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Abstract—This paper proposes an efficient parallel shooting and
bouncing ray (SBR) method on the graphics processing unit (GPU)
cluster for solving the electromagnetic scattering problems. At each
incident direction, the parallel SBR method partitions the virtual
aperture into sub-apertures, and distributes the computational process
of each sub-aperture over GPU nodes. As ray tubes in the virtual
aperture do not have the same computational time, the parallel
efficiency highly depends on how to partition the virtual aperture.
This paper addresses this issue by a dynamic partitioning scheme
according to the computational time at the previous angle, which can
achieve excellent load balance. Numerical examples are presented to
demonstrate the accuracy, high parallel efficiency, good scalability and
versatility of the proposed method.

1. INTRODUCTION

The shooting and bouncing ray (SBR) method [1] is widely used
for analysis of electromagnetic scattering by large complex objects.
Although the SBR is more effective than the numerical approaches
(e.g., MOM, FEM), it still is time-consuming for electrically large and
complex targets due to that the density of ray tubes on the virtual
aperture should be greater than about ten rays per wavelength to
ensure the convergence of results, especially for applications in the
terahertz (THz) [2, 3]. As a result, various techniques have been
proposed to reduce the computational time of the SBR. The octree
and kdtree [4, 5] were utilized to accelerate the ray tube tracing of the
SBR, and the latter has been well known as the best general-purpose
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acceleration structure for ray tracing of static scenes in computer
graphics [6]. The multiresolution grid algorithm [7] was introduced
to reduce the total number of ray tubes. Recently, the graphics
processing unit (GPU) has become a highly-parallel computational
resource and provides enormous performance benefits over CPUs for
scientific computing. The SBR worked well with the GPU thanks to
the independence of ray tubes [8, 9].

Many real applications involve solving large-scale electromagnetic
problems, but it is very difficult or even impossible to solve these
problems on a single computer. Parallel computing plays an
increasingly important role in today’s computational electromagnetics.
Previous parallel algorithms (e.g., parallel FDTD [10, 11], parallel
direct solver [12] and parallel MLFMM [13, 14]) were mainly
implemented on CPU clusters. Due to the high performance/cost
ratio and the fast performance growth of GPUs, GPU clusters are
becoming more and more popular. The first and the eighth of the top
ten systems are powered by NVIDIA GPUs on the Top500 fastest
supercomputer list released in November 2012. In fact, the GPU
cluster has been applied in the general-purpose computation and
electromagnetic simulation applications [15, 16]. As researchers have
accelerated a wide range of approaches on the GPU [17–20], the need
arises for using the GPU cluster to solve larger scattering problems
faster. The question is how to redesign the serial algorithm and extend
the scalability of the parallel algorithm to best exploit the potential of
these high-performance GPU clusters. Load balance is the key factor
to accomplish these goals, especially for heterogeneous GPU clusters
equipped with different kinds of GPUs.

This paper proposes a parallel SBR method on the GPU cluster.
The virtual aperture is divided into sub-apertures at each incident
direction, and the process corresponding to each sub-aperture is
distributed to different GPU nodes. Load balance is solved by
dynamically partitioning the aperture based on the computational time
at the previous angle. In this way, the proposed method ensures the
accuracy and achieves high efficiency, good scalability and versatility.

2. PARALLEL SBR SCHEME

2.1. GPU-based SBR

As ray tubes are independent of each other, the SBR can be easily
implemented on the GPU with a high degree of parallelism. The
procedure of the GPU-based SBR involves three steps: ray tube
tracing, electromagnetic computing and parallel reduction [8]. The
incident plane wave is modeled as a dense grid of ray tubes, which are
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shot toward the target. Each corner ray of ray tubes is recursively
traced to obtain the intersection points. The kd-tree augmented with
ropes and the stackless kd-tree traversal algorithm [21] are utilized to
accelerate ray tracing on the GPU. In the electromagnetic computing
step, the first part is to check the validity of the ray tubes. Then, the
central rays of ray tubes are also recursively traced like the corner rays,
and the fields of them are obtained by the theory of geometrical optics
(GO). The scattered filed is calculated by the physical optics (PO)
integral, and the formula at an observation point (r, θ, φ) is given:

E(r, θ, φ) ≈ e−jkr

r
(θ̂Eθ + φ̂Eφ). (1)

The (Eθ, Eφ) can be represented as the exit field (E, H) of the four-
sided polygon S:
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Equation (2) contains three forms with different values of the
coefficients fe and fh. As indicated in [22], the EH formula provides
the best approximation for the PO induced currents.

Finally, when the scattered fields of ray tubes are obtained, the
parallel reduction is applied to get the scattered field of the target by
summing up these scattered fields.

2.2. Parallel Strategy and Load Balance

In the parallel algorithm without explicit load balancing scheme, the
whole task is divided into many sub-tasks, which are scheduled to
different computing nodes by the master node during runtime. The size
of the sub-task should be small to achieve good load balancing between
the computing nodes. However, the number of rays corresponding to
the small sub-task may be not sufficient to hide the memory latency,
and this will result in decrease in GPU performance. Thus, there
is a conflict between them. Owing to that the master node needs
to constantly detect the status of the computing nodes, frequent
communication between them is required. Additionally, some special
cases of the communication should be taken into account (e.g., in some
cases synchronization among nodes is necessary to avoid competition).
The development of the communication module requires low level
network API to meet all the requirements mentioned above and
achieve high performance. This means the development will become
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Figure 1. Two parallel schemes. (a) The angle-cyclic method.
(b) The virtual aperture partitioning method (uniform partitioning).

a complicated work. In order to avoid the disadvantages of the above
method, the distribution for the sub-tasks is determined in advance to
minimize the communication between nodes, and an explicit algorithm
is designed to adjust the size of the sub-task during runtime to achieve
excellent load balancing. The message passing interface (MPI) is
utilized to further simplify the implementation.

There are two parallel strategies to the GPU-based SBR. As shown
in Figure 1(a), the first one is to distribute the computational processes
of consequent incident angles to different GPUs (i.e., an angle-cyclic
distribution procedure). The other is to divide the virtual aperture
into sub-apertures according to the number of GPUs at each incident
angle, as illustrated in Figure 1(b). The first strategy is based on
the observation that the computational loads of neighboring angles
are almost the same. However, the number of the angles may be
not an integral multiple of the number of GPUs. In order to avoid
making some GPUs idle while the others are busy, the virtual aperture
partitioning scheme should be applied for the remaining angles after
even angle distribution. Additionally, with the rapid development of
the hardware, there are architecturally distinct GPUs in the cluster,
and it results in performance differences among GPUs. In this
situation, it can not achieve good load balance by equally distributing
angles to GPUs. Thus, the virtual aperture partitioning strategy is
more universal than the angle-cyclic strategy, and is used in this paper.

A straightforward implementation of the virtual aperture
partitioning strategy is to divide the virtual aperture into uniform sub-
apertures with the same number of ray tubes. The full virtual aperture
is first split into two sub-apertures with an axis-perpendicular line on
the axis with a longer extent. If we assume that each ray tube has
the same workload, the split position is s = (bN/2c/N) × L, where
N is the number of GPUs that work on this virtual aperture, and
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L is the length of the split edge of the virtual aperture. In order
to match the workload, the left sub-aperture will be computed over
bN/2c GPUs, and the right one will be assigned to dN/2e GPUs. The
two sub-apertures are then recursively partitioned with the updated
virtual aperture and the number of assigned GPUs until N = 1.
Figure 2(a) shows the procedure of the virtual aperture partitioning,
and this procedure also constructs a binary tree. The interior node
is represented by the splitting line. Its corresponding sub-aperture is
split into two-apertures which represent its two children nodes. The
leaf nodes represent the sub-apertures distributed to each GPU.

However, the virtual aperture is not fully occupied by the
projection of the target, and the projection region is also not evenly
distributed to each sub-aperture. The number of intersected ray tubes,
which represents the computational load of the SBR, is proportional
to the projected area of the target. As illustrated in Figure 1(b), large
differences of the projected areas among sub-apertures generated by
this uniform partitioning would lead to load imbalance among GPU
nodes of the cluster. As the projections at neighboring angles are
highly similar, and the computational time of corresponding ray tubes
is also almost the same, we can use the execution time of each sub-
aperture at the previous angle to dynamically adjust the partitioning
of the virtual aperture [23].

The procedure of the dynamic partitioning scheme is described
in detail in the following paragraphs. At the previous angle, the
computational time of each sub-aperture corresponding to the leaf node
is recorded. At the current angle, we first compute the execution time
of the sub-aperture corresponding the interior node at the previous
angle. It can be evaluated by traversing the tree from leaf to root
and recursively summing its left and right child’s computational time,
i.e., tl and tr. Then, we compute the average execution time of a row
or column of ray tubes (based on its parent’s split axis) for each tree
node, except the tree root. Finally, we recursively adjust the split
position from the root node to each interior node. For example, the
dynamic adjustment of the split position starts from the root node s0

in Figure 2. As we already assign nl = bN/2c and nr = dN/2e GPUs
to its left and right children, the computational time corresponding
to its left and right children should have the ratio nl/nr. Based on
the workload estimation from the previous angle, the adjustment is
calculated by the following equation:

tl + t̄l · n
tr − t̄r · n =

nl

nr
, (3)

where n represents the amount of the workload adjusted between the
two nodes, and t̄l and t̄r are the average execution times of the left and
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Figure 2. Dynamically adjusting the partitioning of the virtual
aperture to achieve good load balance during two subsequent angles.
Interior nodes are labeled as their splitting lines and leaf nodes are
labeled in their boxes. The numbers represent the computational time
of each node.

right child nodes. According to Equation (3), the good load balance
can be achieved by ensuring the execution time is proportional to the
computational resources (the number of GPUs). Assuming the split
position is sp at the previous angle, the split position sc of the current
angle is expressed as:

sc = sp +
tr · nl − tl · nr

t̄l · nr + t̄r · nl
. (4)

This is the split position of the root node, and the adjustment
process is recursively applied to its left and right children until the leaf
node. For example, when considering the left child node s1, because
the computational time of n1 is longer than n0, the line is moved
towards n1, as shown in green on Figure 2. The two nodes n0 and
n1 both are the leaf nodes and need no partitioning. The right child
node s2 is processed in the same way, and the splitting line (the blue
line) between n2 and s3 is moved towards n2 to reduce the workload
for n2 and increase the workload for s3. The split position (the yellow
line) is also adjusted since the workload of n4 is more than n3. This
partitioning achieves better load balance compared to the previous
angle.
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Note that Equation (3) is based on the assumption that the
computational time of any rows or columns of a sub-aperture is the
same. However, the projection of the target usually just occupies the
central area of the virtual aperture, and the border area is empty.
The assumption may be not valid in all situations, and the proposed
adjustment method may result in over-adjustment. We apply two
approaches to avoid the problem. The ideal computational time of
each sub-aperture in the interior node is (tl + tr)/2, and the difference
between tl (or tr) and the ideal time is |tl − tr|/2. Thus, the first
approach is to adjust the size of the sub-aperture only when the ratio
of the above two values, |tl − tr|/(tl + tr), is higher than the threshold
value defined by the user. The other is that n is multiplied by the
coefficient in [0, 1] to gradually approach the balance without over-
adjustment.

In summary, the procedure of the proposed parallel SBR method
is as follows: at each incident direction, the virtual aperture is divided
into sub-apertures, and then the process of each sub-aperture is
distributed to different GPU nodes. After finishing the calculation
of the scattered field using the GPU-based SBR (Section 2.1), the
execution time of each sub-aperture is recorded. The computational
time of all sub-apertures is broadcast to each GPU node by the MPI,
and each node adjusts the split position with this computational time.
For the first angle, the aperture is partitioned uniformly, and the
aperture is dynamically adjusted based on the computational time at
the previous angle for the following angles. After finishing all angles,
the scattered fields are gathered to one node.
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Figure 3. The comparison of the parallel SBR method result, the
GPU-based SBR result and the MLFMM result for the ship at 10 GHz.
(a) V V -polarization result. (b) HH-polarization result.
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3. NUMERICAL RESULTS

To validate the accuracy, efficiency, scalability and versatility of the
proposed parallel SBR method, several numerical examples are tested.
Experiments presented in this paper were performed on a GPU cluster
composed of six computing nodes. Each node is a 1U rack-mount server
with 4 GPUs dedicated to computation, and has 24 GB of memory
and two Intel Xeon X5650 hexa-core processors with 2.67 GHz clock
rates. The GPUs in five nodes are NVIDIA Tesla C2050, and those
in last node are NVIDIA GeForce GTX 580. The proposed method is
implemented by the CUDA and the MPI.

The ship illustrated in Figure 3(a) is a typical benchmark target
for verifying the accuracy of the SBR [4, 7]. The monostatic RCS of the
ship at 10 GHz is calculated with the GPU-based SBR, the proposed
algorithm, and the MLFMM, respectively. The geometry size of the
ship is 0.9m × 0.2m × 0.2 m, and the incident parameters are θ from
0◦ to 360◦ on the φ = 0◦. As can be seen clearly from Figure 3,
there is a good agreement between the GPU-based SBR result and
the proposed parallel SBR result, and they both agree well with the
MLFMM result. The only considerable disagreements between them
partly due to the lack of edge-diffraction effect in the SBR results [8].
The monostatic RCS results of another ship are also shown in Figure 4.
The geometrical model of the ship is illustrated in Figure 5(a), and the
incident direction is rotated around the Y axis from 0◦ to 90◦ with the
interval of 1◦. A good agreement is observed between the two results.

Several different types of targets were tested on five computing
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GPU-based SBR result for the ship at 30 GHz. (a) V V -polarization
result. (b) HH-polarization result.
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nodes equipped with 20 Tesla C2050 to evaluate the efficiency and
scalability of the proposed parallel SBR. As shown in Figure 5, there
are a ship, a satellite, an airplane and a radar. The frequency of
computation, geometry size and triangle number of the four targets
are listed in Table 1. As can be seen from Table 1, the four targets
vary in the geometry shape and triangle numbers.

The monostatic RCS of the four targets were calculated, and the
incident directions for them are also illustrated in Figure 5. The
incident directions for the ship and radar are rotated around the Y
axis form 0◦ to 90◦ with the interval of 1◦, while the others are from
0◦ to 360◦ in 361 equal-spaced incident directions. At most fifth-order
reflection was considered for complex structures of the four targets. As
analyzed in Section 2.2, the dynamic partitioning is performed only
when the ratio is higher than 0.05, and n in Equation (3) is multiplied
by the coefficient 0.5.

The computational time of the four targets is shown in Table 2
using the GPU-based SBR, the parallel SBR with uniform partitioning,
and the parallel SBR with dynamic partitioning. Table 2 indicates
that dynamically adjusting the partitioning of the virtual aperture
achieves better load balance compared with the uniform partitioning.
The parallel efficiency of the airplane is lower compared with the
other targets. The reason is that the front part of the fuselage is
slender, and the projection of this part is concentrated in the central

(a) (c)(b) (d)

Figure 5. Four test targets: (a) ship, (b) satellite, (c) airplane,
(d) radar.

Table 1. The frequency of computation, geometry size and triangle
number of the four targets.

Target Size (m) Triangle Number Frequency (GHz)

Ship 43.71× 5.89× 9.144 951 30

Satellite 35.6× 11.64× 10.45 976 15

Airplane 11.76× 7.4× 3.67 13050 30

Radar 2.66× 2.75× 3.4 113374 50
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Table 2. The computational time of the four targets of the GPU-based
SBR, the parallel SBR with uniform partitioning, and the parallel SBR
with dynamic partitioning (Seconds).

Method Ship Satellite Airplane Radar

GPU-based SBR 517.1 755.8 413.9 554.3

uniform partitioning 38 60.3 46.9 58.9

dynamic partitioning 28.8 41.5 38.8 38

parallel efficiency (uniform) 75% 62.7% 44% 47%

parallel efficiency (dynamic) 90% 91% 53.3% 73%

area of the virtual aperture. A small movement of the split position
in the central area can lead to a big change of computational time.
Therefore, the coefficient multiplied by n is reduced from 0.5 to 0.3
to avoid the over-adjustment for the airplane. The parallel efficiency
is correspondingly increased to 75%. Although the coefficient is a
adjustable parameter, the value of 0.5 is optimal for the majority of
targets in our experiments. For the targets whose scales of each part
are almost equal and the projections occupy the majority of the area of
the virtual aperture (e.g., the ship and satellite), the parallel efficiency
of the proposed method is very high. The efficiency can reach up to
more than 70% by easily adjusting the coefficient even for the targets,
there are large differences among the dimensions of their each part
(e.g., the fuselage and the wings of the airplane).

Figure 6 shows the speed-up of the parallel SBR method for the
four targets. A linear speed-up represents a good scalability of the
parallel algorithm, and the ideal situation is that the slope of the linear
speed-up is one. In Figure 6, the linear growth of speed-up is observed
with the increasing number of the GPUs, and the slope is close to one.
This shows good scalability as the computational power of GPUs can
still be efficiently used when the number of GPUs increases.

The satellite illustrated in Figure 5(b) is also tested on a
heterogeneous GPU cluster including two computing nodes equipped
with different GPUs (i.e., four Tesla C2050 and four GeForce GTX
580). Figure 7 shows the maximum and minimum computational time
among the eight GPUs at each incident angle for the two partitioning
methods. Large differences between the maximum and minimum time
result in bad load balance among GPUs. As shown in Figure 7, the
difference of the computational power of GPUs results in a relatively
large disparity of the computational time at the beginning. The large
disparity still exists at the following angles for the uniform partitioning
scheme. However, the difference is getting smaller due to the dynamic
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load adjustment, and the disparities are reduced to a very small
range after a few angles. The proposed dynamic partitioning scheme
significantly reduces load imbalance. This demonstrates the proposed
method is also suitable for the heterogeneous GPU cluster.

4. CONCLUSION

A load-balanced parallel SBR method based on the virtual aperture
partitioning scheme is developed on the GPU cluster for analyzing the
electromagnetic scattering problems. The dynamic load adjustment
strategy is designed to reduce the difference of the computational time
among GPUs based on the computational time of each GPU at the
previous angle. The numerical results show the accuracy, good parallel
efficiency and scalability of the proposed method, and demonstrate
that it can also work well on the heterogeneous GPU cluster.
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