW = 40, the values of
the maximum NNPVE of the ADI-FDTD method, 3-stages SS-FDTD
method, the 6-stages SS-FDTD method, the 4-stages SS-FDTD 1
method, and the 4-stages SS-FDTD 2 method are 2.5%, 2.5%, 0.5%,
0.75%, and 0.75%, respectively. The results are also similar to the
proposed methods with CPW = 20. Therefore, it can be concluded
that the proposed methods with the coarser mesh lead to the same lever
of accuracy compared with other five kinds of FDTD methods with the
finer mesh. This improvement can reduce the memory requirement.

For completeness, the maximum NNPVE versus CPW and CFLN
for seven kinds of FDTD methods is illustrated in Figure 5. As can
be seen from Figure 5, for seven kinds of unconditionally-stable FDTD
methods, the maximum NNPVE becomes worse while CFLN increases,
whereas the maximum NNPVE becomes better as CPW increases. In
addition, the best performance is reached when both CFLN and CPW
are close to 1 and 40. Moreover, for the same CFLN value and CPW
value, the values of the maximum NNPVE of the proposed methods are
lower than other five kinds of FDTD methods. In one word, compared
with other five kinds of FDTD methods, the efficient 4-stages SS-FDTD
methods show better accuracy, isotropy, and can be used to model
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(a) (b)

Figure 5. Maximum NNPVE versus CPW and CFLN for seven kinds
of FDTD methods. (a) The 4-stages SS-FDTD 1 methods; (b) The
4-stages SS-FDTD 2 methods.

electromagnetic wave propagation on a coarser mesh or with a larger
time step.

7. NUMERICAL EXPERIMENTS

In order to verify the properties of the proposed methods, the FDTD
method, ADI-FDTD method, LOD-FDTD method, 3-stages SS-FDTD
method, 6-stages SS-FDTD method, 4-stages SS-FDTD 1 method,
efficient 4-stages SS-FDTD 1 method, 4-stages SS-FDTD 2 method,
and efficient 4-stages SS-FDTD 2 method are utilized to simulate a
structure of 10 cm×10 cm in size. Moreover, the structure is filled with
air and terminated with perfect electric conducting (PEC) boundaries.
Furthermore, a Gaussian pulse of exp[−(t − t0)2/T 2] is used as the
excitation source at the centre of the structure, where T = 0.1 ns,
t0 = 3 × T , and the Ez component is sampled at the middle point
between the source and PEC along the centre horizontal line. The
mesh size is chosen as ∆x = ∆y = 5 mm, leading to the mesh
number of 20 × 20. The analytical resonant frequencies of TM11

mode and TM31 mode are 2.1213 GHz and 4.7434 GHz, respectively.
∆tCFL FDTD = 11.793 ps is the maximum time step size to satisfy the
limitation of the 2D CFL condition in the conventional FDTD method.
For the FDTD method, CFLN = 1, and the time number is 100000, and
the total simulation time is selected to be 1179.3 ns. The simulations
are performed on a computer of Pentium IV with 4 GB RAM, and the
computer program is developed with C++.

The controlling parameters are optimized for 2.1213 GHz and
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4.7434GHz, respectively. In addition, the information on controlling
parameters for CFLN = 3, 5 is shown in Table 4. In order to verify
the accuracy of the proposed methods, the relative error is used: it is
defined as f−f0/f0×100%, where f is the resonant frequency of TM11

mode or TM31 mode computed by the unconditionally-stable FDTD
methods, and f0 is the analytical resonant frequency of TM11 mode
or TM31 mode. Moreover, Table 5 shows the comparisons of results of
nine FDTD methods.

Table 4. Information on the controlling parameters.

Method
Analytical frequency

(GHz)
CFLN Cx = Cy

Efficient 4-stages
SS-FDTD 1

f1 (2.1213)
3 1.005429
5 1.012355

f2 (4.7434)
3 1.025516
5 1.059607

Efficient 4-stages
SS-FDTD 2

f1 (2.1213)
3 1.006344
5 1.015024

f2 (4.7434)
3 1.030299
5 1.076072

Table 5. Comparisons of results with nine FDTD methods.

Scheme
 

CFLN
  Result (GHz)

TM11 (2.1213)

Relative 

error (%)

Result (GHz)

TM31 (4.7434) 

Relative 

error (%) (MB)

FDTD 1 100000 2.1220 0.0330 4.7290 0.3036 71 0.018 

3 33333 2.0950 1.2398 4.3800 7.6612 27 0.024 
ADI-FDTD 

5 20000 2.0540 3.1726 3.9590 16.5367 16 0.024 

3 33333 2.0950 1.2398 4.3800 7.6612 26 0.024 
LOD-FDTD

5 20000 2.0540 3.1726 3.9590 16.5367 14 0.024 

3 33333 2.1020 0.9098 4.5970 3.0864 27 0.024 3-stages

SS-FDTD 5 20000 2.0730 2.2769 4.4220 6.7757 16 0.024 

3 33333 2.1130 0.3913 4.6145 2.7175 28 0.024 4-stages

SS-FDTD_1 5 20000 2.1024 0.8910 4.4700 5.7638 17 0.024 

3 33333 2.1245 0.1509 4.7275 0.3352 30 0.025 Efficient 4-stages 

SS-FDTD_1 5 20000 2.1280 0.3158 4.7089 0.7273 19 0.025 

3 33333 2.1093 0.5657 4.5997 3.0295 28 0.024 4-stages

SS-FDTD_2 5 20000 2.0922 1.3718 4.4290 6.6282 17 0.024 

3 33333 2.1226 0.0613 4.7326 0.2277 30 0.025 Efficient 4-stages 

SS-FDTD_2 5 20000 2.1228 0.0707 4.7240 0.4090 19 0.025 

3 33333 0.2970 4.6460 2.0534 29 0.024 6-stages

SS-FDTD 5 20000 2.1070 0.6741 4.5500 4.0772 18 0.024 

2.1150

Step

number

CPU

time (s)

Memory
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From Table 5, for TM11 mode, the relative errors of the ADI-
FDTD method, LOD-FDTD method, 3-stages SS-FDTD method,
the 6-stages SS-FDTD method, 4-stages SS-FDTD 1 method, and 4-
stages SS-FDTD 2 method with CFLN = 3 are 1.2398%, 1.2398%,
0.9098%, 0.2970%, 0.3913%, and 0.5657%, respectively. Nevertheless,
the relative errors of the efficient 4-stages SS-FDTD 1 method and the
efficient 4-stages SS-FDTD 2 method with CFLN = 5 are 0.3158%,
0.0707%, respectively, which are lower than other six kinds of FDTD
methods. On the other hand, for the TM31 mode, the relative errors
of the ADI-FDTD method, LOD-FDTD method, 3-stages SS-FDTD
method, 6-stages SS-FDTD method, 4-stages SS-FDTD 1 method, and
4-stages SS-FDTD 2 method with CFLN = 3 are 7.6612%, 7.6612%,
3.0864%, 2.0534%, 2.7175%, 3.0295%, respectively. Nevertheless, the
relative errors of the efficient 4-stages SS-FDTD 1 method and the
efficient 4-stages SS-FDTD 2 method with CFLN = 5 are 0.7273%,
0.4090%, respectively, which are also lower than other six kinds of
FDTD methods.

In addition, the ADI-FDTD method, LOD-FDTD method, 3-
stages SS-FDTD method, 6-stages SS-FDTD method, 4-stages SS-
FDTD 1 method, and 4-stages SS-FDTD 2 method with CFLN = 3
require the CPU time of 27 s, 26 s, 27 s, 29 s, 28 s, 28 s, respectively.
However, the efficient 4-stages SS-FDTD methods with CFLN = 5
require CPU time of 19 s. Consequently, the reduction in the CPU
time of the efficient 4-stages SS-FDTD methods can be 29.6%, 26.9%,
29.6%, 34.5%, 32.1%, and 32.1% in comparisons with other six kinds
of FDTD methods. The increasing in the memory requirement of the
efficient 4-stages SS-FDTD methods (0.025 MB) is 4.2% in comparisons
with other six kinds of FDTD methods (0.024 MB). The reason for the
phenomenon is that adding the controlling parameters for the efficient
4-stages SS-FDTD methods, it is necessary for extra storage. However,
the increasing of the storage is very little compared with decreasing of
the relative errors. Consequently, the better accuracy and efficiency of
the proposed methods are achieved.

8. CONCLUSION

Two efficient four-stages split-step unconditionally-stable FDTD
methods based on the controlling parameters have been proposed,
which have low numerical dispersion. In the proposed methods,
the Maxwell’s matrix has been split into four sub-matrices.
Simultaneously, controlling parameters are added to decrease the
numerical dispersion error. In addition, the dispersion relation and
the process of obtaining the controlling parameters have been shown.
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Moreover, the numerical dispersion characteristics of the proposed
methods have also been analyzed. Specifically, the NNPVE and
maximum NNPVE of the proposed methods are lower than those of
the 4-stages SS-FDTD methods. Furthermore, numerical results have
been presented. The relative errors of the proposed methods can be
lower than those of the 4-stages SS-FDTD methods. Therefore, the
better efficiency of the proposed methods has been achieved.
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