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des Sciences de l’Ingénieur, Université Abou-BekrBelkäıd-Tlemcen,
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Abstract—During the last decade, selective photonic crystal filters
have received much research interest in the fields of nanotechnology
and optical interconnection network. The main focus of this paper
consists of an analysis and a synthesis of one-dimensional photonic
crystal selective filters. The optimization is performed by employing
the simulated annealing algorithm. The filters synthesis is obtained
by acting on the Bragg grating layer widths. Simulated annealing is
applied to solve the PhC-1D filters synthesis problem in order to reduce
the quadratic error and to obtain a desired transmission according
to a Gaussian function defined in advance by the user. Starting
from the Maxwell’s equations for dielectric nonmagnetic structure, we
show the derivation of the Helmholtz equation and find its solution
for 1D layered structure. In addition, the boundary conditions and
equation transformation to set of linear equations which are solved
using Cramer’s method are described thoroughly. This mathematical
technique is then applied for computation of the transmission spectra
of 1D perfectly periodic structure and structures with different defects.
These results can be easily applied for design of selective filters.
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1. INTRODUCTION

Photonic crystals (PhCs) are a novel class of optical represented
by natural or artificial structures with periodic modulation of the
refractive index. Such optical media have some peculiar properties
which gives an opportunity for a number of applications to be
implemented on their basis. Depending on geometry of the structure
PhCs can be divided into three broad categories, namely one-
dimensional (1D), two-dimensional (2D) [1] and three-dimensional
(3D) structures. Possible applications of photonic crystals are
numerous. We can mention a few. A photonic crystal can be very
good waveguide, a filter or a prefect mirror. It can also serve as the
main material for future devices the same way that semiconductor does
for classical computers. Ideally it could help design a laser with a very
low threshold [2–5].

The most important property which determines practical
significance of the PhC is the presence of the photonic band gap. The
photonic band gap (PBG) refers to the energy or frequency range where
the light propagation is prohibited inside the PhC. When the radiation
with frequency inside the PBG incidents the structure, it appears to
be completed reflected. However, if one introduces the defect to the
strictly periodic structure, the effect of such a defect is the same as
the defect introduction to the crystalline structure of a semiconductor.
The means that a new eigen-state appears inside the PBG with energy
corresponding to the eigen frequency of the defect. Thus the radiation
within the defect frequency will propagate inside the structure or in
case of multiple defects radiation will be guided like in waveguide. Thus
there exists quite strong analogy between PhC physics and solid-state
physics both from the physical and mathematical points of view.

In 1D PhCs “Bragg grating”, the periodic modulation of
permittivity occurs in one direction only, while in two other directions
structure is uniform. It have very low number of possible periodic
structure variations because it is represented by the layered structure,
so only the refractive index layers thickness and the number of layers
within the period can be varied.

It is widely used as a distributed reflector in vertical cavity surface
emitting lasers. Besides, such structures are widely used anti reflecting
coatings which allow decreasing dramatically the reflectance from the
surface and are usd to improve the quality of lenses, prisms and other
optical components.

Recently, band-pass photonic crystal filters have attracted great
attention due to their important applications in ultrahigh speed
information processing. If the signal containing a number of the
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wavelength channels falls at the Bragg reflector with defect, only one
channel will pass through while others will be reflected.

Filters design is a complicated task, and two essential methods do
that. One is based on the PBG analysis and the other by using an
optimization technique [6–8].

To achieve this goal, we developed a synthesis method of these
PhCs filters by employing an optimization method based simulated
annealing (SA). The literature has reported the application of SA for
general electromagnetic problems [9–12].

Various synthesis results for one-dimensional photonic crystal
selective filters are presented and discussed.

2. SYNTHESIS PROBLEM OF ONE-DIMENSIONAL
(1D) PHOTONIC CRYSTAL

In order to start the computation of the 1D structure characteristics,
first it is necessary to derive the wave equation from the system of
Maxwell’s equations.

We consider the corresponding Maxwell’s Equations (1) and (2).
The material equations for non-magnetic medium take the following
form:

B(r, t) = µ0H(r, t) (1)
D(r, t) = εr(r)ε0E(r, t) (2)

where µ0 is the vacuum permeability, and εr and ε0 are the relative
permittivity and electric constant.

The Helmholtz equation in given by the following form:

∇2E0(r) + εr(r)
ω2

c2
E0(r) = 0 (3)

where ω is the radiation angular frequency.
The Helmholtz equation does not contain time-dependent

functions. By solving this equation, it is possible to find the
reflectance and transmittance of the finite structure, as well as the
field distribution and eigen-frequencies of an infinite structure.

Let us now consider a finite 1D layered structure. The description
of the radiation propagation inside such a structure can be found by
the solution of the Helmholtz equation presented in the following form:

∂2Ez(x)
∂x2 + εr(x)

ω2

c2
Ez(x) = 0 (4)

Here, we have the coordinate derivative along one direction
only because the variation of the permittivity takes place along this
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direction only. Thus, we consider the case of light propagating
perpendicularly to layer-to-layer interface.

After the 1D Helmholtz equation is written down, it is necessary to
define the structure and to find out which parameters of this structure
will be taken into account and, thus, should be correctly defined. 1D
layered structure can be defined by layer thicknesses, their placement
and refractive indices.

Figure 1 depicts an example of the definition of 1D arbi-
trarily layered structure. Each layer has some specific thickness
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Figure 1. (a) Definition of an arbitrary layered structure. (b) 1D
periodic arrangement of nine high and low refractive index layers. The
period of the structure is di + di+1 (i = 1 : 8). A number of the
wavelength channels falls at the Bragg reflector with defect, only one
channel will pass through while others will be reflected.
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(d1, d2, . . . , dN−1) and refractive index (n1, n2, . . . , nN−1).

n(x) =
{

n1 0 ≤ x ≤ d1

n2 d1 ≤ x ≤ d2

With:

n(x + d) = n(x), d = d1 + d2

The structure is surrounded by material with refractive index
n0 = nN . Arrows indicate forward wave and backward wave inside
each layer. Backward waves appear due to the Fresnel reflection from
layer-to-layer interface.

After this, it is possible to determine the reflectance and
transmittance of the structure. The general solution of the Helmholtz
equation for j-th layer takes the following form:

Ej(x) = Aje
j·nj ·k·xj + Bje

−j·nj ·k·xj (5)

where A and B are the amplitudes of forward and backward waves
correspondingly.

As for other boundary conditions, they determine the way how
the field distribution functions, or wave functions, are “bonded” at the
interfaces. In case of 1D layered structure, we consider the tangential
component of the electric field only so boundary conditions are
formulated as the equality of wave functions and their first derivatives
at the interface:

Ej(xj) = Ej+1(xj) (6)

∂

∂x
Ej(xj) =

∂

∂x
Ej+1(xj) (7)

where xj is the coordinate of j-th interface. We now substitute the
general solution (10) to the expressions (6), (7) so the resulting system
has the following form:

Aje
j·njkxj + Bje

−jnjkxj = Aj+1e
j·nj+1kxj + Bj+1e

−jnj+1kxj

j · nj · k ·Aj · ej·njkxj + j · nj · k ·Bj · e−j·njkxj

= j · nj+1 · k ·Aj+1 · ej·nj+1kxj − j · nj+1 · k ·Bj+1 · e−j·nj+1kxj

Writing down such an equation system for each structure
interfaces; we obtain the system of linear equations containing 2N+2
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equations for the structure with N layers. The system contains 2N+4

of unknowns:
A0e

i·n0kx0 + B0e
−in0kx0 = A1e

i·n1kx0 + B1e
−in1kx0

i · n0 · k ·A0 · ei·n0kx0 − i · n0 · k ·B0 · e−i·n0kx0

= i · n1 · k ·A1 · ej·n1kx0 − i · n1 · k ·B1 · e−j·n1kx0

A1e
i·n1kx1 + B1e

−in1kx1 = A2e
i·n2kx1 + B2e

−in2kx1

i · n1 · k ·A1 · ei·n1kx1 − i · n1 · k ·B1 · e−i·n1kx1

= i · n2k ·A2 · ej·n1kx1 − i · n2k ·B2 · e−j·n1kx1

ANei·nNkxN + BNe−inNkxN

= AN+1e
i·nN+1kxN + BN+1e

−inN+1kxN

i · nN · k ·AN · ei·nNkxN − i · nN · k ·BNe−i·nNkxN

= i · nN+1 · k ·AN+1 · ej·nN+1kxN − i · nN+1 · k ·BN+1 (8)
In order to solve the system, it is necessary to eliminate two extra

variables. For this reason we use the last boundary condition defining
the amplitude of the backward wave behind the last layer BN+1 to
be equal to zero. We also use the initial condition assigning some
specific value to the amplitude of the forward wave before the first layer
A0. Obtained linear system of equations is solved by some standard
methods such as Cramer’s method [13, 14]. As a result of the solution,
we have a set of amplitudes of forward and backward waves inside
each layer. Let us assume that we have not just an arbitrary, but some
finite-size periodic structure; that is, the structure where a group of
two or more layers is translated several times. The behavior of such
a structure is quite easy to predict if we know its layers’ parameters.
Such a periodic structure is usually referred to as Bragg grating or
distributed Bragg reflector. The peculiarity of the Brag grating is the
possibility to fine-tune the transmittance and reflectance spectrum by
the variation of layer parameters. At that, the structure has very high
reflectance at some specific wavelengths while at another wavelength
it may be transparent.

Figure 2 depicts a typical view of the transmission and reflectance
spectrum of 1D periodic structure. It is computed by multiple solution
of the equation system (8). Each solution is carried out at different
wavelengths; hence, the computation gives a number of amplitudes of
backward waves B0 before the first layer of the structure. Dividing this
amplitude by the incident wave amplitude A0 and raising the result to
the second power we obtain the reflectance of the structure at each
wavelength. As is seen from the Figure 2, the reflectance is quite
different at different wavelengths. The reflection wavelength here falls
at the wavelength 1.2µm and 1.75µm. This means that the maximum
of transmission is observed at these wavelengths.
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Using the above described method it is possible to design different
passive optical devices such as high-efficiency reflectors, anti reflection
films, distributed Bragg reflectors for vertical-cavity surface-emitting
lasers (VCSEL), wavelength division multiplexers/demultiplexers on
the basis of fiber Bragg gratings (FBG), mirrors of tunable lasers, etc..

The synthesis problem consists of approaching the synthesized
transmission spectra function of the PhC filter Fs(λ) to a Gaussian
desired pattern Fd(λi) presented by Equation (9) imposed in advance
by the user as shown in Figure 3.

Fd(λi) = e
−

(
15(λi−λ0)2

10−2

)

(9)
The error made between the two patterns is written:

δ(λ, d, n) = |Fs(λ, d, n)− Fd(λ, d, n)| (10)
The optimization problem consists then in minimizing the

quadratic error G(λ, n):

G(λ) =
∑

λ

δ2(λ, d, n) (11)

The synthesis problem in which we are interested consists of
minimizing the quadratic error. The synthesis method used is the
simulated annealing algorithm which will be described in detail.
SA’s have been found to be very effective for the PhCs selective
filters optimization, thanks to its robustness and inherent ability to
accommodate a variety of constraints.

SA is a probabilistic method based on concepts deriving from
statistical mechanics by the means of the famous method of annealing
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Figure 2. Typical transmission and reflection spectrum of 1D PhC
with an arbitrary layer thickness.
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Figure 3. Desired and synthesized function shape pattern
specification.

used by the metallurgists. This method uses the Metropolis
algorithm [15]. This algorithm is precisely used to randomly draw
a continuation from microscopic configurations by respecting the
proportions of Boltzmann relating to balance at a given temperature.
As for the algorithm of iterative improvement, the algorithm of
Metropolis makes it possible to explore by a random walk a graph
whose tops are the microscopic configurations of the system.

In the case of the iterative improvement, displacement in the
graph is always carried out towards the configurations of decreasing
cost, while the algorithm of Metropolis allows sometimes transitions
towards configurations from higher cost. In optimization, an iterative
research which accepts only the new points corresponding to a lower
value of the function is equivalent to a physical system which reaches
temperature equal to zero quickly, which brings us at local minima.
On the other hand simulated annealing seeks to converge towards the
global minimum thanks to the control of the parameter temperature.
The algorithm of Metropolis calculates the new function Enew = f(x1),
with x1 the new point generated starting from a function g(∆x), where
∆x is the difference between the new point and the current point.

The majority of the optimization methods using simulated
annealing choose their new point with variable distances from their
starting point or running. If the obtained solution is better than the
preceding one, then this solution is accepted. If the preceding solution
remains better, a law of probability of acceptance intervenes in order
to decide to keep or reject this value

Probability of acceptance determined by a function H, depends
on the temperature T and difference between the two values of the
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function. As an example, while referring to the Boltzmann law, definite
as follows

H =
1

1 + exp(∆E/T )
≈ exp(−∆E/T ) (12)

where E = f(x) represents the system energy and ∆E = Enew−E the
difference in energy between the new point and the preceding point.

In order to accept or to reject a point for which Enew is not better
than E, one carries out the lots of a random variable P on [0, 1]. If
the variable obtained is lower than H the point is then accepted. In
the contrary case, the new point is refused. When a new point is
accepted, even if the corresponding value of the function is worse than
with the preceding point, it becomes then the new point running or
solution. At the beginning, the temperature T must be large and a new
point must be roughly accepted once on two. With the progression of
the algorithm in time, the temperature T is reduced, implying a fall
of the acceptance probability of the points. In fact, the value called
“temperature” T is only one parameter making, it possible to control
the amplitude of the movements and makes it possible to avoid the
minima.

When the temperature is null, the probability of transition
becomes unit. If energy decreases at the time of the transformation,
and that it is null in the opposite case: the algorithm of Metropolis is
then identical to an algorithm of iterative improvement, in this case,
one is likely to finish trapped in local minima. On the other hand,
when the temperature is not null, the algorithm can choose points
with a value of the higher function, which makes it possible to avoid
the minima in favour of global minima good located in the workspace.

Simulated annealing algorithms are expected to arrive at a good
solution only in a statistical sense as in principle an infinitely large
number of iterations are necessary to attain the global minimum. In
practice to be useful, an acceptable solution must be attained in a finite
reasonable number of iterations. For this to be possible, the cooling
schedule must be carefully chosen so that the temperature falls only as
fast as is compatible with maintaining a quasi equilibrium, otherwise
the algorithm will lock in a secondary minimum.

Various cooling schedules have been experimented with (step
by step, linear, geometric and exponential) and, as expected, it is
important to cool slowly, particularly at low temperatures. Finally,
for the tests described here, the modified exponential cooling schedule
recommended by Rees and Ball [16] is adopted. However, if a modified
exponential scheduling is chosen, almost all process running give
slightly different results in term of energy and weight values. This
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means that the resulting configuration is stable and close to the optimal
one.

We used for the synthesis of our filter transmission the simulated
annealing algorithm presented by Corona [17]. This algorithm was
tested by various authors and was compared with other techniques like
the simplex or gradient conjugate known of the functions comprising
local minima. It proved that it always found the global minima which
are not the case of the other methods. The algorithm is very simple
and is presented in the following general form as shown in Figure A1
displayed in the appendix.

In this section, we focus on the optimization and the design of
one-dimensional photonic crystal selective filters by entering proper
optimization in order to reduce the quadratic error and to obtain
a desired transmission according to a Gaussian function defined in
advance by the user.

3. SYNTHESIS RESULTS

In this section, we focus on the optimization of the PhCs in order
to obtain a selective filter function. We need to specify wavelength
range within which filters will be working. We chose to use a range
in length from between 1µm and 2µm, and then it is sufficient to
start the operation simulation using MATLAB software and scan the
frequency range. In these structures we take the following wavelengths
1.1µm, 1.2µm, 1.3µm, 1.4µm, 1.55 µm, 1.65µm, 1.75µm, 1.85µm
and 1.95µm. The filter must present a maximum of transmission at
these wavelengths.

In order to test performances of the proposed approach, we
considered a photonic crystal which consists of two layers with
following specification: The dielectric material has a dielectric constant
of 12.25 (that is, refractive index of 3.5, which corresponds to the
effective refractive index in a silicon Si structure) and an air layer with
dielectric constant of 1.

In all the simulations, the SA parameters are set as: T0 = 2,
rt = 0.1, ε = 10−18, X0 = 103, v0 = 104, Ns = 100; Nt = 100.

The synthesized and the desired function are shown in Figure 4 (a).
A plot of the error evolution versus iterations is shown in Figure 4(b).

According to Figure 4(a), there is a transmission in the
range [1.05µm–1.15µm]. The maximum value is around 100%,
obtained at the wavelength 1.1µm. It is obvious, that the SA
curve converge toward the desired function in 4092 iteration, the
corresponding error is of about 0.43. A pick of transmission occurred
at the wavelength 1.18µm with a weak value. In general, the result is
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acceptable. In the figure below, we present the optimization result of
another filter with must resonate at wavelength 1.2µm. We keep the
same SA parameters. A plot of the error evolution versus iterations is
shown in Figure 5(b).

According to the figure above, one notice that the algorithm
converges at the end of 4477 iterations with an error of about 0.9208.
The total transmission is 100% at the desired wavelength. Is is
obviously that the result is best in this example because its response is
less noise in the rest of the range of wavelengths. Let us take another
example; in this case the desired wavelength is fixed 1.3µm. The
simulation result using the SA algorithm of the obtained transmission
and the error evolution versus iterations are presented respectively in
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Figure 4. (a) Power transmission spectra for the PhC-1D filter
operating at the wavelength 1.1µm. (b) Error versus iterations.
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the Figure 6.
According to the figure Figure 6, one notice that the algorithm

converges at the end of 6837 iterations. For the same reason and to
test the SA performances, another example is examined. The desired
wavelength is set 1.4µm. The transmission spectra versus wavelength
are presented in Figure 7(a) and the error evolution versus iterations
are presented respectively in the Figure 7(b).

The algorithm provides a good response after optimization despite
some picks less than 30%. The maximum transmission recorded at the
wavelength 1.4µm. The SA converges at the end of 8949 iterations.

Let us now examine the convergence of the SA algorithm at
wavelength 1.55µm. The SA parameters are kept as in the previous
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Figure 6. Power transmission spectra for the PhC-1D filter operating
at the wavelength 1.3µm. (b) Error versus iterations.
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examples. The obtained results are shown in Figure 8.
Also for this example, the SA converges toward the desired

function and the synthesized function takes the form of the desired
one after 2041 iteration. A function of filter is realized after this
operation. Here we set the desired function presented by a Gaussian
at the wavelength 1.65µm as shown in Figure 9(a). The SA converges
toward the desired function with a total transmission of about 100%.
The error recorded is of about 0.8471 after 5286 iteration.

According to Figure 10, one notice that the algorithm converges
for a centered wavelength 1.75µm at the end of 9047 iterations. At
the rest of frequencies the transmission is null.

Let us now continue with rest of wavelength, here we choose the
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wavelength 1.85µm. For this wavelength, the simulated annealing in
response offers a solution that may be regarded as perfect as shown in
Figure 11(a), since the graph overlaps with that of the desired function.
It is obvious from Figure 11(b); that the SA algorithm converges at
the end of 6849 iterations.

The last example treated here is for the wavelength 1.95µm.
the Gaussian function is adjusted in order to present a pick at the
wavelength 1.95µm. We keep the same SA parameters. A plot of power
transmission spectra for the PhC-1D filter and the error evolution
versus iterations is shown in Figure 12. According to the Figure above,
one notice that the algorithm converges at the end of 4168 iterations.

In Table 1, we give the corresponding layer widths after
optimization for the all the filters.
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operating at the wavelength 1.95µm. (b) Error versus iterations.

Table 1. Corresponding optimized layer widths of different filters.
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4. CONCLUSION

In this paper, we develop a global optimization algorithm of one-
dimensional photonic crystal selective filters based on the simulated
annealing method by ordering the distance between layers.

The different cases of filters that we treated, using a synthesis
technique based on the simulated annealing algorithm, substantiate
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that the application of such an heuristic algorithm achieved the goals
of a most rigorous and global approach towards the best solutions.
Such solutions remain difficult to achieve using calculus-based on
deterministic methods which are too rigid and limited in search space
by the local optima difficulties. Moreover, this algorithm is free from
all restrictions associated to the integral calculus, derivatives, matrix
algebra, discontinuities, etc..

As a result, selective filters were designed successfully operating
in several wavelengths.
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