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Abstract—For the coaxial outer corrugated resonator, dispersion
equations of TE and TM modes are derived by the surface impedance
theory, and the first order transmission line equations with mode
coupling coefficients are deduced by means of the transmission line
and coupling wave theory. According to them, resonant frequency,
diffractive quality factor and field profile of geometry of the eigen-
mode about the coaxial outer corrugated resonator can be calculated.
The effect of outer slot depth, tooth width as well as asymptotic angle
of outer conductor and slope angle of inner conductor on resonant
frequency and quality factor can be researched. Results show that
changes of the outer slot depth and tooth width slightly affect the field
frequency and quality factor and that the changes of the asymptotic
angle of outer conductor and slope angle of inner conductor almost do
not affect field frequency, but greatly affect quality factor.

1. INTRODUCTION

Coaxial corrugated resonator is a kind of important microwave
device in high-power, high-frequency gyrotron. Since they have
many advantages of rarefying mode spectrum [1, 2], suppressing mode
competition [3, 4], reducing microwave ohmic losses [5–7], improving
efficient of beam-wave interaction [8, 9] in gyrotrons, they have been
applied in controlled fusion experiment [10–13] and suppression of
plasma instabilities [14–16]. In the process of the research on gyrotrons,
the calculation of eigen-mode has always been an important work. For
cylindrical resonators, the eigen-mode in view of the mode coupling
of different fields has been studied in detail [17]. For coaxial inner
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corrugated resonators, some researches on the eigen-mode have been
carried out [18]. But, researches on the eigen-mode of the coaxial
outer corrugated resonator have seldom been found. The main
reason is that it is difficult to derive the mode coupling coefficients
because the structure of the coaxial outer corrugated resonator is
more complicated. On the other hand, the calculation of eigen-mode
becomes complex by second order transmission line equations with
mode coupling coefficients. To overcome these difficulties, the paper
uses surface impendent theory to get eigen-equations of TE and TM
modes and applies transmission and coupling wave theory to obtain the
first order transmission line equations with mode coupling coefficients.

The paper is organized as follows: In Section 2, dispersion
equations of TE and TM modes are derived from surface impedance
theory. In Section 3, the first-order transmission line equation with
mode coupling coefficients is established by the transmission line
theory. In Section 4, mode coupling coefficients are derived by the
coupling wave theory. In Section 5, the resonant frequency, quality
factor and field profiles geometry of the eigen-mode of coaxial outer
corrugated resonators are calculated. Section 6 is the summary.

2. DISPERSION EQUATION

The coaxial outer corrugated resonator is shown in Fig. 1. Fig. 1(a)
shows cross section region, Fig. 1(b) shows unfolded scheme of
corrugated region, where Ri(Ro) denotes the inner(outer) radius, d
the depth of outer corrugation, l the outer tooth width, s the period of
outer corrugation, N the numbers of outer slot, and φs the azimuthal
angle of each slot. There are two methods obtaining dispersion
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Figure 1. (a) Cross section. (b) Unfolded scheme of outer corrugated
region.
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equation: one is field matching method(RFM), and the other is surface
impedance method(SIM) [4]. Though RFM deals with high field
problem, the dispersion equation derived by it is complex, which is
not convenient for numerical calculation. However, if a sufficiently

large number of slots on outer coaxial conductor, i.e., s <
πRi

m
, where

s =
2πRo

N
, simple dispersion equation can be derived by SIM.

For TMmn , under given condition, the surfaces r = Ri and
r = Ro behave as boundaries of perfect conduction [4]. Therefore,
the dispersion equation of the coaxial outer corrugated resonator is
the same as smooth-wall coaxial resonator [18]

Jm(νmn)Ym

(νmn

C

)
− Jm

(νmn

C

)
Ym(νmn) = 0. (1)

For TEmn , fields in the region I may express




EI
r = j

m

r
Zmn(kmn⊥r)Vmn(z) exp(−jmϕ),

EI
ϕ = kmn⊥Z ′mn(kmn⊥r)Vmn(z) exp(−jmϕ),

HI
z = −j

k2
mn⊥
kZ0

Zmn(kmn⊥r)Vmn(z) exp(−jmϕ),

(2)

where the cylindrical function Zmn(kmn⊥r) = AmnJm(kmn⊥r) +
BmnYm(kmn⊥r). Fields in the region II can be expressed by a part
of a rectangular TE01 mode with field components





EII
y = −kmn⊥D10Vmn(z) sin(k⊥x),

HII
z = −j

k2
mn⊥
kZ0

D10Vmn(z) cos(k⊥x).
(3)

According to SIM, the dispersion equation of the coaxial outer
corrugated resonator is

J ′m(χmn/C)
Y ′

m(χmn/C)
=

wJm(χmn) + J ′m(χmn)
wYm(χmn) + Y ′

m(χmn)
, (4)

where C = Ro
Ri

, w = s−l
s tan(χmnd

Ro
) is the normalized surface impedance

of outer corrugated region. Jm(χ) and Ym(χ) are the Bessel and
Neumann functions, with derivatives referring to their argument, and
m is the number of field cyclic variations with φ (azimuthal index).
kmn⊥ = χmn

Ro
is transverse wave number, k = ω

c and Z0 =
√

µ0

ε0
are

wave number and wave impedance of free space, respectively.
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When w = 0, i.e., d = 0, (4) becomes dispersion equation of
coaxial resonator

J ′m(χmn/C)
Y ′

m(χmn/C)
=

J ′m(χmn)
Y ′

m(χmn)
. (5)

Since mode wave functions keep relation [18]



e(1)
mn = −∇tΦ

(1)
mn ,

e(2)
mn = iz ×∇tΦ

(2)
mn ,

(6)

they satisfy 


∇2

t Φ
(i)
mn +

(
k

(i)
mn

)2
Φ(i)

mn = 0,

Φ(1)
mn |c = 0,

∂Φ(2)
mn

∂n
|c = 0,

(7)

where c is the wall surface of the coaxial outer corrugated resonator
and n the normal to the wall surface.

According to Equations (1), (4), (6) and (7), membrane function
Φ(1)

mn and Φ(2)
mn can read

Φ(1)
mn =

√
π

2εm

1
Gmn
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where

εm =
{

2, (m = 0)
1, (m 6= 0) (10)
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where νmn and χmn are determined by (1) and (4), respectively.
By applying the continuity condition of z-component of the

magnetic field Hz at r = Ro, the membrane function of TE01 in the
outer corrugation region can be expressed

Φo =
√

π

2εm

Y ′(χmn/C)Jm(χmn)− J ′(χmn/C)Ym(χmn)
Kmn

cos(mφs)
cos(χmnd/Ro)

cos
(

χmn

Ro
x

)
(13)

where φs is the azimuthal angle of each slot in Fig. 1(a).

3. TRANSMISSION LINE EQUATIONS

The transmission line equations with free source are the basis for
researching high field properties. The different structures of a resonator
have different formats of transmission line equations. According to
Maxwell’s equations with free source




∇×E = −jωµH,

∇×H = jωεE,

∇ · (εE) = 0,

∇ · (µH) = 0,

(14)

where E = Et + Ez, H = Ht + Hz. Et(Ht) is the transverse
electric(magnetic) field and Ez(Hz) the longitudinal electric(magnetic)
field. Et and Ht can be expanded




Et =
2∑

i=1

∑
mn

V (i)
nme(i)

nm,

Ht =
2∑

i=1

∑
mn

I(i)
nmh(i)

nm,

(15)

where i = 1, 2 represent electrical and magnetic mode of field. V
(i)
mn

and I
(i)
mn are the profile function of the RF electric and magnetic

field amplitudes, and e(i)
nm and h(i)

nm are orthogonal normalized wave
function. They satisfy





∫∫
s e(i)

nm · e(i′)
n′m′ds = δ(i− i′)δ (m−m′) δ(n− n′),

∫∫
s h(i)

nm · h(i′)
n′m′ds = δ(i− i′)δ(m−m′)δ(n− n′).

(16)
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Using(14)∼(16), the first-order transmission line equations are
derived 



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= −Z(i)

mnγ(i)
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∑

i′

∑
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(i′)
mn′Co

(i′,i)
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(i)
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= − γ

(i)
mn

Z
(i)
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V (i)
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∑

i′

∑

mn′
I

(i′)
mn′Co

(i′,i)
(n′,n),

(17)

where Z
(i)
mn is the wave impedance, Z

(1)
mn = γ

(1)
mn

jωε , Z
(2)
mn = jωµ

γ
(2)
mn

, Co
(i′,i)
(n′,n)

the mode coupling coefficient and can be written as

Co
(i′,i)
(n′,n) =

∫∫

s
e(i′)

mn′ ·
∂e(i)

mn

∂z
ds. (18)

Equation (17) shows the distribution of profile function of the RF
electric field of any mode along longitudinal axial z in a resonator. It
can be applied not only to cylindrical resonators but also to coaxial
resonator as well as coaxial outer corrugated resonator.

As known, all modes in a resonator must satisfy the boundary
conditions at the input and output end of the resonator:





dV
(i)
mn

dz
− γ(i)

mnV (i)
nm = 0, (z = 0),

dV
(i)
mn

dz
+ γ(i)

mnV (i)
nm = 0, (z = L),

(19)

where [γ(i)
mn ]2 = [k(i)

mn ]2 − w2

c2
, ω = ω0(1 + 1

2Q). By Equations (17)
and (19), resonator frequency, quality factor and field profile
distribution of the eigen-mode of the coaxial outer corrugated resonator
can be calculated.

4. COUPLING COEFFICIENT

To research high frequency field in the coaxial outer corrugated
resonator, by using (18), mode coupling coefficients is derived. By
Green formula




∫∫

S
(u∇2

t v − v∇2
t u)ds =

∮

c
(u∇tv − v∇tu) · indl,

∫∫

S
(∇tv∇tu + u∇2

t v)ds =
∮

c
(u∇tv) · indl,

(20)
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substituting u = ∂Φ
(i)
ms

∂z and v = Φ(j)
mt into (20) and using (6)∼(9), (16)

and (18), mode coupling coefficients are obtained

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where

Tmn = Kmn
wYm(χmn) + Y ′

m(χmn)

Y ′
m(

χmn

C
)

, (22)

εm, Gmn and Kmn are determined by (10), (11), (12), respectively.
(21) is the mode coupling coefficient for the coaxial outer

corrugated resonator, which shows a different mode relation in the
resonator.

5. NUMERICAL RESULTS

From (4) and (21), it is found that the dispersion equation and coupling
coefficient have relations with w which is determined by d, l and s.
Hence, we research the effect of d, l, s as well as θi, θo1, θo2 on the
resonant frequency and quality factor. A coaxial outer corrugated
resonator is designed in Fig. 2. Its normalized geometry parameters
are shown in Table 1.

According to (17), (19) and (21), using numerical method, some
results are found: resonant frequency is 170.08689GHz, and Q-factor is
1856.19287; eigen-curves, mode coupling coefficients and field profiles
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Table 1. The normalized geometric parameter of coaxial outer
corrugated resonator.

L1 L2 L3 L4 L5 L6 N

19 3.8 11.4 3.8 24.7 3.8 275
Ri Ro d l θi θo1 θo2

7.29 28.8 0.57 0.42 1◦ 3◦ 2.5◦

are obtained in Fig. 3. Fig. 3(a) shows that eigen-values of mode
TE34,17, TE34,18 and TE34,19 descend in the region 0 ≤ z ≤ 22.8
and 34.2 ≤ z ≤ 66.5, however, they don’t almost change in the
region 22.8 ≤ z ≤ 34.2, which is caused by Ro keeping constant.
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Figure 3. (a) Eigen-curve χ34,17, χ34,18 and χ34,19 versus z. (b) Mode
coupling coefficient between TE34,17, TE34,18 and TE34,19 versus z.
(c) Field profiles for TE34,17, TE34,18 and TE34,19 versus z.
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Fig. 3(b) denotes that coupling coefficient between mode TE34,17,
TE34,18 and TE34,19 are symmetric to axis Co = 0 and they change
greatly in the region parabolic segment 19 ≤ z ≤ 22.8, 34.2 ≤ z ≤ 38
and 62.7 ≤ z ≤ 66.5, which imply that different mode keep energy
exchange. Fig. 3(c) shows that mode TE34,19 has an advantage over
mode TE34,17 and TE34,18 in the resonator.

To study the effect of geometric parameter on frequency of high
field and Q factor, calculation results are derived when d and l change,
and the rest geometric parameters keep constant, respectively, which
are shown in Table 2 and Table 3. Table 2 and Table 3 indicate that Q

Table 2. Resonant frequencies and diffractive quality factor of TE34,19

versus the outer slot depth under the rest parameters keeping constant.

slot depth d slot tooth width l resonant frequency (GHz) Q factor

0.53 0.42 169.82809 1816.49372

0.54 0.42 169.90176 1830.25465

0.55 0.42 169.96894 1841.12706

0.56 0.42 170.03042 1849.53652

0.57 0.42 170.08689 1856.19287

0.58 0.42 170.13898 1861.52392

0.59 0.42 170.18721 1867.68926

0.60 0.42 170.23206 1875.00779

0.61 0.42 170.27390 1881.32142

0.62 0.42 170.31309 1886.70753

Table 3. Resonant frequencies and diffractive quality factor of
TE34,19 versus the outer tooth width under the rest parameters keeping
constant.

slot depth d slot tooth width l resonant frequency (GHz) factor Q

0.57 0.38 169.95885 1837.82405

0.57 0.39 169.98986 1842.46612

0.57 0.40 170.02154 1847.10375

0.57 0.41 170.05389 1851.69527

0.57 0.42 170.08689 1856.19287

0.57 0.43 170.12055 1860.54354

0.57 0.44 170.15485 1864.69131

0.57 0.45 170.18976 1868.58086

0.57 0.46 170.22528 1872.78487

0.57 0.47 170.26140 1878.51213
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value and frequency f rise slightly when d changes from 0.53 to 0.62, l
from 0.38 to 0.47, and the rest parameters keep constant, respectively.

In addition, the effects of the slope angle θi of the inner conductor,
and the asymptotic angle θo1 and θo2 of the outer conductor on resonant
frequency and quality factor Q are also studied. Table 4 denotes that

Table 4. Resonant frequencies and diffractive quality factor of TE34,19

versus the slope angle of inner conductor under the rest parameters
keeping constant.

θi resonant frequency (GHz) factor Q

0.0 170.08717 1841.959259
0.2 170.08714 1844.725721
0.4 170.08709 1847.501426
0.6 170.08704 1850.316211
0.8 170.08697 1853.201967
1.0 170.08689 1856.192876
1.2 170.08681 1859.325733
1.4 170.08670 1862.640374
1.6 170.08658 1866.180184
1.8 170.08645 1869.992719
2.0 170.08629 1874.130436

Table 5. Resonant frequencies and diffractive quality factor of TE34,19

versus the asymptotic angle θo1 of outer conductor under the rest
parameters keeping constant.

θo1 resonant frequency (GHz) Q factor
2.0 170.08083 2025.533882
2.2 170.08233 1983.640430
2.4 170.08366 1946.567825
2.6 170.08485 1913.407038
2.8 170.08592 1883.461873
3.0 170.08689 1856.192875
3.2 170.08778 1831.176962
3.4 170.08859 1808.078251
3.6 170.08934 1786.626915
3.8 170.09003 1766.603738
4.0 170.09067 1748.770105
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Q value rises and f decreases slightly when θi varies from 0◦ to 2◦.
Table 5 shows that Q value decreases greatly and f increases slightly
when θo1 varies from 2◦ to 4◦. Table 6 displays that f rises slightly
and Q value fluctuates when θo1 varies from 2◦ to 4◦.

Table 6. Resonant frequencies and diffractive quality factor of TE34,19

versus the asymptotic angle θo2 of outer conductor under the rest
parameters keeping constant.

θo2 resonator frequency (GHz) Q factor
1.5 170.074790 1548.477564
1.7 170.080599 1570.930914
1.9 170.087995 1539.198703
2.1 170.088099 1750.381375
2.3 170.089364 1736.316631
2.5 170.086899 1856.192876
2.7 170.087512 1770.768354
2.9 170.086279 1815.727164
3.1 170.085420 1684.606696
3.3 170.089155 1737.057758
3.5 170.090137 1641.440053

Hence, results show that the field frequency and quality factor
Q rise slightly when outer slot depth and tooth width increase,
respectively. The field frequency almost keeps constant when
asymptotic angle of outer conductor and slope angle of inner conductor
rise, respectively. However, the quality factor Q rises slightly when the
slop angle θi of inner conductor increases; factor Q decreases greatly
when the first asymptotic angle θo1 of conductor increases; factor Q
fluctuates when the second asymptotic angle θo2 of the outer conductor
increases.

6. SUMMARY

In the paper, coaxial outer corrugated resonators are studied. By
the surface impedance method, the resonator’s dispersion equation is
derived. Based on the transmission line and coupling wave theory, the
resonator’s transmission line equations and mode coupling coefficients
are obtained. It is found in the results that outer slot depth and tooth
width of the resonator slightly affect the field frequency and quality
factor Q and that θi, θo1 and θo2 greatly affect Q value. But, they
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almost do not affect the frequency. These results are beneficial to the
design of gyrotron and the research on the interaction of beam-wave
in high frequency and high power gyrotron.
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