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Abstract—The emerging field of compressed sensing provides sparse
reconstruction, which has demonstrated promising results in the areas
of signal processing and pattern recognition. In this paper, a new
approach for synthetic aperture radar (SAR) target classification is
proposed based on Bayesian compressive sensing (BCS) with scattering
centers features. Scattering centers features is extracted as a l1-norm
sparse problem on the basis of SAR observation physical model, which
can improve discrimination ability compared with original SAR image.
Using an overcomplete dictionary constructed by training samples,
BCS is utilized to design targets classifier. For target classification
performance evaluation, the proposed method is compared with several
state-of-art methods through experiments on Moving and Stationary
Target Acquisition and Recognition (MSTAR) public release database.
Experiment results illustrate the effectiveness and robustness of the
proposed approach.

1. INTRODUCTION

Synthetic aperture radar (SAR) is a microwave sensor which has
the ability to produce all-weather, 24-hour a day, high-resolution
images [1, 2]. A SAR system sends electromagnetic pulses from a radar
mounted on an airborne or spaceborne platform to a particular area
of interest on the ground and records the return signals. In order to
achieve high cross-range resolution, SAR collects data from multiple
observation points, and focuses the received information coherently
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to obtain a high-resolution description of the scene. Automatic
Target Recognition (ATR) systems using SAR sensors continue to
be developed for a wide variety of applications, particularly in the
area of military defense [3, 4]. The goal of these ATR systems is to
detect and classify military targets using various image and signal
processing techniques. The conventional multistage ATR algorithm
consists of three separate stages: The pre-screener identifies local
regions of interest using a Constant False Alarm Rate (CFAR) detector,
allowing all targets and numerous false alarms to pass. It is followed
by a one-class discriminator which aims to eliminate all natural false
alarms, also referred to as clutter. Finally, the classifier receives all
man-made objects and attempts to categorize each input image as a
specific target type contained in the training set or to reject the object
as man-made clutter. General reviews of automatic target recognition
concepts and the SAR targets detection technologies can be found
in [5].

The performance of a SAR ATR system is mainly decided by
features extraction and classification algorithms [6]. A number of
different feature extraction methods exist for the exploitation of SAR
target images with respect to target classification. One popular
approach towards target classification is to use a SAR target image’s
amplitude values to directly generate image features. These image
features can be used with common classifiers like nearest neighbor or
neural networks. In addition to target image, the shadows in SAR
image is also used as features for SAR ATR [7]. Principle component
analysis (PCA) and independent component analysis (ICA) are
popular features extraction approaches for target classification [6, 8, 9].
SAR data, however, does not necessarily need to be processed as a
single image. A single SAR image can be filtered to form multiple
sub-aperture images, and features can be extracted from each sub-
image [10]. A further breakdown of SAR data is the use of high
resolution range (HRR) profiles as one-dimensional target features.
The HRR profiles can be processed to extract one-dimensional
scattering centers or time-frequency features [11, 12]. A SAR target
image can be well approximated as a sum of two-dimensional scattering
centers which provide a concise, yet physically relevant description of
the target [13–15]. But the conventional parametric scattering centers
feature extraction is very complicate and very hard to solve. In this
paper, we propose a new scattering centers feature extraction technique
based on sparse nature of scattering centers. In this technique,
scattering centers features are extracted as a l1-norm sparse problem.

As for classification algorithms, the template matching is
commonly used in which multiple templates for each target are
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generated at incrementally spaced aspect angles. The addition of a
target to the training set requires only the creation of an additional
set of templates. However, these schemes become computationally
intensive as the number of templates and target types are increased.
The other popular classification approach uses the support vector
machine (SVM) which are typically nonlinear [16]. SVM based
approaches have been shown to outperform conventional template-
based approaches, providing better generalization capabilities. For
classification tasks, SVM has advantages of elegant mathematical
tractability and working with a relatively small number of training
samples [17–20]. But SVM cannot allow the number of supports to
be adapted to the specific signal being characterized. These pattern
recognition approaches utilize a set of classifiers, each developed using
target training images over a given range of aspect angles. While these
classification systems achieve reduced complexity, the approaches are
reliant on an accurate target pose angle estimate.

In this paper, we design SAR target classifier utilizing compressive
sensing (CS) theory without target pose estimation. The recently-
emerged CS theory, which originally aims to address signal
reconstruction and coding problems, has shown tremendous potential
for pattern recognition application [21–23]. CS has shown success
in face recognition over linear SVM and 1-nearest neighbor (1-
NN) methods [24–26]. Differently from techniques such as linear
discriminant analysis (LDA) and SVM, CS is not learned from a
training set and therefore does not suffer from limited generalization.
In [27], sparse representation is employed to develop SAR ATR
method. However, SAR target images is used as features directly in
the work, in which ATR performance are affected by ground clutter.
Recent works have attempted to incorporate CS reconstruction in
a Bayesian framework which is called Bayesian compressive sensing
(BCS) [28]. BCS accounts for noise and has a much better performance
in noisy condition. Motivated by those above, a new approach of
SAR target classification is presented based on the BCS theory with
scattering centers features and without target pose estimation. In our
approach, on one hand, scattering centers are used as features instead
of original SAR target image, which can reduce clutter effect for ATR.
On the other hand, BCS is used to design classifier, which can improve
ATR performance in noise condition.

The rest of this paper is organized as follows: in Section 2,
scattering centers features extraction with sparse constraint is
investigated. In Section 3, the theoretical background of Bayesian
compressive sensing (BCS) is reviewed briefly, and how BCS is applied
as a classifier is described. The experiment verification using Moving
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and Stationary Target Acquisition and Recognition (MSTAR) public
release database is presented in detail in Section 4. Finally, the
conclusions are summarized in Section 5.

2. SCATTERING CENTERS FEATURES EXTRACTION
WITH SPARSE CONSTRAINT

SAR imaging is an inverse scattering problem whereby a spatial
map of reflectivity is reconstructed from measurements of scattered
electric fields. Imaging techniques to exploit parsimony in sparse or
compressible scenes have been proposed throughout the development of
radar processing for superresolution of scattering locations and features
extraction [29]. For a SAR target image, the scattering response of a
target can be well approximated as a sum of responses from sparse
individual reflectors. Since SAR target classification tasks usually rely
on features of dominant point scattering centers [29, 30], we extract
point scattering centers from the view of sparsity exploitation.

The physical model for the SAR observation process can be
formulated as following [31]:

r = Cu + w (1)

where r are the SAR observations data. u is the unknown sampled
reflectivity image, w the additive measurement noise, and C a SAR
observation matrix. Here, phase history data converted from a complex
SAR image are used, so a 2D Fourier-type operator is adopted for C.
The procedure converting a complex SAR image to phase history data
is detailed in [11]. In this framework, the objective of SAR target point
scattering centers features extraction is to obtain a sparse estimate of u
based on the data r. So, we formulate the problem as an optimization
problem of the following form:

û = arg min
u

[
‖r−Cu‖2

2 + λ ‖u‖0

]
(2)

where ‖ · ‖2 denotes the l2-norm, ‖ · ‖0 the l0-norm, and λ the l0-
norm regularization parameter. The first term in the above objective
function is a data fidelity term. The second term reflect the prior
information concerning the sparse behavior of u that we would like
to impose. Use of l0-norm constraints, such as those in Equation (2),
has become a sparse features extraction due to the ability of these
constraints to prevent suppression of useful features in the image. Due
to l0-norm, exact determination of sparsest representation Equation (2)
proves to be an NP-hard problem [22, 23]. Thus, approximate solutions
are considered instead by replacing the l0-norm with l1-norm [23]. So,
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Equation (2) can be rewritten as follows:

û = arg min
u

[
‖r−Cu‖2

2 + λ ‖u‖1

]
(3)

In order to avoid problems due to non-differentiability of the l1-
norm [31], a smooth approximation to the l1-norm is used in (3):

‖u‖1 ≈
K∑

i=1

(
|(u)i|2 + ς

)1/2
(4)

where ς ≥ 0 is a small constant, K the length of the complex vector u,
and (u)i the ith element of u. So Equation (3) can be rewritten using
the modified cost function as follows:

J(u) = arg min
u

[
‖r−Cu‖2

2 + λ

K∑

i=1

(
|(u)i|2 + ς

)1/2
]

(5)

To solve the problem of Equation (5), we adopt the quasi-Newton
method in [31] which can account for the complex-valued nature of
the SAR problem. The solution procedure is briefly described here. A
structure is used which effectively deals with both the complex-valued
nature of u and the nonlinearity associated with |u|. The gradient of
(5) is firstly taken with respect to the real and imaginary parts of u.
This yields a gradient vector of length 2K. Then, this vector is put into
a compact form, by defining a complex-valued gradient vector of length
K, whose real and imaginary components contain the derivatives with
respect to the real and imaginary parts of u respectively. This compact
gradient can be placed in the following useful form following substantial
manipulation:

∇J(u) = H̃(u)u− 2CHr (6)

where

H̃(u) , 2CHC + kλL(u)

L(u) , diag





1
(
|(u)i|2 + ς

)1/2





(7)

where (·)H denotes the Hermitian of a matrix, and diag{·} is a diagonal
matrix whose ith diagonal element is given by the expression inside the
brackets. The term H̃(u) is used as an approximation to the Hessian
and used in the following quasi-Newton iteration:

û(n+1) = û(n) − γ
[
H̃

(
û(n)

)]−1
∇J

(
û(n)

)
(8)
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(b) (c)(a) (d)

Figure 1. (a) SAR target image. (b) Scattering centers with λ = 1.
(c) Scattering centers with λ = 4. (d) Scattering centers with λ = 9.

(b)(a) (d)(c) (e)

Figure 2. The first row is SAR image chips of different targets, the
second row is the corresponding scattering centers. (a) BMP2 target.
(b) BTR70 target. (c) BRDM2 target. (d) T72 target. (e) ZIL131
target.

where γ is the step size. Subsituting (6) into (8), the iterative algorithm
can be obtained:

H̃
(
û(n)

)
· û(n+1) = (1− γ)H̃

(
û(n)

)
û(n) + 2γCHr (9)

The iteration (9) is runned until ‖û(n+1) − û(n)‖2
2/‖û(n)‖2

2 < υ,
where υ > 0 is a small constant.

The value of λ can be determined through experiments. We show
some experiments results in the following figures. Figure 1 depicts
sparse scattering centers of the same SAR target image with different
λ. From Figure 1, it can be seen that the value of λ effects sparsity of
extracted features, a relatively large λ may lose some low-amplitude
scattering centers, but a relatively small λ may reserve a little clutter
or artifacts. Through experiments, we find that λ = 4 is appropriate.
Figure 2 show some sparse scattering centres examples with different
SAR targets image chips in MSTAR public release database. From
these results, it can be found that dominant scattering centers are
extracted with all ground clutter removed.
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3. SAR TARGET CLASSIFICATION USING
COMPRESSIVE SENSING

3.1. General Theory of Compressive Sensing

The general theory behind CS can be summarized as follows: let us
assume that we are given a discrete signal, x, in RN and a N × N
matrix, Ψ, whose columns are a set of orthogonal basis vectors. This
matrix is called a sparsifying matrix since, when multiplied by signal
x, it produces a representation θ = ΨTx which is a version of x in
the Ψ domain. For many naturally occurring signals such as images
and audio and an appropriate choice of Ψ, vector θ offers a sparse
representation in the sense that only K of its elements have values
significantly different from zero; the other N − K elements of θ are
either zero or very close to zero. In such a case, x is said to be K-
sparse. Typical choices for Ψ are the discrete cosine transform matrix
and the wavelet basis matrix, both widely used in image compression
applications.

In addition to Ψ, a linear measurement matrix or sampling matrix
Φ of size M×N is also introduced, with M ¿ N and M only marginally
larger than K such that:

y = Φx = ΦΨθ = Θθ (10)

Vector y contains the measurements in RM which we can access
directly. When Θ satisfies the so-called restricted isometry property
(RIP), we can reconstruct θ given y exactly. The RIP, which is used
to prove many theorems in the field of CS, characterizes matrices
which are nearly orthonormal, at least when operating on sparse
vectors [22, 23]. Details of the RIP is described in [22]. A thorough
verification of RIP for Θ is prohibitive and requires computations in

every M×K sub-matrix of Θ, which involves ( N
K

) combinations [21–

23]. Yet, it can be shown that if Φ is chosen to be a Gaussian random
matrix and condition M ≥ cK log(N/K) is satisfied for some constant
c, then it is highly probable that we will be able to reconstruct θ
exactly [21–23].

As described above, it is immediate that matrix Φ has more
columns than rows equation in Equation (10). Therefore, θ lies in a
solution space and cannot be reconstructed uniquely. However, thanks
to the sparsity assumption, we can recover signal

_

θ by minimizing its
l1 norm as follows:

_

θ = arg min
θ

(‖θ‖1) , s.t. y = Θθ (11)
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Several other reconstruction algorithms have been presented in
recent years including the basis pursuit (BP) algorithm and the least
absolute shrinkage and selection operator (LASSO) algorithm [32, 33].

3.2. Compressive Sensing with Bayesian Framework

In the Bayesian compressive sensing formalism, rather than providing a
point estimate of the signal, a full posterior density function is provided
which can provide a much sparser signal than other CS reconstruction
algorithms for noisy condition. In addition, the Bayesian framework
takes into account of the additive noise encountered when implements
compressed sampling [28].

In BCS, the Equation (3) is rewritten as following:
y = Θθ + δ (12)

where δ is a zero-mean Gaussian noise with uncertain variance σ2.
Then the Gaussian likelihood function of y is:

p
(
y|θ, σ2

)
=

(
2πσ2

)−(M/2) exp
{
− (

1/2σ2
) ‖y−Θθ‖2

}
(13)

This above analysis has converted the CS problem of inverting for
θ into a linear regression problem with a prior that θ is compressible.
Assuming the knowledge of Θ, the quantities to be estimated based on
the Y are the compressible weights θ and the noise variance σ2.

In a Bayesian formalism, the fact that θ is compressible is
formalised by placing a sparseness promoting prior on θ. A hierarchical
prior is imposed on θ for carrying the Bayesian analysis further [28].
To see this, first define a zero-mean Gaussian prior on each element θi.

p(θ|α) =
K∏

i=1

N(θi|0, α−1
i ) (14)

with αi the precision of a Gaussian density function. Further, a
Gamma prior is considered over α and the inverse of the noise variance
α0 = 1/σ2.

p(α|a, b) =
M∏

i=1

Γ(αi|a, b) (15)

p(α0|c, d) =
M∏

i=1

Γ(αi|c, d) (16)

The relevant parameters are set to be zero such that a = b =
c = d = 0 as that used in [28]. Then we can obtain the posterior
distribution over θ is:

p(θ|α, α0) = N(θ|µ,Σ) (17)
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where the posterior mean and covariance are:

µ = α0ΣΘTy (18)

Σ =
(
α0ΘT Θ + A

)
(19)

with A = diag(α1, α2, . . . , αM ). By marginalising over the weights θ,
the marginal likelihood for α and α0 can be expressed as:

L(α, α0) = −1
2

(
M log 2π + log |D|+ yTD−1y

)
(20)

with D = σ2I+ΘA−1AT . A maximum likelihood (ML) approximation
can be used to provide an estimation of α and α0 as:

αnew
i =

si

µi
, (21)

αnew
0 =

M −
M∑
i=1

si

‖s−Θµ‖2
2

(22)

where µi is the ith posterior mean weight form and ri = 1− αiΣii.
Note that αnew

i and αnew
0 are functions of µ and Σ, while µ and Σ

are functions of α and α0. This suggests an iterative algorithm, until a
convergence criterion has been satisfied. The BCS formalism can not
only provide a precise and sharp reconstruction of θ in noisy scene, but
also it is much faster in contrast to other CS algorithms by using fast
Relevant Vector Machine (RVM) algorithm [34, 35].

3.3. Classification Based on BCS

In this sub-section, we discuss how BCS can be used for SAR targets
classification. The goal of classification is to use training data from
k different classes to determine the best class to assign to test vector
z. First, let us consider taking all training examples ni from class
i and concatenate them into a matrix Bi as columns, other words
Bi = [bi,1,bi,2, . . . ,bi,ni ] ∈ RM×ni , where b ∈ RM represents a
feature vector from the training set of class i with dimension m. Given
sufficient training examples from class i, reference [25] shows that a test
sample z from the same class can be represented as a linear combination
of the entries in Bi weighted by β, that is:

z = βi.,1bi.,1 + βi.,2bi.,2 + . . . + βi.,nibi.,ni (23)

However, since the class membership of z is unknown, we define
a matrix B to include training examples from all k classes in the
training set, in other words the columns of B are defined as B =
[B1,B2, . . . ,Bk] = [b1,1,b1,2, . . . ,bk,nk

] ∈ RM×S . Here M is the
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dimension of each vector b and N the total number of all training
examples from all classes. We can then write test vector z as a linear
combination of all training examples, in other words z = Bβ. Ideally
the optimal β should be sparse, and only be non-zero for the elements
in B will belong to the same class as z. This motivates us to solve
for the sparse representation of β using the BCS formulas presented in
Section 3.

Now that we have described our method to solve for β is via BCS,
we now discuss how to assign z as belonging to a specific class. Ideally,
all nonzero entries of β should correspond to the entries in B with the
same class as z. In this ideal case, z will assign itself to one training
example from B, and we can assign z to the class which has the largest
support in β. However, due to noise and modeling error, β belonging
to other classes could potentially be non-zero. Therefore, we compute
the l2-norm for all β entries within a specific class, and choose the class
with the largest l2-norm support.

More specifically, let us define a selector ηi(β) ∈ RS as a vector
whose entries are non-zero except for entries in β corresponding to
class i. We then compute the l2-norm for β for class i as ‖ηi(β)‖2.
The best class for z will be the class in β with the largest l2-norm.
Mathematically, the best class i∗z is defined as:

i∗z = max
i
‖ηi(β)‖2 (24)

4. EXPERIMENT RESULTS

4.1. Database

In this section, we evaluate the classification performance of the
proposed approach using the popular MSTAR public database, which
is a standard dataset for evaluating SAR ATR algorithms, consisting
X-band SAR images with 1 ft × 1 ft resolution for ten targets. These
ten targets are several military vehicles and a few civilian vehicles,
including BMP2 (tank), BRDM2 (truck), BTR60 (armored car),
BTR70 (armored car), D7 (bulldozer), T62 (tank), T72 (tank), ZIL131
(truck), ZSU23/4 (cannon), 2S1 (cannon). These targets have very
similar shape. Visible light images of these targets are depicted in
Figure 3, and SAR images for ten class targets at near poses are
depicted in Figure 4. The data typically consists of target SAR image
chips. For each target, images were acquired at 17◦ and 15◦ depression
angles over the full 360◦ aspect angles. The data in depression 17◦ are
used for training and the other for testing. Table 1 lists the type and
sample number of training and testing sets.
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BMP2 BRDM2 BTR60 BTR70 D7

T62 T72 ZIL131 ZSU23/4 2S1

Figure 3. Visible light images for ten targets in MSTAR database.

BMP2 (45.5  ) BRDM2 (45.3  ) BTR60 (45.5  ) BTR70 (45.0  ) D7 (45.3  )

T62 (45.5  ) T72 (44.8  ) ZIL131 (45.1  ) ZSU23/4 (46.0  ) 2S1 (45.2  )

O O OO O

OOOOO

Figure 4. SAR images for ten targets at near aspect angles (the data
in brackets is poses).

The main work before doing classification is the preprocessing.
Because we want to classify the target (and not the clutter), it is not
much meaningful to take the complete original images as input for
the classifier. The preprocessing consists of several steps as following.
Firstly, because of MSTAR target locating nearly in the center of chips,
we can only extract a 64×64 sub-image in the center of a SAR original
128× 128 image chip from the training and testing sets. Secondly, we
normalize to one the l2-norm of all the sub-images. Finally, scattering
centers features are extracted after segmentation.

For comparison, we compare the proposed approach with
several state-of-the-art methods: CS classifier based on BP, sparse
representative classifier (SRC) and linear SVM with radial basis
function (RBF) kernel. The principle of SRC is detailed in [25]. The
LIBSVM package is used and one-against-all strategy for multi-class
classification is adopted [27].
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In the sequel, we will carry out several experiments. The
performance of all methods is firstly evaluated on a 3-Class SAR target
recognition problem with SAR image amplitude values and scattering
centers features respectively. Then, the robustness of the proposed
method is examined with respect to depression angle changes and noise.
Finally, the proposed method is evaluated on the more challenging 10-
class recognition problem.

4.2. 3-class Problem

In this experiment, we use the data from three classes (BMP2, BTR70
and T72) for algorithm evaluation and comparison. As shown in
Table 1, there are 3 different serial numbers for BMP2 and T72.
For these two targets, we only use the images from serial number
SN−C21 for BMP2 and SN−132 for T72 at depression angle 17◦ as
the training data. For testing, all images at depression angle 15◦ are
used. The 3 target image set was chosen because there is available in
the open literature a pilot study that can be used as a base for further
comparisons.

Figure 5 shows an illustrative classification example using
scattering centers features, in which the BCS sparse representation

Table 1. MSTAR datasets used in the recognition performance
analysis.

No. Type Train (17◦) Test (15◦)

1 BMP2
SN−C21 233 196

SN−C9563 233 195
SN−C9566 232 196

2 BRDM2 298 274
3 BTR60 256 195
4 BTR70 233 196
5 D7 299 274
6 T62 299 273

7 T72
SN−132 232 196
SN−812 231 195
SN−S7 228 191

8 ZIL131 299 274
9 ZSU234 299 274
10 2S1 299 274
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coefficients are compared with BP and SRC respectively. In Figure
5, the sparse representation coefficients are shown by the stem plots,
and the class-wise reconstruction errors are displayed by the bar plots.
The same dictionary constructed with 3 target training samples is
used in three compressive sensing methods. The test sample is from
the class of BMP2 with pose of 27.8◦. From Figure 5, it can be
seen that all of the three compressive sensing methods can recognize
the class label correctly for the test sample from the class of BMP2.
However, Figure 5(f) shows that the reconstruction error from BCS
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Figure 5. Examples of sparse coefficients and reconstruction errors
using different classifiers on the 3-target datasets. BMP2 test sample
classification via: (a) and (b) BP, (c) and (d) SRC, (e) and (f) BCS.

with scattering centers features is the smallest for the correct class,
which indicates that BCS has a better confidence level on classification
decision.

For another test sample from BMP2 with pose of 70.8◦, Figure 6
shows the sparse coefficients and reconstruction errors by BCS
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with scattering centers features and target image’s amplitude values
respectively. From Figure 6, it can be seen that features of amplitude
values fails to classify the target while scattering centers features can
classify the target correctly.

Table 2 displays the classification accuracy of four classifiers (BP,
SRC, SVM and BCS) with scattering centers features. For comparison,
Table 3 displays the classification accuracy of four classifiers with SAR

Table 2. Classification accuracy comparison of different classifiers
with scattering centers features.

Features Scattering centers
Classifier BP SRC SVM BCS

Target
BMP2 87.2% 79.6% 77.1% 94.9%
BTR70 93.4% 88.8% 87.2% 100%

T72 92.7% 89.2% 87.5% 98.7%
ARA 91.1% 85.8% 83.9% 97.9%

Note: ARA means average recognition accuracy.
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Figure 6. Examples of sparse coefficients and reconstruction errors
using BCS classifier with different features: (a) and (b) SAR target
image’s amplitude values, (c) and (d) scattering centers features.

image amplitude values. The results in Tables 2–3 reveal that BCS
achieves an average accuracy of 97.9% with scattering centers features,
89.5% with image amplitude values. From Tables 2–3, it can be seen
that the classification performance of BCS is superior to other classifier
with the same features. This is because BCS is able to adaptively select
representative basis for each test sample compared to other methods.
It is also observed that scattering centers features outperform SAR
image amplitude values with all classifiers owing to removal of clutter
and artifacts. All results confirm the validity and high performance of
the proposed approach for SAR ATR.

The base line for the comparison is the template matching
method [36]. For our approach, it can be seen that the misclassification
error is 2.1% from Table 2. However, it is noted that the proposed
method in this paper does not require target pose estimation unlike
template method.



Progress In Electromagnetics Research, Vol. 136, 2013 401

Table 3. Classification accuracy comparison of different classifiers
with SAR target image amplitude values.

Features SAR image amplitude values
Classifier BP SRC SVM BCS

Target
BMP2 80.9% 71.8% 62.7% 83.3%
BTR70 83.4% 80.2% 75.3% 95.6%

T72 79.5% 79.1% 64.9% 89.7%
ARA 81.3% 77.0% 67.6% 89.5%
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Figure 7. Recognition accuracy with different feature dimensions.

Furthermore, we examine the performance of different classifiers
with scattering centers features when feature dimension is changed.
The recognition rates is computed with the feature space dimensions
64, 128, 256, 512, and 1024. The corresponding plot is given
in Figure 7. As can be seen from Figure 7, the performance of all
the feature extraction methods improves as the number of feature
dimension increases. However, BCS performs the best among all
methods and performs well even in low dimension of 128. It is
worthwhile to point out that our approach use only linear computation
compared with SVM exploiting nonlinearity by kernel mapping.
Overall, the performance of the proposed method is desirable under
all feature dimensions evaluated here, indicating the effectiveness of
the proposed method.
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4.3. Robustness to Noise

In addition, we consider the effect of noise to classification performance
of the proposed approach. We add different level Gaussian noise to
original data to evaluate the robustness of the method. Figure 8 shows
how recognition accuracy varies as the signal-to-noise ratio (SNR)
varies from 0 dB to 35 dB. From Figure 8, one can identify that BCS
with scattering centers features achieves more than 90% accuracy in
the high SNR range between 20–35 dB, and it decreases rapidly at the
SNR levels below 10 dB. But, from the results in Figure 8, it can be
seen that BCS with scattering centers features is superior to the other
methods for the whole SNR range.

4.4. Depression

Because the test target SAR images may be obtained from different
depression angle, the adaption of a classification algorithm to
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Figure 8. Average recognition accuracy of different methods with
different SNR.

Table 4. Depression angle invariance results using different methods
with scattering centers features.

Depression angle
of testing dataset

methods
BP SRC SVM BCS

15◦ 92.7% 94.3% 89.5% 99.2%
30◦ 81.9% 82.4% 70.2% 89.6%
45◦ 65.3% 68.9% 59.1% 70.8%
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depression angle is important for real application. The invariance
to depression angle for all methods is examined. The dataset in
this experiment are summarized in Table 4, which is a subset of the
MSTAR database on 3 different targets (BRDM2, ZSU23/4 and 2S1)
at four different depression angles (15◦, 17◦, 30◦, 45◦). The data
at depression angle 17◦ are used for training and the data at other
depression angles for testing. The experiment results are summarized
in Table 4. As can be seen from Table 4, all methods have good
classification performance when there is a small change of 2◦ from 17◦
to 15◦ in the depression angle. The proposed approach performs more
robustly when depression angle change is large, such as a change of 13◦
from 17◦ to 30◦. However, when the change in the depression angle is
very large, such as a change of 28◦ from 17◦ to 45◦, the performances of
all methods obviously decrease because of target signatures dramatic
change.

4.5. 10-class Problem

In this subsection, the performance of the proposed method is
evaluated on the more challenging 10-class problem, i.e., discriminating
between all the 10 classes in the MSTAR database (see Table 1). In this
experiment, we use the images from serial number SN−C21 for BMP2
and SN−132 for T72 respectively. We carry out experiments with the

Table 5. Classification results of 10-class problem using different
methods.

Target
method

BP SRC SVM BCS
BMP2 81.0% 80.0% 65.5% 85.6%
BTR60 86.7% 81.0% 67.7% 93.3%
BTR70 84.7% 79.6% 62.2% 90.3%
BRDM2 75.2% 75.2% 72.8% 92.3%

D7 78.5% 73.7% 70.9% 96.7%
T62 76.2% 70.0% 61.4% 89.7%
T72 70.9% 66.3% 60.5% 95.3%

ZIL131 81.0% 77.4% 72.5% 93.1%
ZSU234 79.2% 78.1% 70.2% 95.3%

2S1 77.0% 78.5% 68.6% 93.8%
ARA 79.0% 76.0% 67.2% 92.6%
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same methods using in 3-class problem and the recognition accuracy of
each target are summarized in Table 5. From the experiment results,
it can be seen that the BCS with scattering centers features achieves
an average correct classification rate of 92.6%. We can also find that
the proposed method outperform the other feature extraction methods
with a large margin, which indicates the superiority of the proposed
method.

The obtained recognition accuracy of the proposed method on
10-class SAR ATR tasks is also competitive with previously reported
results. In [11], on 10-class SAR ATR tasks they employed hidden
markov model (HMM) classifier with HRR profiles features to give
the best accuracy of 92.2%. Unlike the method in [11], the proposed
method of this paper does not require the complex conversion from
SAR image chips to HRR profiles.

5. CONCLUSION

In this paper, we present a new technique of SAR target classification
via BCS with scattering centers features. SAR target scattering centers
features are extracted as a l1-norm regularization problem with sparsity
constraint based on SAR observation physical model. The extracted
scattering centers features can reserve dominant point scattering
centers and suppress most artifacts and clutter simultaneously. We
show how BCS is applied to construct classifiers for SAR ATR. In
experiments, the proposed approach is compared with BP, SRC and
SVM using SAR image amplitude values and scattering centers features
respectively. Experimental results on the popular MSTAR public
release SAR database demonstrate that the proposed approach obtains
promising performance on SAR target classification and exhibits strong
robustness to noise. It’s worth pointing out that the proposed approach
can acquire high recognition accuracy without target poses to be known
or estimated. Our future work will be done to investigate multiple
features based compressive sensing for SAR target classification to
improve classification accuracy.
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