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Abstract—In this paper, the properties of anisotropic photonic
band gaps (PBGs) in three-dimensional (3D) nomagnetized plasma
photonic crystals (PPCs) composed of anisotropic dielectric (the
uniaxial material) spheres immersed in uniform nomagnetized plasma
background with various lattices including the diamond, face-centered-
cubic (fcc), body-centered-cubic (bcc) and simple-cubic (sc) lattices,
are theoretically investigated by the plane wave expansion (PWE)
method. The equations for calculating the anisotropic PBGs in the first
irreducible Brillouin zone are theoretically deduced. The anisotropic
PBGs and a flatbands region can be obtained as the uniaxial material
introduced into 3D PPCs. The PPCs with diamond lattices consisting
of isotropic dielectric have the larger PBGs compared to PPCs
doped by the uniaxial material since its low-symmetry structure.
Furthermore, the PPCs with fcc, bcc, sc lattices will not exhibit
a complete PBG unless the uniaxial material is introduced. The
influences of the ordinary-refractive index, extraordinary-refractive
index, filling factor and plasma frequency external magnetic field on
the properties of anisotropic PBGs for 3D PPCs with fcc, bcc, sc
lattices are investigated in detail, respectively, and some corresponding
physical explanations are also given. The numerical results show that
the anisotropy can open partial band gaps in 3D PPCs with fcc, bcc, sc
lattices, and the complete PBGs can be obtained compared to 3D PPCs
doped by the conventional isotropic dielectric. It also is shown that
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the anisotropic PBGs can be tuned by the ordinary-refractive index,
extraordinary-refractive index, filling factor and plasma frequency,
respectively. The complete PBGs can be obtained by introducing the
uniaxial material as 3D PPCs are with high-symmetry lattices. This
also provides a way to design the tunable devices.

1. INTRODUCTION

The photonic crystals (PCs) have been extensively investigated in
theory and experiment since the pioneering work of Yablonovitch [1]
and John [2] in 1987. The most attractive feature of PCs is their
photonic band gaps (PBGs) [3], where electromagnetic (EM) waves
cannot propagate for any polarizations along any direction. The larger
PBGs can be used to design the many important applications [4–7].
During past a few years, intensive studies have been mainly concerned
with the conventional dielectric materials. In recently, PCs comprising
the dispersive materials such as plasma [8], superconductor [9] and
metallic [10] have become increasing important. PCs with plasma
components have been attracted the great attentions of researchers
since the idea of plasma photonic crystals (PPCs) firstly proposed by
Hojo and Mase [11]. The plasma can be looked as metamaterial [12],
and also can be controlled by some external agents [13]. Compared
to the conventional dielectric PCs, the PPCs have some interesting
properties on the dispersion such as larger PBGs [14], the tunable
PBGs [15] and tunable photonic defect states [16]. They also can
used to design the tunable devices [17–19]. Up to now, the one-
and two-dimensional (2D) PPCs have achieved rapid development in
theoretical and experimental research [20–22]. For 1D PPCs, Guo [23]
theoretically investigated the dispersion and transmission properties of
1D PPCs, and found the PBGs can be tuned by the plasma parameters.
The properties of transmission and defect modes of 1D magnetized
PPCs are studied by Liu et al. [24] and Zhang et al. [25] based on
finite-difference time-domain (FDTD) method, respectively. Zhang et
al. [26, 27] used 1D PPCs to design the omnidirectional reflector by a
matching layer and fractal heterostructure techniques. They found
1D PPCs is good candidate to enhance the omnidirectional band
gaps. The transmission characteristics of 1D magnetized PPCs with
dielectric defect layer were investigated by Qi et al. [28] based on the
transfer matrix method (TMM). They found that defect modes can
be modulated by the magnetized plasma in a larger frequency region.
Zhang et al. [29] considered a more general case. They studied the
dispersive properties of 1D magnetized PPCs with arbitrary magnetic
declination, and found that the PBGs can be notably tuned by the
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parameters of magnetized PPCs. The magnetized coupled resonator
PPCs and plasma-magnetic PCs are investigated by Hamidi [30] and
Mehdian et al. [31]. For 2D case, Qi [32] investigated the dispersion for
2D magnetized PPCs by plane wave expansion (PWE) method, and
found that the PBGs can be tuned by the parameters of magnetized
plasma. Zhang et al. [33, 34] studied the transmission and defect mode
properties of 2D PPCs for TM wave by FDTD method, and pointed
out that the PBGs and defect mode can be tuned by plasma frequency,
host dielectric constant and filling factor, respectively. Fu et al. [35]
analyzed the dispersion relation of magnetic plasma-metal PCs based
on FDTD method, and found that the positions of the flat bands,
cutoff frequency, and PBGs can be controlled by the external magnetic
field, respectively. On the other hand, Zhang et al. [36] and Qi and
Zhang [37] arranged plasma periodically by the external magnetic field
to form a new kind of 2D and 1D magnetized PPCs, which are only
composed of the plasma, and proclaimed that the PBGs also can be
tuned by the external magnetic field.

As mentioned above, the most of published reports about PPCs
focus on 1D and 2D cases until Zhang et al. [38–40] proposed the
properties of PBGs for 3D nomagnetized PPCs with diamond and
simple-cubic (sc) lattices. The same research group also investigated
the dispersive properties of 3D magnetized PPCs [41, 42]. As
mentioned in their works [38, 41], 3D PPCs with sc lattices will
suffer from high-symmetry lattices and dielectric constant of dielectric
must be sufficiently large so that the resonant scattering of EM
waves is prominent enough to open a band gap [43]. Unfortunately,
technological difficulties can be found in fabricating the 3D PPCs to
obtain the complete PBGs with large dielectric constant of dielectric.
Therefore, if we want to achieve the complete PBGs in 3D magnetized
plasma photonic crystals (MPPCs) with high symmetry lattices, we
have to break the high symmetry [44] and use anisotropic dielectric to
realize the PCs [45]. To our knowledge, it is difficult to achieve the
complete PBGs as the PCs with high-symmetry lattices such as face-
centered-cubic (fcc), body-centered-cubic (bcc) and sc lattices [43].
The previous reports on the 3D PPCs always considered the filling
dielectric is isotropic. The anisotropic PBGs of 3D PPCs with high-
symmetry lattices are rarely investigated. Therefore, the aim of the
present paper is to perform a systematic study of the anisotropic
PBGs in 3D PPCs with high-symmetry lattices (fcc, bcc and sc)
doped by the anisotropic dielectric (uniaxial material) based on
a modified PWE method. The proposed 3D PPCs are that the
anisotropic dielectric spheres are immersed in the nomagnetized plasma
background periodically with various lattices. This paper is organized
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as follows. The equations of computing the anisotropic PBGs for
the 3D PPCs with various lattices are theoretically deduced in
Section 2. In Section 3, the influences of the ordinary-refractive index,
extrordinary-refractive index, filling factor and plasma frequency on
the properties of anisotropic PBGs for 3D PPCs with fcc, bcc and
sc lattices are studied, respectively. Finally, conclusions are given in
Section 4. An ejωt time-dependence is implicit through the paper, with
t the time, and j =

√−1. We also consider c is light speed in vacuum.

2. THEORETICAL MODEL AND NUMERICAL
METHOD

The standard Brillouin zone and schematic structures of 3D PPCs
with a spherical atom in simple lattice such as diamond, bcc, fcc and
sc lattices can be found in many textbooks and reports [38–43]. Thus,
they are not shown here. We assumed the radius of the sphere and
lattice constant are R and a, respectively. The relative dielectric
function for nomagnetized plasma is εp and it is homogeneous. As
we know, the nomagnetized plasma is a kind of frequency dependence
dielectric, the dielectric function εp that meets the Drude model and
can be written as [13]:

εp(ω) = 1− ω2
p

ω(ω − jνc)
(1)

where ωp, νc, and ω are the plasma frequency, plasma collision
frequency, and EM wave frequency, respectively. Plasma frequency
ωp = (e2ne/ε0m)1/2 in which e, m, ne and ε0 are electron charge,
electric mass, plasma density and dielectric constant in vacuum,
respectively.

In order to obtain the anisotropic photonic band structure of
3D PPCs, several efficient numerical methods have been reported,
such as the PWE [32], the FDTD [26, 27], the TMM [28], the
plane-wave-based transfer-matrix [46], the cell [47], the moving least
squares [48], the multidomain pseudospectral [49] and the spectral
element methods [50]. The PWE method is the most popular method
to achieve the band structure. Especially, Zhang et al. [51] proposed a
modified PWE technique, which can calculate successfully the PBGs
for the PCs composed of the Drude-type medium. As mentioned in
Ref. [51], a standard linearization technique was used to solve the
general nonlinear eigenvalue equation. Thus, the PCs composed of
the frequency dependence dielectric could be calculated easily by such
method. In this paper, the same technique also will be used to obtain
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the anisotropic PBGs of 3D PPCs with different (fcc, bcc and sc)
lattices containing the uniaxial material.

As we know, the uniaxial material [43] has two different principal-
refractive indices known as ordinary-refractive and extraordinary-
refractive indices, which can found in the nature. We consider the
ordinary-refractive and extraordinary-refractive indices are no and ne,
respectively. For the anisotropic material, the dielectric constant εa is
a dyadic and can be written as

εa =

(
εx 0 0
0 εy 0
0 0 εz

)
(2)

where
εx = n2

x, εy = n2
y, εz = n2

z.

Therefore, for the uniaxial material, the dielectric dyadic has only three
cases for diagonal element permutation as [43] (a) nx = ne, ny = nz =
no; (b) ny = ne, nx = nz = no; (c) nz = ne, nx = ny = no. We
name them type-1, type-2 and type-3 uniaxial materials, respectively.
In order to simplify, we just deduce the equations for calculating the
anisotropic PBGs of 3D PPCs containing the type-1 uniaxial material.
For the type-1 case, the ε−1

a is the inverse dyadic of εa and can be
written as

ε−1
a =




ε−1
x 0 0
0 ε−1

y 0
0 0 ε−1

y


 (3)

On the other hand, the Maxwell’s equation for the magnetic field
in 3D PPCs can be expressed as:

∇×
[

1
ε(r)

∇×H
]

= −ω2

c2
H (4)

Since ε(r) is periodic, we can use Bloch’s theorem to expand the H
field in term of plane wave,

H(r) =
∑

G

2∑

λ=1

hG,λ
_eλe[j(k+G)·r] (5)

where k is a wave vector in the Brillouin zone of lattice, G is a
reciprocal-lattice vector, and _e1,

_e2 are orthogonal unit vectors that
are both perpendicular to wave vector k + G because of the transverse
character of magnetic field H (i.e., ∇·H = 0). The dielectric constant
dyadic can also be expanded into its Fourier form as

ε−1(r) =
∑

G

ε1
a(G)ejG·r (6)
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where the Fourier transform coefficient ε−1
a is also a dyadic.

Substituting Eq. (5) and Eq. (6) into Eq. (4), the following linear
matrix equations can be obtained

∑

G′,λ′
Hλ,λ′

G,G′hG′,λ′ =
ω2

c2
hG,λ (7)

where

Hλ,λ′
G,G′=|k + G| ∣∣k + G′∣∣

(
_e2 · ε−1

G,G′ · _e2′ −_e2 · ε−1
G,G′ · _e1′

−_e1 · ε−1
G,G′ · _e2′

_e1 · ε−1
G,G′ · _e1′

)
(8)

In order to solve the Eq. (7), we can rewrite the Eq. (3) as

ε−1
a =




ε−1
x 0 0
0 ε−1

y 0
0 0 ε−1

y


 = ε−1

x

(1 0 0
0 0 0
0 0 0

)
+ ε−1

y

(0 0 0
0 1 0
0 0 1

)

= ε−1
x

↔
Ix + ε−1

y

↔
Iy (9)

where
↔
Ix =

(1 0 0
0 0 0
0 0 0

)
,

↔
Iy =

(0 0 0
0 1 0
0 0 1

)
.

Thus, the Eq. (8) can be rewritten as

Hλ,λ′
G,G′

= |k+G| ∣∣k+G′∣∣ ∑

i=x,y

(
_e2 ·

↔
Ii · _e2′ −_e2 ·

↔
Ii · _e1′

−_e1 ·
↔
Ii · _e2′

_e1 ·
↔
Ii · _e1′

)
·ε−1

G,G
′ (i) (10)

where ε−1
G,G′(i) are the Fourier transform coefficients for ε−1

x and ε−1
y ,

respectively. As we know, the dielectric sphere filling factor can be
written as f = (4πR3)/(3Vm), Vm is the volume of unit cell. The
Fourier coefficients ε−1

G,G′(i) could be written as [38–40]:

ε−1
G,G′(i)=





(
ω2−jνcω

ω2−jνcω−ω2
p

)
(1− f) +

(
1
εi

)
f, G=0

(
1
εi
−

(
ω2−jνcω

ω2−jνcω−ω2
p

))
3f

(
sin(|G|R)−(|G|R) cos(|G|R)

(|G|R)3

)
, G 6=0

(i = x, y) (11)

We can write hG,λ of H(r) in the form [38–40]

hG,λ =
∑

G

A(k|G)ej(K+G)·r (12)
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We can obtain as the equation for the coefficients {A(k|G)}
(
ε−1
a

)·|k+G|∣∣k+G′∣∣·↔F·A(k|G)+
∑

G′
ε−1
a ·|k+G| ∣∣k+G′∣∣·↔F·A(k|G)

=
ω2

c2
A(k|G) (13)

where the prime on the sum over G′ indicates that the term with G′ =

G is omitted. We consider
↔
Fx =

(
_e2 ·

↔
Ix · _e2′ −_e2 ·

↔
Ix · _e1′

−_e1 ·
↔
Ix · _e2′

_e1 ·
↔
Ix · _e1′

)
,

↔
Fy =

(
_e2 ·

↔
Iy · _e2′ −_e2 ·

↔
Iy · _e1′

−_e1 ·
↔
Iy · _e2′

_e1 ·
↔
Iy · _e1′

)
and

↔
F =

↔
Fx +

↔
Fy, respectively.

At this point we use the definition of a complex variable µ given by

µ = ω/c (14)

Eq. (13) yields

µ4
↔
I − µ3

↔
T− µ2

↔
U− µ

↔
V − ↔

W = 0 (15)

where
↔
I is the identity matrix, and

↔
T

(
G|G′) = j

νc

c
δG·G′ , (16a)

↔
U(G|G′) =





∑

i=x,y

(
ω2

p

c2
+

(
1
εi

f + (1− f)
)
· |k + G|2 · ↔Fi

)

 δG·G′

+
∑

i=x,y

(
1
εi
− 1

)←→
Mi, (16b)

↔
V

(
G|G′) =





∑

i=x,y

(
−j

νc

c

(
1
εi

f+(1− f)
)
· |k + G|2 · ↔Fi

)

 δG·G′

+
∑

i=x,y

−j
νc

c

(
1
εi
− 1

)←→
Mi, (16c)

↔
W

(
G|G′) =





∑

i=x,y

(
−ω2

p

c2

f

εi
· |k + G|2 · ↔Fi

)

 δG·G′

+
∑

i=x,y

ω2
p

c2

(
1− 1

εi

)←→
Mi, (16d)
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where
←→
Mi = |k + G|2 · ↔F · 3f( sin(|G|R)−(|G|R) cos(|G|R)

(|G|R)3
) (i = x, y), the

element of the N ×N matrices are
↔
T,

↔
U,

↔
V and

↔
W. This polynomial

form can be transformed into a linear problem in 4N dimension by
↔
Q

that fulfills

↔
Qz = µz,

↔
Q =




0
↔
I 0 0

0 0
↔
I 0

0 0 0
↔
I

↔
W

↔
V

↔
U

↔
T




(17)

The complete solution of Eq. (6) is obtained by solving for the
eigenvalues of Eq. (17). Of course the dispersion relation can be
determined by the real part of such eigenvalues. The analogue equation
to Eq. (10) for another two types of cases also can be easily derived.

3. NUMERICAL RESULTS AND DISCUSSION

In our calculation, we adopt a total number of 729 plane waves,
and the convergence accuracy is better than 1% for the lower energy
bands for diamond, fcc, bcc and sc lattices [43], respectively. Without
loss of generality, we plot ωa/2πc with the normalization convention
ωp0a/2πc = 1. The symbol ωp0 is a variable, and its value is 2πc/a.
Thus, we can define the plasma frequency as ωp = 0.3πc/a = 0.15ωp0

to make the problem scale-invariant. With this definition, we can let
a take any value as long as R is shifted according to achieve the same
filling factor. In our calculation, we also choose the plasma collision
frequency as νc = 0.02ωpl and f = 0.25, respectively. The plasma is
a kind of dispersive medium and can be looked as metamaterial. The
properties of plasma can be easily tuned by the external magnetic field,
plasma density and the temperature of plasma, respectively. Therefore,
the PPCs can be used to design the novel tunable devices, such
as tunable filter [16], omnidirectional reflector [18] and polarization
splitter [19]. As we know, the electron plasma density ne is located in
1012–1016 cm−3 [12], which corresponds to electron plasma frequency
ωp/2π = 10–1000 GHz, that means plasma PC can dynamically control
electromagnetic waves from microwaves to THz waves. If a is equal to
0.003m, the ωp0/2π is equal to 10GHz. If a is equal to 0.0003m, the
ωp0/2π is equal to 1000GHz. Thus, the value of ωp/2π runs from 1.5 to
150GHz according to the definition of plasma frequency as mentioned
in our manuscript. The plasma collision frequency νc is located in
30MHz–3GHz. In this paper, we consider the plasma frequency is
equal to 30 GHz and the plasma collision frequency νc is 0.6 GHz. The
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value of a is chosen as 0.0015 m. We only focus on the first (1st) PBGs
for 3D PPCs in various lattices. In order to investigate the anisotropic
PBGs of 3D PPCs, the relative bandwidth is defined as

∆ω/ωi = 2(ωup − ωlow )/(ωup + ωlow ) (18)

where ωup and ωlow are the upper and lower limits of a PBG,
respectively.

3.1. The Anisotropic PBGs of 3D PPCs Containing the
Uniaxial Material in Various Lattices

To investigate the effects of anisotropy, space topology on the complete
PBGs, we plot the band structures of 3D PPCs with diamond lattices
containing the uniaxial material and isotropic dielectric in Fig. 1,
respectively. As we know, the high-symmetry points in the Brillouin
zone have the coordinate as Γ = (0, 0, 0), X = (2π/a, 0, 0), W = (2π/a,
π/a, 0), K = (1.5π/a, 1.5π/a, 0), L = (π/a, π/a, π/a), and U = (2π/a,
0.5π/a, 0.5π/a). As shown in Figs. 1(a)–(c), the complete PBGs can be
obtained as 3D PPCs doped by three types of uniaxial materials, and
the 1st PBGs present themselves at 0.5134–0.5235 (2πc/a), 0.4198–
0.4334 (2πc/a) and 0.5115–0.5179 (2πc/a), respectively. The value
of 2πc/a is equal to 200GHz. The relative bandwidths are 0.0195,
0.0319 and 0.0124, respectively. The 3D PPCs with diamond lattices
consisting of type-2 uniaxial material have largest relative bandwidth
compared to another two types of uniaxial material. As a comparison,
we also present the band diagram of 3D PPCs containing isotropic
dielectric in Fig. 1(d). As shown in the Fig. 1(d), the 1st PBG runs
from 0.4586 to 0.4787 (2πc/a), and the relative bandwidth is 0.0429.
One can compare Figs. 1(a)–(c) with the photonic band structure of
such isotropic PBG, and all of relative bandwidths obtained by the
uniaxial material are less than that for such isotropic PBG. This can
be explained in physics that the diamond lattice is not a high-symmetry
structure in topology, and the anisotropy does not help to enlarge or
achieve the complete PBGs. As mentioned above, enlarging the PBGs
by the reduction of crystal symmetry by anisotropic anisotropy is not a
good choice, since the asymmetry of diamond lattice provides a better
way to open the band gaps at high-symmetry points in the Brillouin
zone. However, for the other simpler lattices such as fcc, bcc and sc
lattices, the complete PBGs can be obtained by the introduction of
anisotropic dielectric into the 3D PPCs. In Fig. 2, we plot anisotropic
photonic band structure of 3D PPCs containing the isotropic material
in various lattices as nz = nx = ny = 4.8, ωp = 0.15ωp0, νc = 0.02ωp1,
and f = 0.25. As we know, the high-symmetry points in the Brillouin
zone for fcc lattices are same as in the diamond structure. For the bcc
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(a) (b)

(c) (d)

Figure 1. Calculated anisotropic photonic band structure of 3D PPCs
with diamond lattices as f = 0.25, ωp = 0.15ωp0, νc = 0.02ωp1, and
(a) nx = ne = 6.2, ny = nz = no = 4.8; (b) ny = ne = 6.2,
nx = nz = no = 4.8; (c) nz = ne = 6.2, nx = ny = no = 4.8;
and (d) nz = ne = 4.8, nx = ny = no = 4.8, respectively. (d) The
photonic structure for 3D PCs consists of isotropic dielectric spheres
in air background as nz = nx = ny = 4.8 and f = 0.25.

lattices, the high-symmetry points are Γ = (0, 0, 0), H = (0, 0, 2π/a),
N = (0, π/a, π/a) and P = (π/a, π/a, π/a). For the sc lattices, the
high-symmetry points are Γ(0, 0, 0), X = (π/a, 0, 0), M = (π/a, π/a,
0), and R = (π/a, π/a, π/a).

It is clearly seen that the complete PBGs can not be found in
Fig. 2 since band degeneracy at some high-symmetry points, which
are W and U points for a fcc lattice, H and P points for a bcc lattice,
and Mand R points for a sc lattice. This can be explained by the high
symmetry of those lattices and the dielectric constant of dielectric is
not large enough to open a band gap [43]. If we want to achieve
the complete PBGs, the uniaxial material such as Te (tellurium) can
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(a) (b) (c)

Figure 2. Calculated anisotropic photonic band structure of 3D PPCs
containing the isotropic material with various lattices as nz = nx =
ny = 4.8, ωp = 0.15ωp0, νc = 0.02ωp1, and f = 0.25. (a) fcc lattices,
(b) bcc lattices, and (c) sc lattices, respectively.

(a) (b) (c)

Figure 3. Calculated anisotropic photonic band structure of 3D
PPCs containing the type-1 uniaxial material with various lattices as
nx = ne = 6.2, ny = nz = no = 4.8, ωp = 0.15ωp0, νc = 0.02ωp1,
and f = 0.25. (a) fcc lattices, (b) bcc lattices, and (c) sc lattices,
respectively.

be used to form 3D PPCs. Te is a kind of positive uniaxial crystals
with principal-refractive indices ne = 6.2 and no = 4.8. In Fig. 3,
we plot the band structure of 3D PPCs containing the type-1 uniaxial
material in various lattices as f = 0.25, ωp = 0.15ωp0 and νc = 0.02ωp1,
respectively. Fig. 3 reveals that the complete PBGs can be obtained
and flatbands regions appear by introducing the uniaxial material
as 3D PPCs in various lattices. There exist the flatbands regions
because of the existence of surface plasmon modes, which stem from
the coupling effects between the plasma. In the flatbands, the group
velocity is very slow. The 1st PBGs for fcc, bcc and sc lattices are
located at 0.3855–0.4106 (2πc/a), 0.3053–0.3281 (2πc/a) and 0.2502–
0.2626 (2πc/a), and the relative bandwidths are 0.0631, 0.072 and
0.0484, respectively. Compared to fcc and sc lattices, the 1st PBG for



278 Zhang, Liu, and Kong

bcc lattices has largest bandwidth. Similarly, the band structure of 3D
PPCs containing type-2 and type-3 uniaxial materials in similar case
to Fig. 2 are plotted in Figs. 4 and 5, respectively. On can seen from
Fig. 4 that the 1st PBGs are covered 0.3969–0.3992 (2πc/a), 0.3079–
0.3166 (2πc/a) and 0.2586–0.2626 (2πc/a) (2πc/a), and the relative
bandwidths are 0.0058, 0.0279 and 0.0154, respectively. It also can
see from Fig. 5 that there do not exist the PBGs as 3D PPCs with
bcc and sc lattices but the PBG of fcc structure runs from 0.3969 to
0.3992 (2πc/a). Comparing the results in Figs. 3–5 lead us to infer
that the uniaxial material induced splitting of the lowest bands above
the flatbands regions are so remarkable and make them can open band
gaps at high-symmetry points. Compared to another two uniaxial

(a) (b) (c)

Figure 4. Calculated anisotropic photonic band structure of 3D
PPCs containing the type-2 uniaxial material with various lattices as
ny = ne = 6.2, nx = nz = no = 4.8, ωp = 0.15ωp0, νc = 0.02ωp1,
and f = 0.25. (a) fcc lattices, (b) bcc lattices, and (c) sc lattices,
respectively.

(a) (b) (c)

Figure 5. Calculated anisotropic photonic band structure of 3D
PPCs containing the type-3 uniaxial material with various lattices as
nz = ne = 6.2, nx = ny = no = 4.8, ωp = 0.15ωp0, νc = 0.02ωp1,
and f = 0.25. (a) fcc lattices, (b) bcc lattices, and (c) sc lattices,
respectively.
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materials, 3D PPCs consisting of type-1 uniaxial materials in fcc, bcc
and sc lattices have largest bandwidths and relative bandwidths of
1st PBGs. As mentioned above, introduced the anisotropic dielectric
into 3D PPCs can enlarge and obtain the complete PBGs only in the
case of PPCs with high-symmetry lattices. The largest bandwidths
and relative bandwidths of PBGs can be achieved as type-1 uniaxial
material is introduced.

3.2. Influences of the Extraordinary-refractive Index on
Anisotropic PBGs

In Fig. 6(a), we plot the 1st anisotropic PBGs of 3D PPCs with fcc,
bcc and sc lattices as a function of the extraordinary-refractive index
with f = 0.25, ωp = 0.15ωp0, νc = 0.02ωp1 and no = 4.8, respectively.
The shaded regions indicate the PBGs. As show in Fig. 6(a), the edges
of 1st PBGs shift downward to lower frequencies, and the frequency
range increase first then decrease with increasing ne. The 1st PBGs
for fcc, bcc and sc lattices will never appear as ne is less than 5.3,
5.5 and 5, respectively. As ne is increased from 5 to 9, the 1st PBGs
located at 0.3434–0.3605 (2πc/a), 0.2858–0.2983 (2πc/a), and 0.2235–
0.2321 (2πc/a), respectively. The bandwidths of 1st PBGs for fcc and
bcc lattices are increased by 0.0108 and 0.0086 (2πc/a) compared to
the cases of ne = 5.3 and 5.5, respectively. However, the frequency
range for sc lattices is decreased by 0.0002 (2πc/a) compared to the
case of ne = 5. There exists an optimal ne, which make the maximum
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Figure 6. The influences of extraordinary-refractive index ne on the
1st PBGs and relative bandwidths for 3D PPCs with various lattices as
f = 0.25, ωp = 0.15ωp0, νc = 0.02ωp1, and no = 4.8, respectively. The
shaded regions indicate the PBGs. (a) The 1st PBGs, and (b) relative
bandwidths.
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bandwidths of 1st PBG for various lattices also can be obtained. The
relative bandwidths (∆ω/∆ωi) of 1st PBGs for fcc, bcc and sc lattices
also are plotted in Fig. 6(b). Fig. 6(b) illustrates that the general
trends for the 1st PBGs for various lattices are relative bandwidths
increase first then decrease with increasing ne. The maximum relative
bandwidths of 1st PBGs for fcc, bcc and sc lattices are 0.0627, 0.0634
and 0.0489, which can be found at cases of ne = 6.3, 5.9 and 6.1,
respectively. Compared to the case of ne = 9, the relative bandwidths
of such three lattices are increased by 0.0141, 0.0206 and 0.0112,
respectively. Comparing the results in Fig. 6 lead us to infer that
the maximum relative bandwidth of PPCs with bcc lattices is largest
compared to another two lattices. The 1st PBG of fcc structure has the
highest central frequency but the lowest central frequency of 1st PBG
will be found in the sc lattices. This can be explained by the anisotropic
properties of 3D PPCs. Changing the ne means a sufficient anisotropy
of atom dielectricity has been provided [43], and the band gap can be
achieved. The PPCs with higher symmetry of lattices means the larger
PBG can be obtained. As we know, the bandwidths of the PBGs are
governed by refractive contrast for PCs and the positions of the PBGs
are governed by the average refractive index of PCs. Thus, the average
refractive index of 3D PPCs is changed as the ne is changed. In other
words, the locations of 1st PBGs can be tuned by ne.

3.3. Influences of the Ordinary-refractive Index on
Anisotropic PBGs

In Fig. 6(a), we present the 1st anisotropic PBGs of 3D PPCs with
fcc, bcc and sc lattices as a function of the ordinary-refractive index
with f = 0.25, ωp = 0.15ωp0, νc = 0.02ωp1 and ne = 6.2, respectively.
The shaded regions indicate the PBGs. One can see from Fig. 7(a)
that the edges of 1st PBGs for fcc, bcc and sc lattices are downward to
lower frequencies, and the bandwidths increase first then decrease with
increasing no. The 1st PBGs for bcc and sc lattices will never appear
as no is less than 2.8 but 1st PBG for fcc lattices will appear until no

is larger than 3.2. As no is increased from 2.8 to 5.5, the 1st PBGs
present themselves at 0.3679–0.3589 (2πc/a), 0.297–0.2837 (2πc/a),
and 0.2402–0.2335 (2πc/a), respectively. The central frequency of 1st
PBG for fcc lattices is largest compared to another two lattices, and
the lowest central frequency of 1st PBG can be found in sc lattices.
Compared to the cases of no = 2.8 and 3.2, the bandwidths for bcc and
sc lattices are increased by 0.0005 and 0.0038 (2πc/a) but the frequency
range for fcc lattices is decreased by 0.0032 (2πc/a), respectively. In
Fig. 7(b), the relative bandwidths of 1st PBGs for various lattices also
are plotted. As shown in Fig. 7(b), the general trends for the 1st PBGs
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Figure 7. The influences of ordinary-refractive index no on the 1st
PBGs and relative bandwidths for 3D PPCs with various lattices as
f = 0.25, ωp = 0.15ωp0, νc = 0.02ωp1, and ne = 6.2, respectively. The
shaded regions indicate the PBGs. (a) The 1st PBGs, and (b) relative
bandwidths.

for fcc, bcc and sc lattices are relative bandwidths increase first then
decrease with increasing no. The maximum relative bandwidths are
0.064, 0.073 and 0.0434, which can be found at cases of no = 4.3, 5
and 4, respectively. Compared to the case of no = 5.5, the relative
bandwidths are increased by 0.0387, 0.0272, and 0.0203, respectively.
One can see that, generally, the largest relative bandwidth can be found
in the bcc lattices. Similar to changing the extraordinary-refractive
index, the way to change the ordinary-refractive index of uniaxial
material means that the refractive contrast and average refractive index
of 3D PPCs are changed. Therefore, the 1st PBGs for various lattices
can be tuned by no.

3.4. Influences of the Filling Factor on Anisotropic PBGs

In Fig. 8(a), we plot the dependences of the properties of 1st anisotropic
PBG for fcc, bcc and sc lattices on the filling factor f with ωp =
0.15ωp0, νc = 0.02ωp1, no = 4.8 and ne = 6.2, respectively. The shaded
regions indicate the PBGs. Fig. 8(a) reveals that the edges of 1st
PBGs for fcc, bcc and sc lattices are downward to lower frequencies,
and the frequency ranges increase first then decrease with increasing
f . The 1st PBGs for fcc and bcc lattices will never appear until the
f is larger 0.05. However, if f is less then 0.15 or larger than 0.4,
the PBG for sc structure will disappear. As f is increased from 0.05
to 0.52, the maximum bandwidths of 1st PBGs for fcc, bcc and sc
lattices are 0.0272, 0.0261, 0.0132 (2πc/a), which can be found at the
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Figure 8. The influences of filling factor f on the 1st PBGs and
relative bandwidths for 3D PPCs with various lattices as ωp = 0.15ωp0,
νc = 0.02ωp1, no = 4.8 and ne = 6.2, respectively. The shaded regions
indicate the PBGs. (a) The 1st PBGs, and (b) relative bandwidths.

cases of f = 0.3, 0.35 and 0.3, respectively. Thus, the 1st PBGs for
fcc, bcc and sc lattices can be tuned by f . This can be explained in
physics that increasing filling factor means the space averaged dielectric
constant of PPCs becoming larger [38–40]. In Fig. 8(b), we plot the
relative bandwidths as a function of the filling factor. Fig. 8(b) reveals
that the relative bandwidths of 1st PBGs for fcc, bcc and sc lattices
increase first then decrease with increasing f . The maximum relative
bandwidths for such three lattices are 0.072, 0.091, 0.0541, which can
be found at the cases of f = 0.3, 0.35 and 0.3, respectively. Compared
to the cases of f = 0.15, the relative bandwidths are increased by
0.0319, 0.0458 and 0.0241, respectively. One also can see that the
largest relative bandwidth can be found in the bcc lattices. It also is
noticed that if the filling factor of uniaxial material is small enough
and close to null, the 3D PPCs can be looked as a plasma block. The
flatbands region will disappear. As mentioned above, the PBGs of 3D
PPCs with fcc, bcc and sc lattices can be tuned by the filling factor,
and it also is an important parameter which need be chosen.

3.5. Influences of the Plasma Frequency on Anisotropic
PBGs

In Fig. 9(a), we plot the influences of plasma frequency on the 1st
anisotropic PBG for fcc, bcc and sc lattices with f = 0.25, νc =
0.02ωp1, no = 4.8 and ne = 6.2, respectively. The shaded regions
indicate the PBGs. As shown in Fig. 9(a), the edges of 1st PBGs for
fcc, bcc and sc lattices shift upward to higher frequencies, and the
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Figure 9. The influences of plasma frequency ωp on the 1st PBGs
and relative bandwidths for 3D PPCs with various lattices as f = 0.25,
νc = 0.02ωp1, no = 4.8 and ne = 6.2, respectively. The shaded regions
indicate the PBGs. (a) The 1st PBGs, and (b) relative bandwidths.

bandwidths of 1st PBGs decrease with increasing the value of ωp/ωp0.
The 1st PBGs for fcc, bcc and sc lattices will disappear as the value
of ωp/ωp0 is larger 0.46, 0.33 and 0.29, respectively. As the value of
ωp/ωp0 is increased from 0.01 to 0.46, the 1st PBGs for fcc, bcc and
sc lattices will disappear at ωp/ωp0 = 0.46, 0.33 and 0.29, respectively.
If the value of ωp/ωp0 is 0.46, the 1st PBG for fcc lattices is covered
0.4683–0.4733 (2πc/a) and the frequency range is decreased by 0.059
(2πc/a) compared to the case of ωp/ωp0 = 0.01. If the value of ωp/ωp0

is 0.33, the 1st PBG for bcc lattices is located 0.3488–0.3582 (2πc/a)
and the bandwidth is decreased by 0.0575 (2πc/a) compared to the
case of ωp/ωp0 = 0.01. If the value of ωp/ωp0 is 0.33, the 1st PBG for
sc lattices is located 0.293–0.2954 (2πc/a) and the frequency range is
decreased by 0.0417 (2πc/a) compared to the case of ωp/ωp0 = 0.01.
The maximum frequency ranges of 1st PBGs are 0.0273, 0.026 and
0.0123, respectively, which can be found at the cases of ωp/ωp0 = 0.01.
It also is shown that the central frequency of 1st PBG for fcc lattices
is largest compared to another two lattices, and the lowest central
frequency of 1st PBG can be found in sc lattices. In Fig. 9(b), we
also plot the relative bandwidths as a function of plasma frequency.
Fig. 9(b) illustrates that the relative bandwidths of 1st PBGs decrease
as the value of ωp/ωp0 is increased from 0.01 to 0.46. The maximum
relative bandwidth of 1st PBG is 0.0696, 0.0841 and 0.0506, which can
be found at the cases of ωp/ωp0 = 0.01, respectively. It is clearly
seen that the largest relative bandwidth can be found in the bcc
lattices. As mentioned above, the PBGs for fcc, bcc and sc lattices
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can be manipulated by the plasma frequency. The main reason for this
result is because changing plasma frequency means that the relative
dielectric constant of nomagnetized plasma also is changed. Thus, the
refractive contrast and average refractive index of 3D PPCs have been
changed. Consequently, the PBGs of 3D PPCs can be tuned by plasma
frequency. It should be point out that the plasma collision frequency
are not affected the PBGs and flatbands [38–40] because the dispersion
relation does not present any rapid change as νc is small compared
to ωp. The plasma collision frequency only affects the magnitude of
transmission [29].

4. CONCLUSION

In summary, the properties of anisotropic PBGs 3D PPCs composed
of anisotropic dielectric (the uniaxial material) spheres immersed
in uniform nomagnetized plasma background with various lattices
including the diamond, fcc, bcc and sc lattices, are theoretically
investigated by the PWE method. The equations for calculating the
anisotropic PBGs in the first irreducible Brillouin zone are theoretically
deduced. Such method can be used to calculate 3D MPPCs with any
lattices containing any anisotropic dielectric. Based on the numerical
results, some conclusion can be drawn. Since low-symmetry structure
in topology, the PPCs with diamond lattices consisting of isotropic
dielectric have the larger PBGs compared to PPCs doped by the
uniaxial material. However, the PPCs with fcc, bcc, sc lattices will
not exhibit a complete PBG unless the uniaxial material is introduced.
Compare with the same structure composed by the isotropic dielectric
spheres in nomagnetized plasma, the complete PBGs and a flatbants
region can be obtained as the uniaxial material is introduced. The
flatbands caused by the existence of surface plasmon modes which
stem from the coupling effects between the magnetized plasma. The
3D PPCs with fcc, bcc and sc lattices consisting of the type-1 uniaxial
material (nx = ne, ny = nz = no) have a larger PBG compared to 3D
MPPCs doped by another two types of uniaxial materials. The central
frequency of 1st PBG for fcc lattices is largest compared to another two
lattices, and the lowest central frequency of 1st PBG can be found in
sc lattices. The PPCs with bcc lattices have largest relative bandwidth
of 1st PBG. The 1st PBGs of 3D PPCs with fcc, bcc and sc lattices can
be manipulated by the extraordinary-refractive and ordinary-refractive
indices, and the general trends for 1st PBGs are relative bandwidths
increase first then decrease with increasing extraordinary-refractive
and ordinary-refractive indices. The 1st PBGs also can be tuned
notably by the plasma frequency. Increasing the plasma frequency,
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the bandwidths of PBGs will decrease, and the maximum relative
bandwidths can be obtained at low-ωp region. With increasing the
filling factor, the relative width and bandwidth of 1st PBG will increase
first then decrease. It also is noticed that if filling factor is small enough
and close to null, the 3D PPCs can be seen as a plasma block. The
flatbands regions will disappear. As mentioned above, we can take
advantage of the uniaxial material to obtain the complete PBGs as
3D PPCs with high-symmetry lattices. These results may provide
theoretical instructions to design the tunable devices by 3D PPCs.
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