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Abstract—This paper presents a technique for the efficient and
accurate determination of resonant frequencies and quality factors
of Substrate Integrated Waveguide (SIW) resonators. To consider
resonators of a general shape the SIW structure is modelled as a parallel
plate waveguide populated with metalized via holes. The field into the
SIW cavity is found by solving the scattering problem for the set of
vias into the parallel plate. Resonances are determined searching for
the complex frequencies for which the determinant of the system of
equations pertinent to the scattering is zero. To speed up the search,
a first guess for the resonance frequency is found using an estimate of
the minimum singular value of the system of equations. A Muller
search in the complex plane is later used to accurately determine
both frequencies and quality factors. Results relevant to resonators
of various shapes are presented and compared with results obtained
with a commercial code.

1. INTRODUCTION

Since its advent, Substrate Integrated Waveguides (SIW) technology
has been exploited to realize several passive devices at the frequency
of the microwaves and of the millimeter waves. Many examples like
filters [1, 2], power dividers [3, 4], antennas [5, 6] and other realizations
have been presented in the recent literature. Many of these devices
are based on the working principles of resonators. The design of a
resonant cavity based device relies on the accurate determination of the
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resonance frequency and the quality factor of the resonator. In the case
of SIW resonating structure, these parameters could be determined by
modeling the SIW cavity as a fully walled structure. However, as it
known, in the full wall approximation the power leaking out the vias
cageis neglected and both resonance frequencies and quality factors
found may be inaccurate. For this reason, for a careful characterization
of the SIW resonators, one has to resort instead to commercial codes
based on full wave techniques [7].

Recently, an alternative analysis technique has been proposed in
which the SIW structures are considered as an ensemble of metallic
vias placed into a parallel plate waveguide. This method has been
applied in [8, 9] with the simplifying hypothesis that only the TEM
mode is present in the structure. In [10] a full modal expansion has
been considered by using the dyadic Green’s function of the parallel
plate, which was calculated as series of vector wave functions [11].
The presence of the vias was included solving the scattering problem
of a set of metallic cylinders inserted into an infinite parallel plate
waveguide. The method was also extended to the analysis of SIW
arrays of slots [12]. SIW resonators were also characterized with the
help of the method described above. A preliminary analysis of lossless
circular SIW resonators was presented in [13]. Resonance frequencies
were found by considering the frequencies for which the determinant of
the system of the equations relevant to the scattering from vias is zero.
This is usually achieved setting up a search in the complex plane which
can be time consuming if an adequate starting point is not available.
In [14, 15] it was proposed to take the frequencies corresponding to the
minima of the singular values of the matrix relevant to the system of
equations and to use them as starting points of a Muller search on
the complex plane. In this paper we apply the same methodto lossy
resonators. To take into account the power dissipated on the metallic
plates and into the dielectric slab the vector eigen functions used in [13]
are modified following [16]. The finite conductivity of the metallic posts
is also considered as in [16] where only the contribution of the TM (to
z) modes is considered to the scattering. In fact, as shown in [10], the
fundamental mode of excitation is always TM. Furthermore, since vias
are made of good conductor one can consider that the polarization of
the scattered field does not depart much from the one of the perfectly
conducting case, so when the exciting field is TM (TE) the scattered
TE (TM) field component is negligible.

In what follows, the eigen functions used for the lossy resonators,
shown in [16] are briefly reviewed together with the treatment of
the scattering from the finite conductivity vias. Later the algorithm
to locate the complex resonance frequencies will be described. The
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method allows the analysis of resonators of any shape but firstly results
on rectangular SIW resonators will be presented, this geometry being
of a common use and showing resonant frequencies and quality factor
that can be easily compared with the ones of conventional metallic
waveguides. To show results of more generally shaped resonators, the
case of an hexagonal resonator will be also presented. Results will
be compared to data obtained with HFSS FEM-based eigen solver [7]
showing very good agreement.

2. VECTOR WAVE-FUNCTIONS OF THE LOSSY
PARALLEL PLATES WAVEGUIDE

In [13] the characteristics of lossless circular SIW resonators were
determined by expanding the electric field in terms of the cylindrical
vector wave-functions of the parallel plate waveguides as in [10]. The
presence of the vias fence was included considering the field scattered
from the metallic cylinders expanded in terms of the cylindrical wave
functions and enforcing the condition that the electric field tangent
on each cylinder was zero. The system of equations derived with this
procedure was then used to determine the resonant frequencies of the
cavity. To consider lossy resonators, one could use the same set of
functions of the lossless case and to include losses with a perturbational
approach. However, in [16] the rigorous derivation of the dyadic
Green’s function of lossy SIW structures was presented considering
losses on the top and the bottom plates, on the conducting vias and
into the dielectric. Following the same way of reasoning used in [16, 17],
the TM to z (see Figure 1) vector wave functions, when losses into
dielectric and finite conductivity bottom and top plates are considered,

(a) (b)

Figure 1. (a) Geometry and (b) coordinate system for the SIW cavity.



110 Amendola et al.

are determined as:

Mn(kρm, kzm, |ρ− ρl|, Z) =
(
∇× Ẑ

)
H(2)

n (kρm|ρ− ρl|)

×e−jnφ
(
e−jkzmz + ejkzm(z−2d)RTM

)
(1)

Notice that functions (1) represent magnetic field into the parallel
plates. In the previous expressions H

(2)
n (kρm|ρ − ρl|) are Hankel

functions of second kind and
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(2)
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k2
c − k2

ρm, kz =
√
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kc = ω
√

µ0εc and εc = −jσ/ω. Quantity kρm is the transverse
propagation constant of the modes which propagate into the lossy
parallel plate waveguide and it is calculated as residues of [17]

N(kρm)
D(kρm)

=
k

2
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kρmkzm

(
1−R2

TMe−2jkzmd
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3. SCATTERING FROM METALLIC VIAS OF FINITE
CONDUCTIVITY

Contrary to what happens in the perfectly conducting case, the
scattering by cylinders of finite conductivity would require considering
both TE and TM components irrespective of the polarization of the
impinging field. However, considering that vias are made of good
conductor, the polarization of the scattered field does not depart much
from the one of the perfectly conducting case, so when the exciting field
is TM (TE) the scattered TE (TM) field component is negligible. In
the case considered in this paper only the TM polarized impinging and
scattered fields will be considered. The field scattered by metallic vias
is determined as in [13, 15] but with the following impedance boundary
conditions on the cylinders surface in place of the perfect conductor
condition:

ρ̂×∇×H = −jωεrε0ZsH (4)
with

Zs = (1 + j)
√

ωµ0

2σ
(5)

The field scattered from vias is expressed in general as series of outgoing
TM vector wave functions as follows

HsCyl =
∑

l

∑
n,m

Mn(kρm, kzm, ρ− ρl,z)ATM
m,n,l (6)
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where (see Figure 2) l is an index spanning over the cylinders, m and
n are relevant to vertical and angular dependencies, ρl is the position
of the center of the cylinder l, and ATM

m,n,l are unknown coefficients to
be determined.
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Figure 2. Reference system for the scattering problem.

For any cylinder q the following equations apply:

ΓTM
q,r,m =

∑
l 6=q

∑
n

LTM
q,r,m,l,nATM

m,n,l + ATM
m,r,q (7)

LTM
q,r,m,l,n = TTM

r,m,qH
(2)
n−r(kρmρlq)e−j(n−r)φlq

ΓTM
q,r,m = −TTM

r,m,qv
TM
r,m,q

(8)

In the previous equations the following quantities have been defined

TTM
r,m,q = − Jr(kρmaq) + ZJ,TM

m

H
(2)
r (kρmaq) + ZH,TM

m

ZJ,TM
m =

jωεrε0

kρm
ZsJ

′
r(kρmaq)

ZH,TM
m =

jωεrε0

kρm
ZsH

(2)′
r (kρmaq)

(9)

and aq is the radius of cylinder q. Notice that no sum over m appears
in Equation (7). In fact, as shown in [10, 12], system (7) has to be
set up and solved for each mode along z considered. The solution will
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correspond to the resonant TM mode of order m along z. System (7)
is better cast in the following matrix form

LTMATM = ΓTM (10)

In the previous formulas vM
r,m,q are excitation coefficients that depends

on the sources [10]. As resonances are the frequencies at which system
has solutions for ΓTM identically zero, the knowledge of vM

r,m,q is
unessential. As an example the common method to locate resonances
is to find the complex frequencies for which the determinant of matrix
LM,N is zero (i.e., for which LM,N is singular). However, determinant
is not easy to calculate with enough accuracy due the finite precision
of numerical computations. An effective technique which make uses
of the matrix singular value decomposition (SVD) has been proposed
in [14] and applied to SIW resonator in [13, 15]. The determinant of
the system can be expressed as

det
(
LTM

)
=

N∏

j=1

σj (11)

where σj are the matrix singular values. When one of the σj , which
are real positive numbers, is zero the matrix LTM is singular. In [13],
it has been shown that an estimate of the resonance frequencies can
be found evaluating the minima of the last singular value σN as a
function of the complex frequency in a certain frequency range. The
algorithm is based on the QR decomposition of the matrix. In fact, R
is an upper triangular which retains the singular values. The smallest
singular value can be estimated considering the element on the main
diagonal of matrix R having the smallest absolute value. As in [13]
the search span over real frequencies only. The estimated frequency is
used as initial guess for a Muller search routine in the complex plane.
Once the complex frequency of resonance ωr+jωj is located the quality
factor is determined as

Q =
ωr

2ωj
(12)

4. RESULTS

The method presented in the previous sections has been used to
implement a MATLAB code to locate the resonance frequency of SIW
cavities. The accuracy of the method has been tested simulating a
rectangular structure with both the HFSS and the MATLAB code.

A rectangular cavity 24mm × 14mm was considered (Figure 1).
Vias radius was a = 0.4mm and their separation (center to center)
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was p = 2 mm. The layer between the conducting plates has εr = 3.5,
tan δ = 0.0035 and thickness d = 0.5mm. Only the first mode along
z is considered due to the thin substrate considered. In Figure 3 is
presented a plot of the minima of the singular values as function of
the frequency for the first two modes. As it can be observed, the
curve is free of spurious solution. The values shown in Figure 3 are
initial guesses but, as shown in Table 1, they are very close to the ones
predicted by HFSS. Notice that the MATLAB code took about 5 sec.
to produce the data shown in Figure 3. Frequencies in Table 1 have
been used as initial values for a Muller search.
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Figure 3. Minimum singular values vs. frequency for a cavity with
L = 24 mm, W = 14mm, p = 2 mm, a = 0.4mm, d = 0.5mm,
εr = 3.5, tan δ = 0.0035, σ = 5.8e7. Minima locate resonant
frequencies.

Table 1. Resonant frequencies given by HFSS and taken from
Figure 3.

HFSS

freq. [GHz]
6.71 8.87 11.62 12.10 13.42 14.62 15.38

This paper

freq. [GHz]
6.894 8.965 11.73 12.23 13.54 14.79 15.55

In Table 2 are reported the complex frequencies found with
Muller method at resonance for the same cavity. Real values don’t
differ from the initial values significantly. With respect to HFSS,
resonant frequencies are slightly higher but the difference is within
0.1%. Running time of the Muller search was less than 1 sec. per
resonant frequency on a PC with a CPU running at 2.4 GHz and
with 4 MB RAM. In Table 2 are also presented the relevant quality
factors. In all the cases Q factors are in a good agreement even if
the MATLAB underestimate Q with respect to HFSS. For a further
analysis only the first mode which correspond to TE101 mode of the
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Table 2. Resonant frequencies and Q factors given by the Muller
method. Initial values are reported in Table 1. Results from HFSS are
also shown.

This paper

freq. [GHz]
6.78 8.964 11.734 12.21 13.55 14.76 15.52

Q this

paper
190 198.7 205.6 208.6 210.2 212.1 213.3

Q HFSS 191.65 202.76 212.94 212.7 217.06 222.1 222.73

rectangular cavity has been considered. Notice, that in this case TE101

refer to the notation common to rectangular waveguide in which modes
TE are with respect to the direction on which propagation occurs.
For this mode, resonant frequencies and quality factors have been
evaluated considering dielectric layers of increasing thickness. Results
are reported in Table 3. Also shown in Figure 4 is the plot of the
electric field showing that the mode is correctly identified as TE101.

The method has been tested against a more complex resonating
structure taken from [18]. An hexagonal SIW cavity was first

Figure 4. Plot of the electric field of the TE101 mode. Propagation
direction is along the shorter side.

Table 3. Resonant frequency and quality factor of the rectangular
cavity as in Figure 3.

d
Freq. this

paper [GHz]

Freq.
HFSS
[GHZ]

Q this
paper

Q HFSS

0.5mm 6.78 6.71 190.1 193.5
1 mm 6.78 6.72 224.3 229.4

1.5mm 6.78 6.72 238.6 245
2 mm 6.78 6.72 246.5 253.2
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considered and then a three cavities resonator was also analyzed. The
two structures are displayed in Figure 5 where the plot of the electric
field of the first resonant mode is also shown. Resonant frequency and
Q factor of the first mode are shown in Tables 4 and 5.

As a further result a comparison between measured unloaded Q,
for a rectangular resonator presented in [19], and the method in this
paper are reported in Table 6. In this case also a good agreement is
observed.

 

L

(a) (b)

Figure 5. Plots of the electric field into the hexagonal resonators as
in [18] L = 6 mm, p = 1.2 mm, a = 0.6mm, d = 0.75mm, εr = 3,
tan δ = 0.0035, σ = 5.8e7. Dimensions p, a, d, are described in
Figure 1.
Table 4. Resonant frequency and quality factor of the single cavity
resonator shown in Figure 5(a).

HFSS This paper
Resonant frequency 10.13GHz 10.11GHz

Quality factor 255.4 250.5

Table 5. Resonant frequency and quality factor of the three cavities
resonator shown in Figure 5(b).

HFSS This paper
Resonant frequency 10.07GHz 10.04GHz

Quality factor 258.2 268.3

Table 6. Resonant frequency and quality factor of the rectangular
resonator shown in [19] with L = 12.5mm, W = 12.7mm, p =
0.65mm, a = 0.4mm, d = 0.508mm, εr = 2.2, tan δ = 0.0009,
σ = 5.8e7.

Measurement [19] HFSS This paper
Resonant frequency 11.498GHZ 11.383 GHz 11.452 GHz

Quality factor 537 505 500
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5. CONCLUSIONS

In this paper, an efficient semi-analytical method to find resonances
of lossy SIW cavity has been presented. The method is based on
the expansion of the field inside the cavity in terms of cylindrical
vector wave functions. The presence of vias is taken into consideration
considering the field scattered by the metallic cylinders. The method
presented is efficient and accurate and results compare well with the
ones obtained with HFSS.
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