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Abstract—Linear array synthetic aperture radar (LASAR) is a
promising radar 3-D imaging technique. In this paper, we address
the problem of sparse recovery of LASAR image from under-sampled
and phase errors interrupted echo data. It is shown that the unknown
LASAR image and the nuisance phase errors can be constructed as
a bilinear measurement model, and then the under-sampled LASAR
imaging with phase errors can be mathematically transferred into
sparse signal recovery by solving an ill-conditioned constant modulus
linear program (ICCMLP) problem. Exploiting the prior sparse
spatial feature of the observed targets, a new super-resolution sparse
autofocus recovery algorithm is proposed for under-sampled LASAR
3-D imaging. The algorithm is an iterative minimize estimation
procedure, wherein it converts the ICCMLP into two independent
convex optimal problems, and joints `1-norm reweights least square
regularization and semi-definite relax technique to find the optimal
solutions. Simulated and experimental results confirm that the
proposed method outperforms the classical autofocus techniques in
under-sampled LASAR imaging.

1. INTRODUCTION

High resolution three-dimensional (3-D) imaging is one of the most
important abilities of synthetic aperture radar (SAR). As a novel SAR
architecture, linear array SAR (LASAR) 3-D imaging has attracted a
lot of attentions in the radar community recently [1–5]. Exploiting
high resolution 3-D images, LASAR can provide more details in
target recognition and decision-making tasks than conventional two-
dimensional (2-D) SAR. In addition, unlike classical SAR structures
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limited by the side-looking configuration [6, 7], LASAR can work in
flexible mode, e.g., forward-looking and down-looking, make it very
suitable for the reconnaissance and surveying applications in complex
terrains. With the linear array antenna (LAA), LASAR extends the
synthetic aperture principle into the cross-track direction (the third
dimension) for 3-D imaging. However, in the airborne or spaceborne
case, the huge cost of a real full-sampled LAA in tens of meters makes
it infeasible to be implemented in practice [8]. Although the multiple-
input-multiple-output (MIMO) technique [9–11] can achieve a virtual
full-sampled LAA with few transmitter/receiver antennas, there are
still some serious drawbacks for LASAR widely applied with such a
full-sampled virtual LAA, i.e., large-scale echoes need to be stored,
transferred and processed. To further reduce the cost of LASAR data
acquisition and processing, one can employ only a few sparse LAA
elements at every footprint. We call such an under-sampled system
as “sparse-activate” LASAR (SA-LASAR). Based on the synthetic
aperture principle and beam-forming, we have developed a ground-
based SA-LASAR experimental system [1, 12–14]. The system controls
the transmitter/receiver antennas moving on a specific trajectory to
synthesize the desired sparse virtual 2-D antenna array. In addition,
we also proposed a modified back-projection algorithm (BPA) based
on the classical matched filter (MF) theory to form the SA-LASAR 3-
D images [12]. However, if the LAA is not dense enough, BPA images
may suffer from serious degradation, such as high sidelobes and low
resolution.

Based on the observation that typical underlying 3-D terrains
usually exhibit strong spatial sparsity (e.g., no scatterer in the
atmosphere and the non-penetrating areas), we can formulate the
SA-LASAR imaging as a sparse signal recovery problem. Recently
compressed sensing (CS) sparse recovery theory has been widely
discussed in radar imaging [15–21]. Some effective sparse recovery
approaches have also been successfully developed for SAR imaging [22–
24], offering many advantages such as super-resolution, sidelobe and
speckle suppression, and feature enhancement, etc. In previous
work [25], we presented a CS-based sparse recovery approach for
LASAR 3-D imaging. But we assumed that the observed signal
model of LASAR was exactly known in advance. In practice,
due to some inevitable measurement errors during LASAR data
acquisition, e.g., the platform motion uncertainty, the LAA jitter
and the time synchronization offsets, etc., the LASAR echoes always
contain serious phase errors. Although INS/GPS assisted data can
be used to achieve coarse correction, some residual phase errors are
still remaining. If these residual phase errors are not compensated,
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CS recovery performance will degrade substantially (such as defocus,
spatial distortion and artifacts). Nevertheless, phase errors are seldom
taken into account for most existing CS-based SAR imaging. Although
various autofocus algorithms have been presented for SAR phase
errors correction, e.g., phase gradient autofocus (PGA) algorithm [26],
multichannel autofocus (MCA) algorithm [27] and maximum likelihood
autofocus (MLA) algorithm [28], etc., most of them are based on
post-processing of the conventional fully-samples SAR image. In
the case of SA-SAR, as the LAA is not full-sampled, these classical
autofocus algorithms may suffer from significant performance loss.
These motivate development of a more effective LASAR 3-D autofocus
imaging method under the case of under-sampled data. Recently some
works were proposed for classical SAR sparse imaging with phase
errors [29, 30]. These approaches estimate the phase errors from SAR
echoes by a direct calculation method, which assumes that an exactly
solution of the sparse signal is obtained in each iteration. However,
such an assumption may fail due to the noise interference.

In this paper, to address the issues of SA-LASAR imaging with
under-sampled and phase errors corrupted data, we propose a new
sparse autofocus recovery algorithm for SA-LASAR 3-D imaging. In
the scheme, the SA-LASAR sparse imaging with unknown phase errors
is mathematically converted into signal recovery for an ill-conditioned
constant modulus linear program (ICCMLP) problem. To find the
optimal resolution, the ICCMLP is divided into two independent
convex optimal programs, and the estimation is realized by solving
an iterative minimization procedure jointing `1-norm reweights least
square regularization with semi-definite relax method. As a result,
by exploiting of the sparsity prior, the proposed algorithm provides
high resolution capability under the sparse LAA. Simulation and
experimental results are used to demonstrate the performance of the
proposed approach by various metrics.

The rest of this paper is constructed as follows. In Section 2, we
introduce the SA-LASAR signal model and sketch its image formation
as a linear inverse problem with the unknown scattering coefficients
and phase errors. In Section 3, the sparse autofocus algorithm is
proposed and its full steps are discussed. Simulated and experimental
results are presented in Section 4 along with the performance analysis.
Conclusions are provided in Section 5.
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2. SIGNAL MODEL AND PROBLEM FORMULATION

2.1. SA-LASAR Signal Model

The geometric model of SA-LASAR is illustrated in Figure 1. Since
the observed 3-D scene is sparse, in each pulse recurrence interval
(PRI), only sparse LAA elements are active. According to CS
theory, the required LAA element number NA in SA-LASAR depends
on both the scene grids number and the sparity of targets. CS
indicates that a K-sparse signal can be exactly reconstructed with
N0 ≥ O(K log(M0/K)), where N0 and M0 are the dimension of
the measurement signal and the reconstructed signal respectively. In
practice, many numerical experiments also suggest that most K-sparse
signals can be recovered exactly once N0 ≥ 3K. As mentioned in
Section 1, the observed 3-D terrains in LASAR imaging usually exhibit
strong sparsity, e.g., in most case K/M0 is lower than 0.1, so only
N0 ≥ 0.3M0 is required in the SA-LASAR system for CS sparse
imaging. In this case, the required number of sparse LAA elements is
much smaller than that of the conventional full-sampled LAA. These
antenna phase center (APC) positions in one synthetic aperture length
are described by a position set PA.

PA = {PAn |PAn = 〈xn, yn, zn〉 ; n ∈ Υ} (1)

where Υ denotes an index set, Υ = {1, 2, . . . , N}, and N denotes
the total APCs number. The sparse LAA can be a real array
antenna or a virtual array antenna synthesized from the synthetic
aperture techniques. Assume that the observed targets are all point-
like scatterers, the underlying scene can be approximated by discrete
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Figure 1. The geometric model of SA-LASAR imaging.
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cells, whose positions and scattering coefficients are described as,

PS = {PSm |PSm = 〈xm, ym, zm〉 ; m ∈ Ω} (2)
σ = {σm |σm ∈ C; m ∈ Ω} (3)

where Ω = {1, 2, . . . , M}, M denotes the total number of the discrete
observed scene cells. The slant range from the mth scatterer with
position PSm to the nth APC with position PAn is R(PAn ;PSm) =
‖PAn −PSm‖2, m = 1, . . . , M, n = 1, . . . , N , where ‖ · ‖2 denotes
the 2-norm of vector.

Suppose that the sensors transmit a linear frequency modulation
(LFM) signal, then, the echo of the scatterer PSm can be expressed as

s(t,PAn ;PSm) = σm exp(−j2πfcτnm) exp
[
jπfdr(t− τnm)2

]
(4)

where, t is the fast time, fc the carrier frequency, fdr the LFM chirp
rate, τnm = 2R(PAn ;PSm)/c the echo delay, and c the speed of light
in vacuum.

After range focusing, the echo signal can be written as

S(r,PAn ;PSm)=σmχR (r−R(PAn ;PSm)) exp(−j2kR(PAn ;PSm)) (5)

where, r denotes the range domain, k = 2πfc/c the wave number, and
χR(r −R(PAn ;PSm)) the range ambiguity function. For a multiple-
scattering points observed scene, the received echo is the echo sum of
all scatterers, i.e.,

S (r,PAn) =
∑

m∈Ω

S(r,PAn ;PSm) (6)

Then we can parameterize Equation (6) in terms of the reflectivity
vector σ ∈ CM×1 and the delay-phase function ψn ∈ CM×1 as follow:

S (r,PAn) = ψn (r)T σ, n = 1, . . . , N (7)

where ψn(r) = [χR(r −R(PAn ,PSm)) exp(−j2πfcτnm)] is interpreted
as measurement vector of the nth APC at range r. We rearrange the
echo signal Equation (7) to a vector as

S = [S (ri,PAn)]T , i = 1, . . . , P, n = 1, . . . , N (8)

where S is an NP × 1 vector and P the number of samples in range
domain. If there are not phase error and noise, the relationship between
σ and S can be compactly expressed as a linear model:

S = Aσ (9)

where A ∈ CNP×M denotes the SA-LASAR measurement matrix, and

A = [ψn (ri)]
T , n = 1, . . . , N, i = 1, . . . , P (10)
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In practice, the sizes of S, A and σ in Equation (10) are usually
very large in SA-LASAR (e.g., to form a 1000× 1000× 1000 medium
size LASAR image, the length of vector σ will be 109 and the size of
matrix A may be approximate 109 × 109), so it is both time consume
and storage intensive to solve such a huge linear equation. To reduce
the computational cost, we can divide the 3-D observed scene into a
series of equiv-range 2-D slices [14], as shown in Figure 1(b), and deal
with these slices separately. In this case, sparse recovery only affects
on the APCs plane and the range focusing still depends on the classical
MF.

Let Ξ = {1, 2, . . . ,Ms} denotes the cell index set in each equiv-
range slice, Ms denotes the number of the equiv-range slice cells.
Obviously, compared to the whole 3-D observed space, we have Ms ¿
M . In an equiv-range slice ri, the coefficient vector f(ri) ∈ CMs×1 and
the measurement marix Φ(ri) ∈ CP×Ms can simply be written as

f (ri) = {fw |fw ∈ C; w ∈ Ξ} , i = 1, . . . , P (11)

Φ (ri) = [ψn (ri)]
T , n = 1, . . . , N, i = 1, . . . , P (12)

As a result, the echoes of the equiv-range slice ri can be expressed
as a linear expression

y (ri) = Φ (ri) f (ri) , i = 1, . . . , P (13)

where
y (ri) = [S (ri,P1) , S (ri,P2) , . . . , S (ri,PN )]T (14)

2.2. Phase Errors of Observation Model

As mentioned in Section 1, there are various measurement errors
during the SA-LASAR date collection, and these errors may cause
additive phase errors in the echoes. Let φ(ri) ∈ RN denotes the phase
error vector in the ith range slice ri, and R(ri) = diag{exp(jφ(ri))}
denotes the phase error matrix. The phase error corrupted data can
be expressed as

ys (ri) = R (ri)y (ri) , i = 1, . . . , P (15)

If we take an additive noise ν(ri) into account (e.g., assuming
white Gaussian noise), and submit Equation (13) into (15), the SA-
LASAR signal model can be rewritten as a bilinear measurement model
for the unknown reflectivity f(ri) and phase error parameters R(ri).

ys (ri) = R (ri)Φ (ri) f (ri) + ν (ri) , i = 1, . . . , P (16)

Note that the linear model formulation in (16) is also applicable in the
case of multiplicative noise (speckle), e.g., assume S(ri) is the speckle
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noise matrix in range cell ri, and then the measurement signal in (15)
with speckle noise can be expressed as

ys (ri)=S(ri)R(ri)y(ri)=R(ri)Φ(ri)f(ri)+[S (ri)−I]R (ri)Φ(ri)f(ri)
=R (ri)Φ (ri) f (ri) + ν (ri) (17)

where ν(ri) = [S(ri)− I]R(ri)Φ(ri)f(ri) can be seen as an equivalent
additive noise. For simplicity, here we only consider additive noise in
the measurement signal.

In the case of phase errors, the aim of SA-LASAR imaging is to
estimate f(ri) and R(ri) from the phase corrupted and noisy observed
data ys(ri). For the sake of simplicity, we replace ys(ri), f(ri), Φ(ri),
R(ri) and ν(ri) by ys, f , Φ, R and ν respectively in the following
section.

3. SPARSE AUTOFOCUS RECOVERY FOR SA-LASAR

3.1. The Sparse Autofocus Recovery Approach

In one equiv-range slice, the LASAR image usually contains a few
sparse scatterers. Based on this sparse spatial feature, we can employ
CS-based sparse recovery approaches to reconstruct the SA-LASAR
sparse reflectivity f(ri) for all range slices. Numerical experiments
have indicated that the `1-norm minimization regularization [31],
i.e., iterative reweighted least square (IRLS) algorithm [32], performs
exceptionally well in locating sparse solutions of underdetermined
linear equations. Firstly we consider the phase error free case, i.e.,
R = I, the key feature of `1-norm reweighted regularization for
Equation (16) is finding solution of a convex optimal problem

f̂ = arg min
f

J (f) (18)

where J(f) = ‖Wf‖1 + ‖ys −Φf‖2 is the objective function in
SA-LASAR imaging without phase error, W = diag(ω), ω =
(ω1, ω1, . . . ωMs) is the weights vector determined by the reflectivity
f . The theoretical analysis by [32] indicated the recovery error bound
is tight under the weights

ωj = 1/(|fj |+ ξ), j = 1, . . . , Ms (19)

where ξ is a small positive constant. Through `1-norm reweighted
regularization, we can find a sparse solution to Equation (18) via
iterative minimization as

f̂n+1 =
(
ΦHΦ + λn

1W
n
)−1

ΦHys (20)
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where f̂n+1 is the n+1th iterative recovered vector, λn
1 the nth iterative

regularization parameter and estimated by λn
1 = ‖ys −Φf̂n‖2/N , and

Wn = diag(1/(|f̂n|+ ξ)).
In this paper, our concern is different from the problem in (18)

because we have to consider the phase errors R 6= I. For SA-LASAR
sparse autofocus imaging, we aim to find the optimal solution of the
following ill-conditioned constant modulus linear program (ICCMLP)
problem.
(̂
f , R̂

)
=arg min

f,R
J (f ,R) s.t |Rij |=

{
1 i = j
0 i 6= j

, i, j =1, . . . , N (21)

where J(f ,R) = ‖Wf‖1 + ‖ys −RΦf‖2 is the joint objective function
of the unknown vector f and matrix R. Because (21) is an NP-hard
optimization problem, it is very difficult to find the optimal solution.
Here, an iterative minimization via `1-norm reweights least square
regularization autofocus algorithm is proposed to estimate the optimal
solution of this ICCMLP problem. The algorithm can be divided into
two convex optimization steps: reconstructing f̂ with fixed R, and
estimating R̂ with fixed f . The update formulas of the method are
displayed as follows:

(1) Suppose that we have obtained f̂n, Wn and R̂n in the nth
iteration, the vector f̂ is obtained by finding the solution of the
following convex problem

f̂n+1 = arg min
f

J
(
f
∣∣∣R̂n

)
(22)

where J(f |R̂n) = ‖f‖1+‖ys − R̂nΦf‖2 is conditional objective function
of f under R̂n. Note that RH = diag(exp(−jφ)), and then RHR = I.
According to Equation (20), we can use `1-norm based IRLS algorithm
to estimate the optimal reflectivity vector f̂n+1 as

f̂n+1 =
(
ΦHΦ + λn

2W
n
)−1

ΦH
(
R̂n

)H
ys (23)

where
λn

2 =
∥∥∥ys − R̂nΦf̂n

∥∥∥
2

/
N (24)

(2) After estimating the reflectivity vector f̂n+1, the following
optimization needs to be solved

R̂=arg min
R

J
(
R

∣∣∣f̂n+1
)

s.t |Rij |=
{

1 i = j
0 i 6= j

, i, j =1, . . . , N (25)
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where J(R|f̂n+1) = ‖ys −RΦf̂n+1‖2. Substituting Equation (23) into
Equation (16), we have

(
I−Φ

(
ΦHΦ + λn

2W
n+1

)−1
ΦH

) (
R̂n

)H
ys = ν (26)

Let Y = diag(ys), β = exp(−jφ), Equation (26) can be rewritten
as (

I−Φ
(
ΦiHΦ + λn

2W
n+1

)−1
ΦH

)
Yβ̂n = ν (27)

From Equation (27), we see that the phase error estimation is
converted into finding a solution of the linear equation. If there is
not noise in ys, i.e., ν = 0, phase errors can be exactly recovered
by the direct calculation method, which was described in more detail
in [29, 30]. However, when we consider the unknown noise ν 6= 0 and
the estimation f̂n+1 is not the exact solution, the direct calculation
method may fail. Here, we solve Equation (27) by maximum likelihood
estimation as

β̂n+1
opt =arg min

β

∥∥∥
(
I−Φ

(
ΦHΦ+λn

2W
n+1

)−1
ΦH

)
Yβ

∥∥∥
2

s.t |βi| = 1,

i=1, . . . , N (28)

Note that (28) is a constant modulus quadratic program (CMQP)
problem and it is also difficult to estimate the optimal resolution.
Let A = (I−Φ(ΦHΦ + λn+1

2 Wn)−1ΦH)Y, C = AHA, X =
ββH , because βHCβ = tr(βHCβ) = tr(CββH), the problem of
Equation (28) can be formulated as a positive semi-definite matrices
optimization program as

X̂ = arg min
X

tr (CX) s.t X º 0,

rank (X) = 1, Xii = 1, i = 1, . . . , N (29)

However, Equation (29) is a non-convex feasible set due to
rank(X) = 1 constraint and cannot be solved efficiently. Instead, we
relax the constraint rank(X) = 1 and have

X̂ = arg min
X

tr (CX) s.t Xº0, Xii = 1, i = 1, . . . , N (30)

Obviously, Equation (30) is a constrained quadratic convex optimiza-
tion problem, which can be effectively solved by the standard convex
optimization method, such as a state-of-the-art approximation method
based on the semi-definite relaxation (SDR) program [33]. SDR can
now be handled very conveniently and effectively by some readily
available software packages, such as the convex optimization toolbox
CVX [34]. After obtaining the SDR solution X̂ of Equation (30), if
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ank(X̂) = 1, let X̂ = β̂β̂H , the optimal solution β̂opt = β̂. Otherwise,
let X̂ = BBH , where B = [b1,b2, . . . ,bl] is the square decomposed
matrix of X̂, l may be larger than 1. In this case, the randomization
method [35] is used to find the optimal solution β̂opt from B. The ran-
domization method generates Mr normally distributed complex vectors
u1,u2, . . . ,uMr that are independent with zero mean and covariance
I. Let βi = exp(j∠(Bui)), i = 1, . . . , Mr, we can approximate the
feasible solution β̂opt as

β̂n+1
opt = arg min

1≤i≤Mr

‖Cβi‖2 (31)

When the optimal solution β̂n+1
opt is obtained, the phase error matrix

R is approximated as

R̂n+1 = diag
{(

β̂n+1
opt

)H
}

(32)

Once ‖fn+1 − fn‖2/‖fn‖2 ≤ δ is satisfied, where δ is a small
positive threshold, the iteration in steps (1) and (2) are finished. The
steps involved for the proposed sparse autofocus recovery algorithm
for SA-LASAR imaging are provided in Algorithm 1. For the matrix
Φ times an arbitrary vector, the complexity is O(NMs). Hence, our
approach will require approximate O(2κNM2

s ) operations, where κ
is the iteration number. However, we note that Φ is a non-uniform
fast Fourier transform (FFT) matrix. Therefore, the approach’s
complexity can be reduced to O(2κNMs log Ms) by applying FFT
optimization. Compare to the classical autofocus methods, the
computational complexity of our approach is relatively large, but it
performs very well in sparse scenarios involving under-sampled SA-
LASAR data.

3.2. The Performance Metrics

To quantitatively evaluate the performance of our approach, three
quality metrics are calculated: the normalized mean squared error
(NMSE), the target-to-background ratio (TBR) and the entropy of
image (ENT).

The NMSE is defined as

NMSE =
∥∥∥f̂ − f

∥∥∥
2

/
‖f‖2 (33)

The TBR is defined as

TBR = 20 log
(

NB maxi∈T

(∣∣∣
(
f̂
)

i

∣∣∣
)/∑

j∈B

(∣∣∣∣
(
f̂
)

j

∣∣∣∣
))

(34)
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Algorithm 1. Sparse autofocus recovery for SA-LASAR imaging

Inputs: measurement matrix Φ, echo signal yS, threshold δ, smooth parameter ξ.

Outputs: sparse reflectivity vector f̂ , phase error matrix R̂.

Initialize: R̂0 = I, f̂0 = ΦHyS , Y = diag(ys), n = 0

while
∥∥∥f̂n+1 − f̂n

∥∥∥
2

/∥∥∥f̂n
∥∥∥

2
> δ do

1) Reconstruct f̂ from f̂ = arg min
f

J
(
f
∣∣∣R̂

)
in (22) with fixed R̂

Wn = diag
(
1
/(∣∣∣f̂n

∣∣∣ + ξ
))

λn
2 =

∥∥∥ys − R̂nΦf̂n
∥∥∥

2

/
N

f̂n+1 =
(
ΦHΦ + λn

2Wn
)−1

ΦH
(
R̂n

)H

ys

2) Estimate R̂ from (25) with fixed f̂

A =
(
I−Φ

(
ΦHΦ + λn+1

2 Wn+1
)−1

ΦH
)
Y

C = AHA

X̂ = arg min
X

tr (CX) s.t XÂ0, Xii = 1, i = 1, . . . , N

If rank
(
X̂

)
= 1, then X̂ = β̂β̂H , β̂n+1

opt = β̂

else using the randomization method to find the optimal solution

X̂ = BBH

β̂n+1
opt = arg min

1≤i≤Mr

‖Cβi‖2
end If

R̂n+1 = diag

{(
β̂n+1

opt

)H
}

n ← n + 1

end while

return f̂ ← f̂n+1, R̂ ← R̂n+1

where T denotes the target region and is the background region, NB

is the number of pixels in the background region. A higher TBR value
indicates that the target is easier to extract from its local background.

The ENT is defined as

ENT = −
G∑

i=1

ρ (i) log2 (ρ (i)) (35)

where ρ(i) denotes the gray level intensity histogram of the
reconstructed vector f̂ , G is the number of levels in the histogram.
A smaller ENT value means a sharper image.
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4. RESULTS

4.1. Simulated Data

The main parameters of the simulated data are listed in Table 1. The
echoes are corrupted by complex Gaussian random noises with zeros-
mean and different variances. And phase errors uniformly random
distributed in [−0.75π, 0.75π] are added in the echo data.

Table 1. The main parameters of the simulation.

The carrier
frequency

fc = 30 GHz
The scene

center range
R0 = 1000 m

The signal
bandwidth

Br = 150 MHz
The real
aperture
length

Da = 2.5m

The LAA
length

LA = 8 m
The LAA
element
number

NA = 400

Range
Sample
number

Nr = 128
Azimuth
sample
number

Ns = 128

As PGA method is the most widely used autofocus method in
SAR imaging, we compare our algorithm with PGA to confirm its
performance. Figure 2 shows the imaging results of the simulated data
with a SNR = 20 dB. The original synthetic scene is a ship SAR image
from European Remote Sensing (ERS) satellite. The size of each image
is 40 × 40 with the width 50 m × 50 m. From Figure 2, both MF and
MF-PGA obviously suffer from high sidelobes with the sparse LAA. In
addition, without the phase errors, IRLS performs well. But if there
are phase errors, IRLS suffers from serious image defocus. Although
PGA can improve IRLS image quality, there are still many artifacts
in the background. Obviously, the presented method can effectively
suppress the artifacts, and provides a better image quality than PGA
autofocus. But we also note that there are still some low artifacts in
our approach’s result due to the small residual between the estimated
phase errors and the original phase errors.

The quantitative metrics for the reconstruction of the scene in
Figure 2 via SNRs are plotted in Figure 3. From these results, it
is also clearly seen that the proposed algorithm produces the best
results in terms of the MSE, TBR and ENT metric, which means that
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Figure 2. Reconstructed results by different methods. (a) The
original scene. (b) MF without phase errors. (c) IRLS without phase
errors. (d) MF. (e) IRLS. (f) MF-PGA. (g) IRLS-PGA. (h) The
proposed method.

it performs much better than the conventional PGA autofocus. To
compare the computation times, these algorithms were implemented
using non-optimized Matlab code on an Intel Core 2.2 GHz CPU.
The computation times required by MF, MF-PGA, IRLS, IRLS-PGA
and the proposed method are 0.24, 2.28, 74.12, 77.58 and 128.42 s,
respectively. Hence, our approach requires more computational
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Figure 3. Performance metrics via different SNRs. (a) NMSE.
(b) TBR. (c) ENT.

complexity than conventional PGA autofocus methods, especially for
the large date processing. However, with the rapid advances in signal
processor hardware, its fast implementation is feasible.

4.2. Experimental Data

Two real experiments are demonstrated in this section. The
experimental data is obtained by the ground-based SA-LASAR system
developed by UESTC [4, 12–14]. Figure 4 shows the ground-based
experimental system and the two tested targets. The main system
parameters are displayed as follows: the carrier frequency fc =
9.62GHz, the signal bandwidth Br = 120 MHz, the LAA length
LA = 1.25m. In each azimuth cell, only sparse N = 50 virtual elements
are active. In both experiments, the assist motion measurement data is
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never used. Because the speeds of the motion sensors are supposed to
be constant, but in practice these speeds may change during different
PRIs. Hence the phase errors caused by speed uncertainty in this
system cannot be ignored and must be corrected.

   

Radar 
module

otion control 
Mmodule

T/R antennas 

Copper ball
Crane

(a) (b) (c)

Figure 4. The ground-based LASAR system and the tested targets.
3-D imaging results of the copper ball. (a) The experimental system.
(b) The copper ball. (c) The crane.
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Figure 5. The 3-D imaging results of the copper ball. (a) MF. (b) MF-
PGA. (c) IRLS. (d) IRLS-PGA. (e) The proposed method.
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In the first experiment, the observed scene consists of only one
copper ball. Its distance to the sensor is about R = 100 m. The
top 25 dB magnitude voxels of recovered images by MF, MF-PGA,
IRLS, IRLS-PGA and the proposed method are respectively displayed
in Figure 5. The deeper color means the stronger reflectivity. The size
of these images is 41×41×41 with each cell is 0.25m×0.25 m×0.25m.
As seen in Figure 5, conventional MF and MF-PGA images suffer
from high sidelobe and low resolution due to the limited length under-
sampled LAA. On the other hand, IRLS also suffers from serious
artifacts because the inaccurate model with phase errors interference.
Though IRLS-PGA provides better image than that IRLS, some
artifacts still appear in background areas. Clearly, the proposed
method outperforms the other methods, and provides high-quality
image with enhanced feature at high resolution, low sidelobes and
reduced number of artifacts.

In the second experiment, the scene is a crane. The length of
the crane is about 50m. The range from the crane to the SA-LASAR
sensor is 160 m. Figure 6 shows the 3-D recovered images of the crane
by the different methods. Also, the top 25 dB magnitude pixels are
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Figure 6. The 3-D imaging results of the crane. (a) MF. (b) MF-
PGA. (c) IRLS. (d) IRLS-PGA. (e) The proposed method.
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displayed. The size of these 3-D images are 61 × 31 × 31 with each
pixel is 1 m× 1m× 1m. From these results, we see that the proposed
method can clearly capture the main features of the crane, and produce
lower sidelobes and fewer artifacts in the background regions than the
MF and IRLS with PGA autofocus.

The quantitative evaluation of the both experiments with TBR
and ENT is given in Table 2. We find that the proposed method
provides higher TBR and lower ENT than MF and IRLS with PGA
autofocus, which means that our method improves the quality of
reconstructed image and obtains a sharper image.

Table 2. Evaluation results of the experiments.

Methods
Ball Crane

TBR ENT TBR ENT
MF 28.11 4.701 24.81 5.198

MF-PGA 29.98 4.542 27.48 4.724
IRLS 44.47 1.467 49.65 1.245

IRLS-PGA 48.81 1.213 51.10 0.829
The proposed method 54.12 0.622 56.68 0.675

5. CONCLUSIONS

In this paper, we present a sparse autofocus recovery approach based
on compressed sensing to obtain high quality SA-LASAR 3-D images
with under-sampled and phase error corrupted data. Joint the bilinear
expression models of both unknown phase errors and reflectivity image,
the SA-LASAR 3-D image is reconstructed by exploiting the prior
sparsity of observed scene. In the scheme, the approach involves solving
the two optimization problems by the `1-norm reweight regularization
and the semi-definite relax program respectively. Simulated and
Experimental results show that the approach works effectively for SA-
LASAR 3-D image formation in the case of sparse LAA and phase
errors interference.
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