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Abstract—Guided-Mode Resonance (GMR) effects in transparent
periodic gratings possess a number of remarkable phenomena. GMRs
exhibit strong features in the optical spectrum, i.e., dips, peaks, cusps,
and may attain extremely high Q-factors. In some cases, resonant
reflection with the efficiency equal to unity can be observed. We
demonstrate that the introduction of small losses in the structure can
drastically modify its optical response by causing strong absorption
resonances. Unity reflection in loss-free structures can be almost
completely converted into unity absorption peaks as soon as very small
losses are introduced. Even thin absorbing films in the structure (or in
its vicinity) can lead to such strong resonant absorption effects. The
resonances may exhibit a negligible spectral shift, but a significant
variation in the magnitude when losses are slightly altered, which
is highly attractive for sensor and switch applications. Absorption
peaks experience a resonant behavior with respect to both frequency
and material losses. We show that the width of the absorption peaks
decreases and approaches the width of the reflection peaks, as losses
decrease. Thus, high-Q resonances can be observed. The absorption
resonances also possess strong angular dependence; they may split and
significantly increase in magnitude for a slightly inclined incidence. We
elucidate the resonant reflection/absorption effects theoretically and
provide numerical examples.

1. INTRODUCTION

In transparent periodic dielectric gratings, a resonant reflection with
the theoretical efficiency equal to unity can be achieved, due to the
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excitation of leaky modes [1]. The experimental realization of such
high-efficiency Guided-Mode Resonance (GMR) filters was reported
in [2, 3]. Underlying physics of the strong GMRs with very high Q-
factors was explained in [4]. Energies, linewidths and field distribution
of leaky (or quasiguided) modes were calculated in [5]. Such GMR
structures are used as sensors for biochemistry [6, 7], humidity [8],
pressure [9], angle measurements [10] and may be used for other
applications as well [11]. The sensing scheme employs a light source,
an optically transparent periodic grating (which supports guided-mode
resonances) and an optical detector, see Fig. 1. The sensing principle
utilizes the idea, that the change in the structure geometry or in
the real part of the dielectric permittivity ε′ of the media, causes a
resonance shift, that can be optically detected.
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Figure 1. The scheme of a conventional GMR sensor, which comprises
a light source; a dielectric grating, which supports at least one
guided-mode resonance; an optical detector, working in reflection or
transmission mode. The change in the real part of permittivity by
δε′ causes resonance shift, shown on the right (blue and black curves).
Introduction of small losses δε′′ manifests in strong absorption peaks
(red curve).

To the best of our knowledge, the influence of the imaginary part of
the permittivity ε′′ (i.e., the material losses) on the GMR performance
has not been considered [12]. Our simulations reveal that absorption
effects caused by losses may be even stronger than the resonance shifts,
caused by the change of the real part of the permittivity ε′. Small
losses can lead to a huge increase of the absorption at resonance, as
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shown by red curve in Fig. 1. We call this phenomenon Absorption-
Based Guided-Mode Resonance (AGMR). The sensitivity to the loss
term can be extremely high. In some cases, total reflection can almost
completely be turned into total absorption or consequently into heat.
Therefore, two substantial benefits for utilizing AGMR in sensor and
switch applications are: potentially higher sensitivity and a simplified
readout scheme. For example, one can employ a simple temperature
measurement of the structure, rather than a spectral measurement of
the resonance shift, see Fig. 1.

The paper is organized as follows. In Section 2, we consider
a simple model, which allows analytical evaluation of the resonant
reflection/absorption. It is shown that even small material losses, cause
absorption resonances. The angular dependence of the absorption
resonances is analyzed. It is shown that the resonances may be
extremely sensitive with respect to the angle of incidence. In
Section 3, we consider three-dimensional structures with resonant
reflection and absorption effects and analyze the position and line
widths of the resonances. For a specific structure we demonstrate
that the introduction of small losses can almost completely convert
unity reflection into unity absorption. In Section 4, we show that
material losses are not required to be present throughout the structure
for obtaining resonant absorption effects. Even very thin layers in
the AGMR structure (or in its vicinity) can cause resonant absorption
effects. As an example, we introduce a conducting graphene monolayer
in a loss-free structure and obtain strong absorption resonances.
Finally, in Section 5 the angular dependence of the resonances for three-
dimensional structures is studied. In the Appendix, we demonstrate
that the linewidths of the absorption peaks for small losses approach
those of the resonant reflection for the loss-free case.

2. RESONANT REFLECTION AND RESONANT
ABSORPTION

To understand the phenomenon, let us consider the light reflection
from a dielectric slab with a periodic boundary on the top (see Fig. 2).
Assume that the dielectric permittivity at the upper interface has the
form:

ε(x, z) = ε1 + (ε2 − ε1)θ(z) + 2γδ(z) cos Gx,

θ(z) =
{

0, z < 0
1, z ≥ 0 δ(z) =

{ ∞, z = 0
0, z 6= 0 (1)

where θ(z) and δ(z) are Heaviside step and Dirac delta functions,
G = 2π/d, where d is the period of the perturbed interface. The
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interface described by (1) is a physical model, corresponding to an
interface modulated with respect to x-axis, but of zero thickness. The
permittivities of the materials are ε1 = 1 and ε2 = ε′ + iε′′, real part
ε′ = 4 shall be fixed, while ε′′ is a variable parameter. The permeability
is µ = 1 for both media.

Figure 2. Dielectric grating with a sinusoidal ε(x) interface at top.
Permittivities are ε1 = 1 and ε2 = ε′ + iε′′, ε′ = 4. Thickness and
period of the grating are L = d = 100 nm. Light impinges on the
structure at angle θ.

For a thin interface the scattering problem can be considered in
terms of the boundary conditions for the electric (or magnetic) field
of the light. Assume the electric field of the incident wave to be
polarized in the y direction. The boundary conditions for the electric
field E = (0, E(x, z), 0) can be obtained after integrating the wave
equation over some narrow region at the boundary z = 0:

∂2E

∂x2
+

∂2E

∂z2
+ k2

0ε(x, z)E = 0, (2)

where k0 = ω/c, ω is the frequency of light, c is the speed of light in
vacuum. Thus, we find

[E] = 0,
[
∂E

∂z

]
+ 2k2

0γE(x) cos Gx = 0. (3)

Square brackets denote the discontinuity of the corresponding value at
the boundary. To obtain the first equation of (3), we multiplied (2) by
z before the integration by parts. The first boundary condition of (3)
assumes continuity of the tangential component of the electric field.
The second one is the generalization of the boundary condition for the
tangential component of the magnetic field.

The electric field E(x) at the periodic boundary can be represented
as:

E(x) =
∑
n

EneiGnx.
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Thus, boundary conditions for the coefficients En of the n-th band
are:

[En] = 0,

[
∂En

∂z

]
+ k2

0γ(En+1 + En−1) = 0. (4)

Equation (4) is the particular case of the boundary conditions for the
envelope functions of the light waves proposed in [13]. We see that
diffraction can also be interpreted as a band mixing at the interface.
The simple cosine boundary of (1) results in the mixing of adjacent
bands. In general, however, a periodicity of the boundary results in
the mixing of many bands. The amount of mixing is proportional to
the Fourier component of the dielectric permittivity at the boundary.

To consider light reflection from a dielectric grating, let us
represent the electric field E(m)(x, z) in the domain Dm:
∑

n

A(m)+
n exp

(
iαnx + iβ(m)

n z
)
+

∑
n

A(m)−
n exp

(
iαnx− iβ(m)

n z
)
, (5)

where

αn = kx + Gn, kx = k0 sin θ, (6)

β(m)
n =

(
εmk2

0 − α2
n

)1/2
, (7)

here A
(m)±
n are the unknown field amplitudes to be determined. All the

incoming amplitudes should be zero, except the one, which corresponds
to the incident field from the top. Therefore, in domain D1, A

(1)+
n = 0,

for all n 6= 0. In domain D3, A
(3)−
n = 0 for all n.

The boundary conditions (4) can be implemented in a
straight forward way to the recursive numerically stable S-matrix
algorithm [14]. Thus, the solution for the field amplitudes A

(m)±
n can

be obtained.
To obtain the total reflectivity the z-component of the time-

averaged Poynting vector should be analyzed:

Sz =
c

8π
Re

[
~E × ~H∗

]
z

= − c

8π
Re (EyH

∗
x) , (8)

Using E from (5) and Hx = i(k0)−1∂E/∂z after averaging over x,
we find the total reflectivity:

R =
∑

p

β
(1)
p

β
(1)
0

∣∣∣A(1)−
p

∣∣∣
2
, (9)

where the summation is carried over propagating orders in D1.
The reflection of the grating for normal incidence is shown in

Fig. 3(a). Five Fourier harmonics in the field decomposition (5) already
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give the converged results. Four strong resonances with the reflection
exactly equal to unity are observed in the region 0.5 < k0/G < 1
(black solid curve). This is the region, where three modes with
p = 0,±1 are propagating in the dielectric slab and only one zeroth
mode in the air. Also cusp-like features in the reflection spectra
are seen for k0/G > 1, however, we will not focus on them. The
observed resonant reflection is due to the excitation of the quasiguided
modes in the slab. The frequencies of these modes in the absence of
interface perturbation (γ = 0) are marked with red circles. Strictly
speaking, for the perturbed interface (γ > 0), the eigenfrequencies of
the structure are complex. However, for small perturbation γ ¿ 2π/k0,
the eigenfrequencies should be close to those of the unperturbed slab,
which are real. The analysis of complex eigenfrequencies for other
structures will be carried in the next section.

If the small absorption term ε′′ is introduced, all reflection
resonances turn into absorption resonances, as shown by red curve
in Fig. 3(a). This is due to the fact, that the quasiguided modes
stay long enough in the structure to be strongly damped even in
a weakly absorbing media. Fig. 3(b) shows the dependence of the
absorption at resonance near k0/G = 0.5 as a function of ε′′. The
first sharp peak at ε′′max = 0.007 corresponds to resonant absorption
on the quasiguided mode of the slab. Thus, we see that absorption
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Figure 3. (a) Reflection of the structure, shown in Fig. 2.
Green dashed and black solid curves correspond to the transparent
unperturbed (γ = 0) and perturbed (γ > 0) slab, respectively.
Waveguide modes of the unperturbed slab are marked with red circles.
The red curve corresponds to the dielectric with small absorption term
ε′′ = 0.01. (b) Absorption at first resonance near k0/G = 0.5 as a
function of the loss term. The perturbed slab has an additional sharp
absorption-based guided-mode resonance (AGMR).
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peak experiences resonant behavior with respect to both frequency and
material losses. After this resonance, as ε′′ increases the absorption
grows. This effect is due to the net attenuation of the field in the slab.
At ε′′ = 2.25 the absorption reaches its maximum value. In the limit
of high ε′′ the reflection tends to unity, due to high dielectric contrast
with air. The absorption accordingly tends to zero. It should be noted
that the change in the real part of permittivity ε′ → ε′ + δε′, where
δε′ = ε′′max causes an extremely negligible shift (less than a linewidth)
in the reflection spectra.

In the considered case, the AGMR peak is smaller than the broad
one, corresponding to the net absorption, as seen in Fig. 3(b). However,
in some cases, which are considered in the next section, this peak can
be larger and even reach unity. This means that the introduction of
small absorption ε′′ can turn the incident radiation almost completely
into heat.

Another peculiarity of the resonant reflection and absorption,
is the extreme sensitivity with respect to the angle of incidence θ.
Fig. 4(a) shows the angular dependence of the absorption for two of
the peaks. One can see, both of the peaks split into two, as the angle
increases. This can be understood from the dispersion diagram of the
waveguide modes, which is shown in Fig. 4(b). The modes are doubly
degenerate for normal incidence (kx = 0), therefore, one absorption
peak is observed. For the inclined incidence, the degeneracy is broken.
Therefore, each of the peaks splits into two. Moreover, the second
absorption peak experiences a significant increase in the magnitude
for inclined incidence.
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Figure 4. (a) Angular dependence of the absorption for the structure
shown in Fig. 2, ε′′ = 0.01. (b) Dispersion diagram of waveguide modes
of the transparent unperturbed slab. The modes are doubly degenerate
at kx = 0.
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3. NUMERICAL EXAMPLES FOR PERIODIC
GRATINGS

The first structure to be analyzed is shown in Fig. 5. Sloping pyramids
are arranged in a hexagonal lattice on top of the waveguide layer. The
angle between the lateral face of the pyramid and the horizontal plane
is α = 54.74◦ (silicon etching angle). Constituent materials of the
pyramids and of the waveguide layer are the same. Their permittivity
is ε = ε′+ iε′′, ε′ = 6.7 shall be fixed, while ε′′ is a variable parameter.
The substrate is assumed to be infinite with permittivity εs = 2.13.
The light is incident from the vacuum with the wave vector k:

kx = 0, ky = k0 sin θ, kz = k0 cos θ. (10)

In this section, we consider normal light incidence θ = 0◦ with electric
field E = (0, Ey, 0).

The diffraction threshold frequencies into vacuum and substrate
for the considered skewed lattice read:

fm1,m2 =
c√
εv,s

1
d sinβ

√
m2

1 + m2
2 − 2m1m2 cosβ,

where β is the angle between the lattice vectors (60◦ for a hexagonal
unit cell), d is the length of the lattice vectors and {m1,m2} are
integers. The first diffraction order is opened at f1,0 = 338.8THz
into the substrate.

In absence of the pyramids, and for lossless materials (ε′′ = 0), the
waveguide modes are purely guided and their eigenfrequencies are real.
The lifetime of such modes is infinite and they cannot be excited by the
light incident from vacuum. The periodic arrangement of the pyramids
serves for coupling of the incoming light with the waveguide modes.

Figure 5. Pyramids arranged in a hexagonal lattice, translation vector
T = m1b1 + m2b2, |b1| = |b2| = d, m1,2 = 0,±1,±2, . . . . Structure
parameters: ε = ε′+iε′′, ε′ = 6.7, εs = 2.13, d = 700 nm, hw = 450 nm,
h = 200 nm, a = 440 nm, α = 54.74◦, β = 60◦.



Progress In Electromagnetics Research, Vol. 139, 2013 807

The eigenfrequencies become complex. Using the notation exp(−iωt),
the eigenfrequencies have the form ω1− iω2, so that the fields decay in
time domain ∼ exp(−iω1t) exp(−ω2t).

The reflection spectrum of the structure is shown in Fig. 6(a). The
frequency domain solver of CST Studio was used for the calculations.
The strong features in the spectrum are due to the excitation of the
quasiguided modes. Eight strong resonances, with reflection efficiency
equal to unity are observed in the spectra below f1,0 = 338.8THz. Two
of these resonances at f = 221.8 and f = 290.5THz are extremely
narrow, with line widths less than 0.1 THz. A sufficiently small
frequency step must be chosen in order to detect them. Also two
resonances, which manifest themselves as abrupt cusps in the reflection
are located above f1,0.

In order to confirm that the observed spectral features are in
fact the manifestation of the quasiguided modes, we calculated the
eigenvalues in COMSOL. Floquet-periodic boundary conditions were
applied for the unit cell boundaries and scattering boundary conditions
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Figure 6. (a) Reflection of the structure, shown in Fig. 5, with
ε′′ = 0. Black dashed line corresponds to diffraction threshold at
f1,0 = 338.8THz. Complex eigenfrequencies of the structure are
listed in Table 1. Red circles correspond to the real part of the
eigenfrequencies, imaginary part is highlighted with green. (b) Electric
energy density (normalized) at three selected resonant frequencies.
Left — Slice in the zx plane. Right — Slice in the zy.
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for the upper and lower boundaries. From the obtained list of the
eigenfrequencies we selected the modes with nonzero imaginary part
(purely guided modes can not be excited by the incident plane wave
and, therefore, do not manifest themselves in the spectra) and which
are physically meaningful (according to the electric field distribution).
These frequencies are listed in Table 1 and are also plotted in Fig. 6(a).
As one can see, the real parts of the eigenfrequencies do not necessarily
coincide with reflection maxima, but are rather close. The imaginary
parts of the eigenfrequencies represent the inverse lifetime (or radiation
losses) of the modes and should correlate with the resonance width.
We highlighted the region between ω1 − ω2/2 and ω1 + ω2/2. A good
correlation is clearly present.

Table 1. Complex eigenfrequencies of the structure, shown in Fig. 5.

Eigenfrequency, THz
208.69− 0.47i

217.77− 1.12i

221.80− 0.08i

258.91− 1.78i

277.01− 2.36i

290.52− 0.09i

320.67− 5.91i

334.43− 0.77i

345.05− 0.21i

351.31− 0.27i

Figure 6(b) shows the spatial distribution of the electric energy
density at three selected resonances. As can be seen, high energy
density can be concentrated in different regions of the structure. At
frequency f1 = 208.69THz the energy density is high in the waveguide
layer; at f2 = 277.01THz it is high in two regions — waveguide
layer and pyramids; at f3 = 320.67THz energy density is high in the
pyramids.

The absorption term ε′′ plays a drastic role in spectra profile,
due to AGMR effect. The absorption spectra of the structure for
different ε′′ values are shown in Fig. 7(a). The black solid curve
corresponds to ε′′ = 0.005. Now the absorption peaks coincide very well
with the aforementioned eigenfrequencies. Because the perturbation
ε′′ = 0.005 is very small, it almost does not affect the eigenfrequency
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values. Hence, resonant reflection/absorption peaks have almost the
same width, and accordingly the same Q-factors, see also Appendix
for the explanation. All resonances, even the narrow ones at f = 221.8
(Q = 1150) and f = 290.5THz (Q = 1475) are clearly seen in the
absorption spectra. The increase of the absorption up to the specific
value ε′′ = 0.054 causes several phenomena. Firstly, the resonances
become wider. Narrow resonances at f = 221.8 and f = 290.5THz are
even smeared. Secondly, the resonances generally become stronger,
except at f = 290.5THz. The resonance at 334.4THz, reaches an
impressive value of almost 0.9. Further increase of ε′′ makes the
resonance less pronounced and at ε′′ = 0.6 all the resonances are
smeared.

The reflection spectra for the same ε′′ values are shown in
Fig. 7(b). The reflection at resonances accordingly decreases for the
increasing ε′′ values. It is remarkable that the reflection resonance
at 334.4 THz (black dashed line) drops from unity to zero for specific
value ε′′ = 0.054. Ninety percents of the energy is absorbed and the
rest is transmitted.
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Figure 7. (a) Absorption spectra of the structure, shown in Fig. 5 for
different absorption terms ε′′. Red circles correspond to the real part
of the eigenfrequencies (Table 1), imaginary part is highlighted with
green. (b) Reflection spectra for the same values of ε′′.

As demonstrated, high absorption can be observed even with
extremely small losses. But it still remains of interest, if absorption
can reach unity and, if full conversion of reflection to absorption
is possible. In order to investigate that, we optimized a structure,
which is shown in Fig. 8(a). We optimized five parameters to obtain
maximum achievable conversion of the reflection to absorption at a
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specified frequency 300 THz. Four parameters are geometrical (shown
with double arrows) and one is the material absorption term ε′′. For
the obtained optimal parameters the absorption peak reaches unity
(see black dash-dotted line in Fig. 8(b)), reflection is accordingly zero
(see red dashed line). When no losses are present in the structure,
the reflectivity at 300 THz is almost unity (blue solid curve). It is
remarkable that such a small absorption term can almost fully convert
reflection resonance into absorption.

(a) (b)

Figure 8. Bricks arranged in square lattice on top of the waveguide.
Structure parameters: ε = ε′+ iε′′, ε′ = 6.7, d = 680 nm, hw = 275 nm,
h = 610 nm, w = 330 nm.

The AGMR effect allows to use a thermometer for sensing, instead
of the optical detector scheme. If, for example, due to the interaction
with some gas the material acquires nonzero ε′′, the incident light will
be strongly absorbed. This will lead to heating of the structure, which
can be detected by simple temperature measurements. An example
could be a hydrogen sensor, where the gasochromic coloration of WO3

in the presence of hydrogen gas (H2) [15] can be used.
Summarizing, we see two substantial benefits for sensors and

switches to utilize the AGMR effect. Firstly, such sensors are
highly sensitive. As seen, even extremely small losses lead to strong
absorption peaks. The change of the real part of permittivity ε′
requires a much more significant change for the observable shift of the
reflection resonance. Secondly, the detecting scheme can be essentially
simplified. Instead of measuring the optical response, the temperature
of the structure can be measured.
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4. STRUCTURES WITH THIN ABSORBING FILMS
AND GRAPHENE MONOLAYERS

In the previous section we considered structures, where losses are
distributed in the whole waveguide structure. However for sensor
applications, structures with a thin layer that is in contact with the
environment and changes its ε′′, are more promising. Therefore, we
examined cases of thin absorbing films in the structures.

Let us consider the structure, which is shown in Fig. 9(a). The
only difference from the previous one (shown in Fig. 5), is that now
merely a thin homogeneous layer h = 50nm possesses losses, ε′′a > 0.
Fig. 9(b) shows the absorption for different ε′′a values. For the sake
of comparison, the black dashed line is reproduced from the structure
with homogenously distributed losses. As one may see, the absorption
in thin film is rather strong. Remarkable that at resonances f = 221.8
and f = 290.5THz the absorption drops as losses increase. This
behavior is not surprising, because each resonance reaches its maximum
at some optimal value of ε′′a. This phenomenon was elucidated in
Section 2 and demonstrated in Fig. 3(b). Moreover, the absorption
in the film with ε′′a = 0.005 (red curve) is exceeding that of the
homogenously distributed losses (black dashed line). Thus, reducing
the absorption region can also promote an increase of absorption. Two
resonances at f = 221.8 and f = 290.5 THz reach impressive Q-factors
of 14000 and 7900, respectively. Due to small values of ε′′a, the positions
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Figure 9. (a) structure equivalent in geometry to the one shown in
Fig. 5. Losses are present only in the homogeneous region h = 50nm.
(b) Absorption of the structure for different ε′′a values. Black dashed
curve — absorption is present in the whole guiding block (reproduced
from Fig. 7(a)).
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of all resonances remain almost unaffected.
Exploring the realms of thin absorbing films in even further,

we consider a monolayer of graphene [16]. This material is unique
and has a number of remarkable properties [17], which can be used
for sensor applications. The ability to change its conductivity in
the presence of the external electric fields or to absorb hydrogen are
two examples. The electrical conductivity of graphene in the visible
spectral region was computed in [18]. The authors also calculated
the reflection/transmission problem of the graphene sheet, embedded
between dielectric media.

We consider a graphene monolayer in the structures, as shown
in Fig. 10. The graphene monolayer can be taken into spectrum
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Figure 10. Absorption spectra of structures with a monolayer of
graphene. Only graphene monolayer possess losses, the rest materials
are transparent ε′′ = 0. Structure (a) is equivalent to the one in Fig. 5,
structure (b) is equivalent to Fig. 8.
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calculations by means of the boundary conditions for the tangential
components of the electric and magnetic fields:





Ey2 −Ey1 = 0,

Hx2 −Hx1 = −4π

c
σEy1,

Ex2 − Ex1 = 0,

Hy2 −Hy1 =
4π

c
σEx1,

where σ(ω) is the conductivity of graphene. In the considered
frequency range, we assumed the graphene to be at half filling σ(ω) =
σ0 = πe2/2h [18], where e is the electron charge and h is Planck’s
constant.

Calculated absorption spectra for two structures are shown in
Fig. 10 on the right. Strong peaks correspond to the resonant
absorption in the graphene monolayer. Note, that absorption in
graphene monolayer without periodic gratings does not exceed 1.5%
for same frequency range.

5. ANGULAR DEPENDENCE OF THE RESONANCES

In this section, we will briefly discuss the angular dependence of the
resonances of the structures presented in Section 3. The components
of the electric field are E = (0, Ey, Ez). Fig. 11 shows the absorption
for normal and oblique incidences. As one can see, the spectra become
more complicated and more absorption resonances appear, compared
to normal incidence. For normal incidence some of the modes are
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Figure 11. Angular dependence of the absorption of the structure,
shown in (a) Fig. 5 with ε′′ = 0.005. (b) Fig. 8(a) with ε′′ = 0.066.
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Table 2. Complex eigenfrequencies of the structure, shown in Fig. 5,
θ = 3◦, ε′′ = 0.005.

Eigenfrequency, THz
207.09− 0.31i

211.20− 0.28i

214.86− 0.54i

221.29− 0.51i

224.52− 0.18i

257.64− 1.39i

262.72− 0.52i

274.76− 1.56i

281.65− 0.72i

285.39− 0.23i

292.78− 0.14i

319.54− 5.08i

inactive or degenerate due to symmetry properties. For the oblique
incidence these states can become active and manifest themselves in
the spectrum. In [5] the symmetry properties of the modes were
analyzed to characterize optically active and inactive modes. Such
detailed analysis is beyond the scope of this paper. As seen from
Fig. 11(a), for θ = 1◦ all of the absorption peaks split into two (except
the broadest one near 320 THz). The spectral distance between these
peaks increases, as the θ increases. Incidentally, the two peaks, which
are marked with black arrows, approach each other and merge at
θ = 3◦. This merged peak is marked with a blue arrow.

The calculated eigenfrequencies of the first structure for the
oblique incidence are listed in Table 2 and highlighted in Fig. 11(a).
Very good correlation of the mode positions and linewidths with
absorption peaks is observed. Noteworthy, that peak maxima reach
impressively high values. For example, the peak at 224.5 THz exceeds
0.5, while the absorption outside of the resonance is below one percent.

6. CONCLUSIONS

It was shown that Absorption-Based Guided-Mode Resonances
(AGMR) can be very sensitive with respect to small variations of
losses. The absorption peaks observed experience a resonant behavior
with respect to both frequency and material absorption. Q-factors of
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AGMRs with small losses can be very high, approaching the values of
the loss-free structures. It was demonstrated that total reflection can
be turned into total absorption by means of introducing small losses.
The position of the resonances remain almost unaffected, which can
be advantageous for sensor and switch applications. Small variations
of the imaginary part of permittivity have a much more pronounced
impact on the optical response than the same variations of the real
part. This feature opens opportunities to make sensors with high
sensitivity. We suggest that this be used for a new kind of sensor
for gas composition, pressure, biochemical composition, etc.. The
only requirement is that the losses in the structure (or in its vicinity)
are dynamically modified during the sensor operation. This can be
achieved in a number of ways. An external electric field, for example,
can modify the permittivity of some materials. This consequently,
strongly affects the optical response. Such a situation can occur, for
example, in graphene, where external fields change its conductivity.

As absorption resonances can reach impressive values, implying
structure heating, the detection scheme can also be essentially
simplified. Instead of utilizing an optical detector, simple temperature
measurement of the structure can be performed. This offers additional
opportunities such as cost reduction (in comparison with optical
readout systems) and time averaged measurements. Extremely
high angular sensitivity of the absorption/reflection peaks opens
possibilities for the precise angle measurements.
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Zürich for the discussions.

APPENDIX A.

In order to analyze the linewidth of the absorption peaks, let us
consider the following problem. As in Section 2 the light is incident on
a slab with a sinusoidal ε(x) interface described by (1). For simplicity,
the domain D3 is now a perfect electric conductor (PEC), see Fig. A1.
We take only n = 3 Fourier harmonics in the field decomposition of
(5), and use the boundary conditions (4) (taking γ = 10nm, as in
Section 2). This results in a system of linear equations with 9 unknown
amplitudes. For the normally incident light the problem is symmetric
and, therefore, the number of the unknown amplitudes reduces to 6.
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Figure A1. Dielectric grating with a sinusoidal ε(x) interface at top
and PEC at bottom. Permittivities are ε1 = 1 and ε2 = ε′ + iε′′,
ε′ = 4. Thickness and period of the grating are L = d = 100 nm. Light
impinges normally on the structure.

Solving these equations for the absorption coefficient yields:

A = 1−R = 1−
∣∣∣∣
B (ε′′, ω)− D (ε′′, ω)

D (ε′′, ω)

∣∣∣∣
2

, (A1)

here B(ε′′, ω) is:
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where β
(m)
n are defined in (7). Considering ε′′ as a small parameter,

we can expand both numerator and denominator of (A1), keeping only
linear terms:

A ≈ 1−
∣∣∣∣
B1(ε′′, ω)− D1(ε′′, ω)

D1(ε′′, ω)

∣∣∣∣
2

, (A2)

B1(ε′′, ω) = B(0)(ω) + B(1)(ω)ε′′,

D1(ε′′, ω) = D(0)(ω) + D(1)(ω)ε′′.
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The principal term to be kept in the numerator of (A2) is D(0)(ω),
therefore, the expression simplifies to:

A ≈ 1−
∣∣∣∣∣
D(0)(ω)
D1(ε′′, ω)

∣∣∣∣∣
2

. (A3)

As seen from Fig. A2(a), for small value of ε′′ the expansion (A2) is
a very good approximation of (A1). The simplified expression (A3)
describes the absorption spectrum appropriately.

(a) (b)

1

0.8

0.6

0.4

0..2

0

A
b

s
o

rp
ti
o

n

A
b

s
o

rp
ti
o

n

exact (A.1)

k  /G

0.6 0.7 0.8 0.9 1

0 k  /G

0.6 0.7 0.8 0.9 1

0

1

0.8

0.6

0.4

0..2

0

approximate (A.2)

simplified (A.3)

exact (A.4)

approximate (A.5)

simplified (A.6)

Figure A2. Absorption spectra of the structure shown in (a) Fig. A1
and (b) Fig. 2; γ = 10 nm, ε′′ = 0.01. Green solid lines correspond
to the exact solutions, red dashed lines — approximate solutions, blue
solid lines — simplified expression.

When ε′′ = 0, the numerator and denominator of (A3) are
equal, yielding zero absorption and unity reflection, respectively. The
function D(0)(ω) is zero for the complex eigenfrequency ω0 = ω1− iω2,
D(0)(ω0) = 0. For the real part of the eigenfrequency ω1, D(0)(ω1)
exhibits a minimum and becomes noticeably smaller than D1(ε′′, ω1),
if ε′′ > 0. Thus, strong increase of absorption at resonant frequency ω1

is observed. The width of the absorption peak is correlated with the
width of denominator D1(ε′′, ω) and, hence, with the imaginary part of
the eigenfrequency ω2. Which grows as losses increase ω2(ε′′2) > ω2(ε′′1),
ε′′2 > ε′′1.

Let us now come back to the problem of light reflection from a
dielectric slab, shown in Fig. 2. Expression for the absorption has
the same form as (A1), with the only difference that the transmission
should also be taken into account:

A = 1−R− T = 1−
∣∣∣∣
B(ε′′, ω)− D(ε′′, ω)

D(ε′′, ω)

∣∣∣∣
2

−
∣∣∣∣
C(ε′′, ω)
D(ε′′, ω)

∣∣∣∣
2

, (A4)

here B(ε′′, ω), C(ε′′, ω) and D(ε′′, ω) are some cumbersome analytical
expressions. Performing the same expanding and simplification
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procedure as in (A2) and (A3), we obtain:

A ≈ 1−
∣∣∣∣
B1 (ε′′, ω)− D1 (ε′′, ω)

D1 (ε′′, ω)

∣∣∣∣
2

−
∣∣∣∣
C1 (ε′′, ω)
D1 (ε′′, ω)

∣∣∣∣
2

, (A5)

A ≈ 1−
∣∣∣∣∣
D(0)(ω)
D1(ε′′, ω)

∣∣∣∣∣
2

. (A6)

As can be seen from Fig. A2(b) the approximation (A5) is in very
good agreement with the exact solution (A4) and the absorption
peaks are well reproduced by the simplified formula (A6). The line
width of the absorption peak is correlated with the width of the
determinant D1(ε′′, ω), while the width of the resonant reflection peak
for the loss-free case is correlated with the width of D(0)(ω). Since
|D1(ε′′, ω)| > |D(0)(ω)|, the resonant absorption peak is wider than
that of the resonant reflection, however in the limit of small ε′′ the
difference becomes negligible.

It should be noted, that the line shape of the resonant reflection
peaks is strongly asymmetric, in contrast to that of the resonant
absorption (see, for example, Fig. 7). Therefore, it is not easy to give
a precise definition of the line width for the reflection peak. Using the
definition of Full Width at Half Maximum (FWHM), it can appear that
absorption peaks are, actually, narrower than the peaks of reflection.
Especially in cases when the resonances are located close to each
other. As an example, using FWHM definition, the absorption peak
at f = 334.43THz in Fig. 7(a) for ε′′ = 0.005 is obviously narrower
than the reflection peak in Fig. 7(b) for ε′′ = 0.
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