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Abstract—This paper mainly deals with the problem of target
detection in the presence of Compound-Gaussian (CG) clutter with
the Inverse Gaussian (IG) texture and the unknown Power Spectral
Density (PSD). The traditional CG distributions, in particular the K
distribution and the complex multivariate t distribution, are widely
used for modeling the real clutter data from the High-Resolution (HR)
radars. Recently, the novel CG distribution with the IG texture is
described as the IG-CG distribution and validated to provide the better
fit with the recorded data of the HR clutter than the mentioned two
competitors. Within the IG-CG framework, the detector is firstly
proposed here in terms of the two-step Generalized Likelihood Ratio
Test (GLRT) criterion, and the empirical estimation method is resorted
to estimate the unknown PSD in order to adapt the realistic scenario.
The proposed detector is tested on the real-life HR clutter data, in
comparison with the Adaptive Normalized Matched Filter (ANMF)
processor, and the detection results illustrate that it outperforms the
ANMF.

1. INTRODUCTION

Detection of a signal of interest in a background of clutter is a
fundamental task in the radar systems [1]. Traditionally, the Gaussian
distribution [2] is commonly utilized to model the low-resolution
clutter. With the development of advanced technique, the High-
Resolution (HR) radars [3–5] reduce the resolution cell size of the
illuminated scenario, leading to that the statistical assumption of the
Gaussian distribution for the HR clutter is not appropriate in the real
world [6]. As a result, the conventional radar detectors, namely those

Received 12 December 2012, Accepted 11 January 2013, Scheduled 19 January 2013
* Corresponding author: Lingjiang Kong (lingjiang.kong@gmail.com).



158 Chen, Kong, and Yang

designed to detect targets embedded in Gaussian disturbance, suffer
the noticeable performance degradation under the condition of the HR
clutter [7, 8].

Consequently, for the sake of accurately describing the distribution
of the HR clutter to avoid the deterioration of the detection
performance, the numerous research efforts are devoted to both the
theoretical modeling of radar backscatter [9–11] and the statistical
analysis of the recorded live data of the HR clutter [12–15]. These
analyses show that as the range resolution increases, the clutter
becomes correlated and heavy-tailed, and the model, the so-called
Compound-Gaussian (CG) model, is suitable for clutter echoes from
the HR radars and/or at the low grazing angles. The CG model is a
physically motivated process, which can be mathematically described
as Spherically Invariant Random Process (SIRP) of the produce of
two components, speckle and texture, i.e., c =

√
τx [16]. The speckle

component x represents the local backscattering, modeled as a circular,
complex Gaussian vector, and the texture component τ , a nonnegative
random variable, denotes the local clutter power fluctuation.

Within the CG class, the dissimilar selections of the texture
model form the diverse CG distributions. The CG distribution with
the Gamma texture, referred to as the classical K distribution [17]
where the parameter estimation strategies of this distribution are
introduced, presents a good fit with the real radar clutter data collected
using the McMaster IPIX radar [18]. In [19], the corresponding
detectors are derived in terms of the K distribution model, including
the various Adaptive Normalized Matched Filters (ANMFs) with
the discrepant estimation methods of the clutter covariance matrix.
Additionally, the CG distribution with inverse Gamma texture, the
so-called complex multivariate t distribution, is also proposed fit
for the real measurements of the HR clutter [20, 21]. Meanwhile,
the Maximum Likelihood (ML) and Method of Fractional Moments
(MoFM) estimates are presented to find the parameters of the complex
multivariate t distribution [20]. Subsequently, according to the model
of the complex multivariate t distribution, the researchers propose the
relevant detectors whose performance is close to that of the ANMF [22].
Recently, the novel CG distribution with the Inverse Gaussian (IG)
texture, namely the IG-CG distribution, provides the better fit with
the real-life HR clutter data than the widely used K distribution as
well as the complex multivariate t distribution [23], where the ML
is proposed for the parameter estimation of the IG-CG statistical
distribution. However, to the best of the authors’ knowledge, there
is no detector based on the model of the IG-CG distribution in the
literature.
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As a consequence, we focus on the adaptive detection under
the background of the IG-CG distribution clutter in this paper.
Precisely, the detector is proposed in terms of the two-step Generalized
Likelihood Ratio Test (GLRT) design procedure: first derive the GLRT
for the assumption that the covariance matrix of the primary data (test
data) is known, and then, the covariance matrix estimation by using
the secondary data (training data) is substituted, in place of the true
covariance matrix, into the test. Subsequently, the proposed adaptive
detector and the existing ANMF processor are tested on the IPIX radar
clutter data, and the performance of the proposed detector is superior
to that of the ANMF.

The remainder of the paper is organized as follows. Firstly, in
Section 2, the IG-CG model is described in detail. Secondly, the
derivation of the proposed detector is given in Section 3. Thirdly,
in Section 4, the performance analysis is presented, and finally, the
conclusions are provided in Section 5.

2. SIGNAL MODEL

Assume that a radar transmits a coherent train of N Coherent
Processing Interval (CPI) pulses in a single scan and that the receiver
properly demodulates, filters, and samples the incoming waveform.
The primary data vector z ∈ CN×1 (C being the complex field) is
assumed to be sought in the resolution Cell Under Test (CUT), written
as

z = ap + c (1)

where a is the unknown and determinate parameter, and p indicates
the known steering vector. The secondary data zk, k = 1, . . . , K, are
drawn from the adjacent range cells to the CUT, with the exclusion of
a guard cell on either side of it to avoid target self-nulling.

As stated previously, the texture τ of the IG-CG model satisfies
the inverse Gaussian distribution with shape parameter β > 0 and unit
mean, whose Probability Density Function (PDF) is shown as [24]

pτ (τ) =

√
β

2π
τ−3/2exp

(
−β(τ − 1)2

2τ

)
(2)

Additionally, the speckle component x is a complex, circle,
zero mean stationary Gaussian vector with the covariance matrix
Mx = E[xxH ], where (·)H denotes the complex conjugate transpose
operation, and E[·] is the statistical expectation.

In the following, the detection problem to be solved can be
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formulated in terms of the binary hypotheses test:

H0 :
{

z = c
zk = ck, k = 1, . . . , K

H1 :
{

z = ap + c
zk = ck, k = 1, . . . , K

(3)

According to the PDF of the IG-CG distribution in [23], the N -
order PDF of z under the condition of the hypothesis H0 can be written
as

p (z|Mx; H0)

=
1

πN‖Mx‖hN

(
q0(z)

)

=
1

πN‖Mx‖
∫ ∞

0
τ−Nexp

(
− q0(z)

τ

)
pτ (τ )dτ

=
√

2βexp(β)

π(N+1
2
)‖Mx‖

·
(

1 +
2q0(z)

β

)−(N
2

+ 1
4
)

·KN+ 1
2

(
β

√
1+

2q0(z)
β

)
(4)

with
q0(z) = zHM−1

x z (5)

where ‖ · ‖ denotes the determinant of a square matrix, and K$(·)
stands for the modified second-kind Bessel function of order $.

Similarly, the PDF of z under the condition of the hypothesis H1

is shown as

p (z|a,Mx;H1)

=
√

2βexp(β)

π(N+ 1
2
)‖Mx‖

·
(
1+

2q1(z)
β

)−(N
2

+ 1
4
)

·KN+1
2

(
β

√
1 +

2q1(z)
β

)
(6)

with
q1(z) = (z− ap)HM−1

x (z− ap) (7)

3. IG-CG DETECTOR

The canonical GLRT detection strategy is given by

ΛIG-CG(z) =
max
a,Mx

p (z|a,Mx; H1)

max
Mx

p (z|Mx; H0)

H1

≷
H0

γ (8)

where γ is the detection threshold to be set according to the desired
value of the probability of false-alarm (Pfa).
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Maximization in (8) is obtained by replacing the unknown
parameters a and Mx with their ML estimators. Unfortunately, joint
maximization under the hypothesis H1 is a rather difficult task, and
to be the best of authors’ knowledge, a closed-form solution does not
exist.

Therefore, we resort to the two-step GLRT strategy. In the step
one, the matrix Mx is assumed to be known, and the two-step GLRT
yields

ΛIG-CG(z)=max
a

(
1+ 2q1(z)

β

)−(N
2

+ 1
4
)
KN+ 1

2

(
β
√

1+ 2q1(z)
β

)

(
1+ 2q0(z)

β

)−(N
2
+1

4
)
KN+ 1

2

(
β
√

1 + 2q0(z)
β

)
H1

≷
H0

γ (9)

For the case at hand, the Maximum Likelihood Estimation (MLE)
of a can be obtained as

â =
pHM−1

x z
pHM−1

x p
(10)

Substituting â into (9), then, the test (9) reduces to

ΛIG-CG(z) =

(
1 + 2q̂1(z)

β

)−(N
2

+ 1
4
)
KN+ 1

2

(
β
√

1 + 2q̂1(z)
β

)

(
1 + 2q0(z)

β

)−(N
2

+ 1
4
)
KN+ 1

2

(
β
√

1 + 2q0(z)
β

)
H1

≷
H0

γ (11)

with
q̂1(z) = (z− âp)H M−1

x (z− âp) (12)

Notice that the same symbol γ is used in (9) and (11) for the
appropriate modifications of the original threshold in (8).

In the step two, for the purpose of adapting the IG-CG
detector (11) to the unknown covariance matrix, the estimation of
Mx in the empirical analysis for the target detection is implemented
by using [25]:

M̂x =
1

KP̂

K∑

k=1

zkzH
k (13)

in which P̂ is the estimated average clutter power of the training data:

P̂ =
1

KN

K∑

k=1

zH
k zk (14)
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4. PERFORMANCE ASSESSMENT

For the purpose of the performance comparison, the existing ANMF is
written as

ΛANMF(z) =
|pHM̂

−1
x z|2(

pHM̂
−1
x p

) (
zHM̂

−1
x z

)
H1

≷
H0

γANMF (15)

where | · | stands for the modulus of a complex number, and γANMF is
the detection threshold to be set according to the desired value of Pfa.

Precisely, the performance of both the Adaptive IG-CG (AIG-CG)
detector and ANMF is evaluated in terms of Pfa and the probability
of detection (Pd) with the measured clutter data from the McMaster
IPIX radar. The radar site was located at east of the Place Polonaise
at Grimsby, Ontario with location 43◦12′41′′ N, 79◦35′54′′6 W, looking
at Lake Ontario from a height of 20 m. The carrier frequency of the
radar is 9.39 GHz, and the Pulse Repetition Frequency (PRF) is 1 kHz
where the polarizations HH and V V are available. The data have
been preprocessed in order to get rid of the DC offsets of both I and
Q channels and the phase imbalance due to hardware imperfections.
As in [18], we focus the performance analysis on the data from the
dataset files 19980223 165836 antstep, 19980223 170435 antstep, and
19980223 171533 antstep, taken at three different range resolutions,
whose details are reported in Table 1.

The Signal-to-Clutter Ratio (SCR) is defined as

SCR =
σ2

a

σ2
(16)

where σ2
a is the power of the target, and σ2 is the average power of the

real-life clutter data estimated from the corresponding file. Moreover,
equivalent simulations against white Gaussian noise are utilized to set
the nominal thresholds for the detectors since no theoretical expression
relating the Pfa and threshold is available [26].

For illustration purpose, Figure 1 shows the detection curves of
both AIG-CG detector and ANMF referred to the data of the three

Table 1. Data.

File Cell Range resolution (m)

19980223 165836 antstep 19th 30
19980223 170435 antstep 4th 15
19980223 171533 antstep 17th 3
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Figure 1. Pd versus SCR with the IPIX data, HH polarization,
N = 8, K = 24, and Pfa = 10−3.

Table 2. Kurtosis.

Resolution (m) HH V V

30 9.1127 5.1807
15 5.1807 6.8680
3 1.0698 -

files with HH polarization, where N = 8, K = 24, and Pfa = 10−3.
The results clearly manifest the performance advantage of the AIG-
CG detector over the existing ANMF processor (approximately 1–
3 dB better at Pd = 0.9). This can be explained by the fact that the
derivation of the AIG-CG detector is based on the IG-CG statistical
model which provides the superb fit for the considered data.

Additionally, the kurtosis κ is commonly the significant index
of statistical distribution in the clutter modeling. In particular, the
greater the value of kurtosis is, the spikier (or heavier-tailed) the
distribution of the clutter data is, and naturally the smaller κ is, the
distribution is closer to the complex Gaussian distribution. Precisely
the values of κ for the considered data are reported in Table 2 as [23]. In
Figure 1, it can be seen that the detection performance of the AIG-CG
detector improves as the value of κ increases, inferring that the AIG-
CG detector is appropriate for the heavier-tailed clutter with great
potential.



164 Chen, Kong, and Yang

 -20  -15  -10  -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR (dB)

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o

n

 

VV

AIG-CG

ANMF

30 m

15 m

Figure 2. Pd versus SCR with the IPIX data, V V polarization, N = 8,
K = 24, and Pfa = 10−3.

For V V polarization, the empirical PDF is rejected for all the
possible distributions for the data of the file 19980223 171533 antstep
(3m resolution) since the time course of the data in this file has a
less continuous character compared with that in the other files [18, 23].
Hence, the value of κ for the data in the file 19980223 171533 antstep
with V V polarization is not addressed, and Figure 2 reports the
comparison results of the two detectors under the conditions of both
30m and 15m resolutions with V V polarization, where N = 8, K = 24,
and Pfa = 10−3.

As observed in Figure 2, the detection performance of the proposed
AIG-CG processor is superior to that of ANMF (approximately 0.7–
3 dB higher at Pd = 0.9). Considering that the value of κ for the data
of 15 m resolution is a little higher than that of 30m resolution, the
performance of the AIG-CG detector under the former condition is
slightly better than that under the latter one at most SCRs.

5. CONCLUSIONS

In this paper, the AIG-CG detector based on the CG model with the
special IG texture is addressed and analyzed. More precisely, the AIG-
CG detector is derived in terms of the two-step GLRT criterion and
tested on the real data from the IPIX radar. The detection results
show that the performance of the AIG-CG detector is better than that
of the classical ANMF processor.
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