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Abstract—This article focuses on the 2D hybrid technique between
the Frequency Domain Transmission Line Matrix Method (FDTLM)
and the Wave Concept Iterative Procedure (WCIP). 3D hybridization
has already been studied, but results may be improved through
a better knowledge of method order. Consequently, developing 2D
hybridization aims at understanding the hybridization in simplest
problems, especially because Transverse Electric (TE) and Transverse
Magnetic (TM) are uncoupled. Our study dwells on accuracy and
convergence order of the 2D hybrid method, which will help for 3D
mesh use. In this perspective, the scattering nodes and electromagnetic
fields expressions are established in the 2D general case with
anisotropic materials. As a result, validation examples are presented
to check the approach.

1. INTRODUCTION

Hybridizing techniques, i.e., using each technique in a part of the
problem where it is the most appropriate, is an adequate way to
improve the modeling of microwaves circuits. Hybrid methods have
been successfully considered to study complex configurations [1–3] like
inhomogeneous problems [4–7].
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In this work, a hybrid technique that combines two different nu-
merical methods, the two-dimensional Frequency Domain Transmis-
sion Line Matrix Method (2D FDTLM) [8–11] and the Wave Concept
Iterative Procedure method (WCIP) [12–14] is presented. The FDTLM
is based on the theory of transmission lines and in the principle of
propagation of light described by Huygens [8, 9, 15, 16]. The medium
is discretized by transmission lines and circuits’ elements in a man-
ner that the arrangement of transmission lines and circuits’ elements
give equations that are isomorphic with equations of the problem, i.e.,
in this case, Maxwell’s equations. The WCIP is an integral method
based on waves’ concept that solves Maxwell’s equations in enclosed
waveguide [17]. This technique takes advantage of the WCIP to model
homogeneous media with less computational requirement (use of sur-
face mesh and not volumic mesh) and of the ability of the FDTLM
to characterize inhomogeneous media. One of the advantages of the
WCIP is its ability to deal with spectral or local (spatial) sources.
Furthermore, open boundary conditions are addressed by this method
without adding PML conditions or radiation conditions. The hybrid
algorithm is therefore based on the partition of the structure under
study into two domains: the WCIP is used for the homogeneous media
while the FDTLM is used for the inhomogeneous media. To simplify
the hybridization, the 2D FDTLM node is reformulated using waves as
used in the WCIP. In 2D, two independent orientations corresponding
to TE and TM modes are distinguished. Thus, two scattering nodes are
defined by either a shunt or a series matrix. Their formulation is ana-
lytically derived in this paper from Maxwell’s equations using centered
differencing and averaging [10, 11] as in [18] in 3D case. It is note-
worthy that 2D FDTLM TM and TE matrices cannot be immediately
obtained from the 3D matrix, since in each 3D development [18, 19]
replacing the propagation constant along z by zero does not lead to
the scattering matrix obtained in this paper.

The goal of our study is to validate 2D hybridization principles
to know the properties of the method so that 3D results can be
improved in accuracy compared to [19]. We want to study more
complex cases as presented in Fig. 1, where the FDTLM will be
applied in inhomogeneous domain containing εr,3 and εr,4 and the
WCIP elsewhere. Hybrid method formulation is explained and applied
in several test cases: validation of the operator spectrum, comparison
with an analytical case and with diffraction by a microstrip line with
homogeneous and inhomogeneous substrate. As we do not want to
compete with commercial software (and moreover 2D cases cannot be
dealt with them), computation times are not given.
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Figure 1. Complex case achievable with hybrid method.

2. HYBRID METHOD THEORY

In this section, the 2D scattering FDTLM node formulated with waves
is detailed in the TE (Ez = 0) and TM (Hz = 0) cases (Transverse to
z-direction). It leads to the presentation of the hybridization principle
between the WCIP method and the FDTLM in Subsection 2.4.

2.1. Maxwell’s Equations

Time-harmonic Maxwell’s equations for invariant problem along y-axis
are

jωεxex = −∂hy

∂z
− σexex,

jωεyey =
∂hx

∂z
− ∂hz

∂x
− σeyey,

jωεzez =
∂hy

∂x
− σezez,

jωµxhx =
∂ey

∂z
− σmxhx,

jωµyhy =
∂ez

∂x
− ∂ex

∂z
− σmyhy,

jωµzhz = −∂ey

∂x
− σmzhz,

(1)

where ω is the pulsation. ε and µ are the permittivity and the
permeability of the media. σe and σm are the electric and magnetic
conductivities. ei and hi, i ∈ {x, y, z}, are the electromagnetic field
components.
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Let us consider an elementary cell of dimensions u, v, w
respectively along the x, y, z directions. Fields are normalized
according to the following transformations

x = uX, y = vY, z = wZ,

ex = Ex/u, ey = Ey/v, ez = Ez/w,

hx = Hx/u, hy = Hy/v, hz = Hz/w.

Normalized Maxwell’s equations are obtained

GexEx = −∂Hy

∂Z
, (2a)

GeyEy =
∂Hx

∂Z
− ∂Hz

∂X
, (2b)

GezEz =
∂Hy

∂X
, (2c)

GmxHx =
∂Ey

∂Z
, (2d)

GmyHy =
∂Ez

∂X
− ∂Ex

∂Z
, (2e)

GmzHz = −∂Ey

∂X
, (2f)

where

Gex = (σex + jωεx)
vw

u
, Gmx = (σmx + jωµx)

vw

u
,

Gey = (σey + jωεy)
uw

v
, Gmy = (σmy + jωµy)

uw

v
,

Gez = (σez + jωεz)
uv

w
, Gmz = (σmz + jωµz)

uv

w
.

(3)
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Figure 2. 2D FDTLM node in TE and TM cases.
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System (2) indicates that Equations (2a), (2c) and (2e) are
independent of Equations (2b), (2d) and (2f). Two independent
propagation orientations are therefore studied in 2D respectively the
TM modes (Hy, Ex and Ez) and the TE modes (Ey, Hx and Hz).
The elementary FDTLM node is represented in Fig. 2. TE and TM
indices on each node port, numbered from 1 to 4, should be considered
separately since they do not coexist in 2D propagation.

2.2. TM Modes

In this case, we deal with the field components Ex, Ez and Hy.
The arrangement of TM transmission lines shown in Fig. 3 can be
assimilated to a series node since all waves depend on the magnetic field
component Hy, but differ from the electric field components Ex and Ez.
Maxwell’s equations concerned in the TM case are Equations (2a), (2c)
and (2e). Centered differencing at point (i, k) is achieved on these
equations, leading to finite difference equations

GexEx(i, k) = Hy

(
i, k − 1

2

)
−Hy

(
i, k +

1
2

)
, (4)

GezEz(i, k) = Hy

(
i +

1
2
, k

)
−Hy

(
i− 1

2
, k

)
, (5)

GmyHy (i, k) = Ez

(
i +

1
2
, k

)
− Ez

(
i− 1

2
, k

)
,

+Ex

(
i, k − 1

2

)
−Ex

(
i, k +

1
2

)
. (6)

x

z
y

Hy3 4

2

1

Figure 3. Representation of the 2D series FDTLM node.
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2.2.1. Wave Definition on a Series FDTLM Node

Incident and reflected waves, noted Al and Bl, are defined on
the FDTLM node port numbered l at the sampling points defined
according to notation of Fig. 2. Writing waves on port 1 means
considering fields at mesh point (i, k + 1

2). Given waves definitions
provided in [13], we obtain

A1 =
1

2
√

Z0

[
E

(
i, k +

1
2

)
+ Z0J

(
i, k +

1
2

)]
,

B1 =
1

2
√

Z0

[
E

(
i, k +

1
2

)
− Z0J

(
i, k +

1
2

)]
.

(7)

Projecting on x-axis, we obtain

A1 =
1

2
√

Z0

[
Ex

(
i, k +

1
2

)
+ Z0Jx

(
i, k +

1
2

)]
,

B1 =
1

2
√

Z0

[
Ex

(
i, k +

1
2

)
− Z0Jx

(
i, k +

1
2

)]
,

(8)

where Z0 is the free space impedance and

J = H ∧ (−z),

with ∧ the vector product and thus

Jx

(
i, k +

1
2

)
= −Hy

(
i, k +

1
2

)
,

which entails

A1 =
1

2
√

Z0

[
Ex

(
i, k +

1
2

)
− Z0Hy

(
i, k +

1
2

)]
,

B1 =
1

2
√

Z0

[
Ex

(
i, k +

1
2

)
+ Z0Hy

(
i, k +

1
2

)]
.

(9)

Relations (9) transform the normalized field components to incident
and reflected waves at port 1. Waves at the other ports are found in a
similar way, they are reported in Appendix A.1.

2.2.2. Field Definition on Series FDTLM Node

Electromagnetic fields are expressed by combining Equation (9)

Ex

(
i, k +

1
2

)
=

√
Z0 (A1 + B1) ,

Hy

(
i, k +

1
2

)
=

1√
Z0

(B1 −A1) .

(10)
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Fields at the other ports are found similarly, they are provided
in Appendix A.2. By substituting (10) into (4)–(6), the following
equations are deduced:

GexEx (i, k)=
1√
Z0

(A1 −B1 + A2 −B2) , (11)

GezEz (i, k)=
1√
Z0

(A4 −B4 + A3 −B3) , (12)

GmyHy (i, k)=
√

Z0(A4+B4−A3−B3−A1−B1+A2+B2). (13)

2.2.3. Averaging the Field Component Combinations

The next step is to express the field component combinations at the
central point (i, k) as a combination of the incident and reflected waves
of surrounding ports. Since z-axis is orthogonal to both Ex and Hy,
the combination (Ex−Z0Hy) is centered averaged at the central point
(i, k) with respect to this direction:

Ex (i, k)− Z0Hy (i, k) =
1
2

(
Ex

(
i, k + 1

2

)− Z0Hy

(
i, k + 1

2

)
+Ex

(
i, k − 1

2

)− Z0Hy

(
i, k − 1

2

)
)

. (14)

Substituting field definitions of Appendix A.2 into (14) leads to

Ex (i, k)−Z0Hy (i, k)=
1
2

(√
Z0(A1+B1)− Z0

1√
Z0

(B1−A1)
+
√

Z0(A2+B2)− Z0
1√
Z0

(A2−B2)

)
(15)

Ex (i, k)−Z0Hy (i, k) =
√

Z0 (A1 + B2) . (16)

Similarly, the centered average for other combinations at the central
point (i, k), namely (Ex + Z0Hy), (Ez − Z0Hy) and (Ez + Z0Hy) are
reported in Appendix A.3. From these relations, reflected waves B
at each port are deduced from incident waves A and electromagnetic
fields at the center of the node

B1 + B2 =
2Ex(i, k)√

Z0
− (A1 + A2). (17)

This definition is introduced in (11) to obtain Ex at the central point
(i, k)

Ex (i, k) =
2
√

Z0

(Z0Gex + 2)
(A1 + A2) . (18)

By the same way, we obtain field components Ez and Hy at the central
point (i, k)

Ez (i, k) =
2
√

Z0

(Z0Gez + 2)
(A3 + A4) , (19)
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Hy (i, k) =
2
√

Z0

(4Z0 + Gmy)
(A4 −A3 + A2 −A1) . (20)

Finally, the scattering matrix of the series node is a 4× 4 matrix

Se =




axy cxy −by by

cxy axy by −by

−by by azy czy

by −by czy azy


 , (21)

where index e stands for the element, i.e., the FDTLM node and

aα,β = dα − bβ, bβ =
2Z0

(4Z0 + Gmβ)
,

cα,β = bβ + dα − 1, dα =
2

(2 + Z0Geα)
,

(22)

with α = x, z and β = y.

2.3. TE Modes

In this case, we deal with the field components Hx, Hz and Ey.
The arrangement of TE transmission lines shown in Fig. 4 can be
assimilated to a shunt node since all waves depend on the electric
field component Ey, but differ from the magnetic field components
Hx and Hz. Maxwell’s equations concerned in the TE case are
Equations (2b), (2d) and (2f). Centered differencing at point (i, k)
is achieved on these equations, leading to finite difference equations

GeyEy (i, k) = Hx

(
i, k +

1
2

)
−Hx

(
i, k − 1

2

)

+Hz

(
i− 1

2
, k

)
−Hz

(
i +

1
2
, k

)
, (23)
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Figure 4. Representation of 2D shunt FDTLM node.
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GmxHx (i, k) = Ey

(
i, k +

1
2

)
− Ey

(
i, k − 1

2

)
, (24)

GmzHz (i, k) = Ey

(
i− 1

2
, k

)
− Ey

(
i +

1
2
, k

)
. (25)

Wave and field definitions are detailed in Appendix B.1 and B.2.
By substituting these equations into (23)–(25), the following equations
are deduced:

GeyEy (i, k) =
1√
Z0

(A1 −B1 + A2 −B2

+A3 −B3 + A4 −B4), (26)

GmxHx (i, k) =
√

Z0 (A1 + B1 −A2 −B2) , (27)

GmzHz (i, k) =
√

Z0 (A3 + B3 −A4 −B4) . (28)

Centered averaging electromagnetic field combinations at the
center of the node is detailed in Appendix B.3. Expressions of field
components at the central point (i, k) are obtained similarly as TM
case

Ey (i, k) =
2
√

Z0

(Z0Gey + 4)
(A1 + A2 + A3 + A4) , (29)

Hx (i, k) =
2
√

Z0

(2Z0 + Gmx )
(A1 −A2) , (30)

Hz (i, k) =
2
√

Z0

(2Z0 + Gmz )
(A3 −A4) . (31)

Consequently, the scattering matrix of the shunt node is a 4 × 4
matrix

Se =




ayx cyx dy dy

cyx ayx dy dy

dy dy ayz cyz

dy dy cyz ayz


 , (32)

where

aα,β = dα − bβ, bβ =
2Z0

(2Z0 + Gmβ)
,

cα,β = bβ + dα − 1, dα =
2

(4 + Z0Geα)
,

(33)

with β = z, x and α = y.
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2.4. WCIP/FDTLM Hybrid System

The WCIP is adapted to homogeneous planar circuits and implies only
line mesh in this case. If homogeneous substrates are considered,
results can be obtained with the WCIP alone. The WCIP method
implemented in this particular case may therefore be used as a reference
to validate the WCIP/FDTLM hybrid method results. The general
case of study is represented in Fig. 5, where an interface (Σ) separates
the two partitions of the domain.

B0

x
z y

Domain up

Domain down

Bup A up

Bdown A down
(Σ) 

Figure 5. Representation of the studied case, separation between the
upper and lower media according to the interface (Σ).

When hybrid method is considered, the media under the surface
(Σ) is discretized by the FDTLM (2D mesh of the whole lower media)
while the upper media is always characterized by the WCIP operator.
Transfer condition is provided through the S operator of the WCIP.
Adown corresponds to A1 of the upper nodes of the 2D FDTLM mesh
and B1 corresponds to Bdown of the system. Bdown comes from the
FDTLM application according to (21) in TM case and (32) in TE case.
With a spectral source wave B0 in the upper media, the equations to
consider are(

Bup

Bdown

)
=

(
SW

up 0
0 SF

down

)(
Aup

Adown

)
+

(
B0

0

)
, (34)

(
Aup

Adown

)
= S

(
Bup

Bdown

)
, (35)

where the exponents W and F stand for WCIP and FDTLM, the
operator S contains the transmission/reflection conditions on (Σ), and
(SW

i )i=up,down are the scattering operators for homogeneous media in
domain i. The discrete operators (SW

i )i=up,down are based on the Fast
Modal Transform (FMT) [12–14] and on the modal scattering operator
(Γ̂i) according to

SW
i = FMT−1Γ̂iFMT. (36)

(FMT) expresses the waves from the spatial domain to modal
domain. If B is the incident wave, its associated modal decomposition



Progress In Electromagnetics Research B, Vol. 55, 2013 33

({B̃n}n∈J0;N−1K) and spatial decomposition ({Bk}k∈J0;N−1K) are
expressed through

B =
∑

n

B̃nfn =
∑

k

BkHk (37)

where k is the segment position in the spatial basis, ({Hk}k∈J0;N−1K),
and n the mode order in the modal basis, ({fn}n∈J0;N−1K).

Its modal decomposition is obtained thanks to FMT writing

B̃n = 〈fn,B〉 =

〈
fn,

∑

k

BkHk

〉
. (38)

These bases verify
〈Hk1 ,Hk2〉 = δk1,k2 ,

〈fn1 , fn2〉 = δn1,n2 .
(39)

Γi is the modal coefficient of diffraction. Its expression is given by

Γi =
1− Z0Yi

1 + Z0Yi
, (40)

with Yi detailed in (41) in TE case, in (42) in TM case

Y TE
i =

√(
iπ
a

)2 − k2
0

jωµ0
, (41)

Y TM
i =

jωε0√(
iπ
a

)2 − k2
0

, (42)

where i is the index of the mode taken into account in the matrix. S
links incident and reflected waves with

A = SB =
(

S11 S12

S21 S22

)
B (43)

with
S11 = −

∑

k1,k2

∣∣∣Hmetal
k1

〉〈
Hmetal

k2

∣∣∣ = S22, (44)

and
S12 =

∑

k1,k2

∣∣∣H insulator
k1

〉〈
H insulator

k2

∣∣∣ = S21. (45)

Combining (34) and (35), the linear system to solve in the hybrid
method is (

Id −
(

SW
up 0
0 SF

down

)
S

)(
Bup

Bdown

)
=

(
B0

0

)
, (46)
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where Id is the identity matrix. Note that when the TE case is
considered, B0 is along the y-axis and in the TM case, B0 is along the
x-axis. In 2D, TE and TM modes are uncoupled which entails that the
generated waves are directed along the same axis as the source wave
B0.

3. NUMERICAL RESULTS

3.1. Mode Diffraction on a Perfect Conductor Sheet

To validate the method, the propagation of one (TE or TM) mode in
vacuum (εr = 1) between two metallic slabs separated by a distance a
ended by a short circuit at distance H is first considered (Fig. 6).

The solution is defined by (47) [20].

E(x, z) = E0

[
2 sinh (p1(H + z))e−p1Hfα

1

]
, with

p1 =

√(π

a

)2
− k2

0

fTE
1 =

√
2
a

sin
(πx

a

)
y and fTM

1 =

√
2
a

cos
(πx

a

)
x

(47)

where E0 is the incident wave amplitude, y and x the unit vectors
of the canonical basis, fα

1 the function of order 1 of the modal basis
of the mode α (α = TE or TM), and p1 the propagation constant
along the z-axis. Here a = 1.27 cm, H = 1.27 cm and the working
frequency is 16 GHz, which implies that the modes in excitation which

B0

x

z
y

Domain up

Domain down r

 r

a

H

Bup Aup

Bdown Adown

(Σ) 

ε

ε

Figure 6. Mode diffraction on a
perfect conductor sheet.
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are either TE1, either TM1, are propagating. Eigenvalues of SW
down

and SF
down operators are compared and represented in Fig. 7 in the TE

case, where N denotes the number of segments on the interface (Σ)
and consequently the number of nodes in x direction (see Fig. 2). We
take the same number of nodes in z direction. The distance between
both operators (norm 2) is presented in Table 1 for the TE and TM
cases. Mesh size represents edge length ratio between current and
initial mesh. For instance, 1/2 means that the step size is twice smaller
than the initial step size in both axes. Initial mesh is characterized by a
step size of 794µm in both directions and by N = 16 for the FDTLM.

Since the analytical solution is known, we can calculate relative
discretization error, i.e., error between analytical and computed
solutions with the hybrid method. This error is evaluated and reported
in Table 2 where the exponents H and Ex stand for Hybrid and Exact.
Convergence order is estimated taking into account the errors from two
consecutive mesh sizes, which explains the empty boxes of the tables,
and is close to 2. Its definition is given by

Order =
log(Rel error(h1))− log(Rel error(h2))

log(h1)− log(h2)
(48)

where Rel error(h1) and Rel error(h2) correspond to the relative
discretization errors in L2-norm for mesh step h1 and refined mesh

Table 1. ||SW
down − SF

down ||2 in TE and TM cases.

Mesh size TE case TM case

1 1.693.10−1 1.544.10−1

1/2 8.467.10−2 8.085.10−2

1/4 4.233.10−2 4.137.10−2

1/8 2.116.10−2 2.092.10−2

1/16 1.058.10−2 1.052.10−2

Table 2. Relative error on E-fields on (Σ) for TE and TM cases.

Mesh

size
N

∥∥∥EH,TE−EEx,TE

max|EEx,TE|

∥∥∥
L2

∥∥∥EH,TM−EEx,TM

max|EEx,TM|

∥∥∥
L2

Error Order Error Order

1 16 5.92.10−3 - 5.28.10−3 -

1/2 32 1.47.10−3 2.0068 1.32.10−3 1.9983

1/4 64 3.68.10−4 2.0017 3.31.10−4 1.9996

1/8 128 9.19.10−5 2.0004 8.27.10−5 1.9999

1/16 256 2.30.10−5 2.0001 2.07.10−5 2.0000
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step h2. The same study was performed between analytical solution
and the WCIP alone and the error was of the order of the machine
accuracy, which means that the WCIP is analytical in this case.

The same work was achieved with TM modes. Relative
discretization error is represented in Fig. 8. It is calculated while
refining the mesh along both axis (x and z-axis). Error is slightly
smaller for TM modes than TE ones.
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Figure 8. Relative discretization error in L2-norm for E field with
TE1 or TM1 in excitation.

3.2. Mode Diffraction on a Microstrip Line

A second test problem is considered (see Fig. 9). It consists of a
centered metallic (perfect conductor) microstrip line of width w =
6.35mm, taken without thickness, which is inserted on the surface
(Σ). Domains up and down are vacuum (εr = 1). Like previously, we
have metallic boundary conditions on x = 0, x = a and z = −H, with
a = 1.27 cm and H = 1.27 cm.

B0

x

z y

Domain up

Domain down
w

 r

 r

a

H

Bup Aup

Bdown Adown

(Σ)

ε

ε

Figure 9. Representation of the microstrip line.
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A comparison between the electric field and the electric current
obtained with the WCIP alone (denoted by the index W) and with the
hybrid method is presented as an analytical solution is not known in
this particular case. The WCIP alone is meshed enough to consider
it as a reference solution (the WCIP is meshed with N = 215 where
N is the number of segments on (Σ)). Results obtained for TE1 and
TM1 excitation are respectively detailed in Tables 3 and 4. In TE case,
convergence orders of 1 and 0.5 are found for the electric field and the
electric current, while in TM case convergence orders of 0.5 and 1 are
respectively found for the electric field and the electric current.
Table 3. TE case: relative error on the tangential electric field and
on the current on (Σ).

Mesh

size
N

∥∥∥ EH−EW

max|EW|

∥∥∥
L2

∥∥∥ JH−JW

max|JW|

∥∥∥
L2

Error Order Error Order

1 16 2.65.10−2 - 2.73.10−2 -

1/2 32 1.47.10−2 0.8557 1.91.10−2 0.5142

1/4 64 7.72.10−3 0.9237 1.33.10−2 0.5212

1/8 128 4.06.10−3 0.9262 9.22.10−3 0.5308

1/16 256 2.11.10−3 0.9440 6.32.10−3 0.5435

Table 4. TM case: relative error on the tangential electric field and
on the current on (Σ).

Mesh

size
N

∥∥∥ EH−EW

max|EW|

∥∥∥
L2

∥∥∥ JH−JW

max|JW|

∥∥∥
L2

Error Order Error Order

1 16 2.73.10−2 - 2.95.10−2 -

1/2 32 1.91.10−2 0.5106 1.55.10−2 0.9252

1/4 64 1.34.10−2 0.5187 8.07.10−3 0.9450

1/8 128 9.26.10−3 0.5287 4.22.10−3 0.9345

1/16 256 6.36.10−3 0.5423 2.19.10−3 0.9486

3.3. Mode Diffraction on a Microstrip Line with
Inhomogeneous Substrate

A last test problem is considered (see Fig. 10). It consists of a centered
metallic (perfect conductor) microstrip line of width w = 6.35mm,
taken without thickness, which is inserted on the surface (Σ) of an
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Figure 10. Representation of the microstrip line above an
inhomogeneous substrate.

Table 5. TE case: relative error on the tangential electric field and
on the current on (Σ).

Mesh

size
N

∥∥∥ EH−EFEM

max|EFEM|

∥∥∥
L2

∥∥∥ JH−JFEM

max|JFEM|

∥∥∥
L2

Error Order Error Order

1 16 2.48.10−2 - 2.06.10−2 -

1/2 32 1.34.10−2 0.8824 1.39.10−2 0.5725

1/4 64 6.87.10−3 0.9689 8.97.10−3 0.6296

1/8 128 3.40.10−3 1.0145 5.47.10−3 0.7126

1/16 256 1.56.10−3 1.1222 3.07.10−3 0.8366

inhomogeneous substrate (εr,1 = 1 and εr,2 = 5). Domain up is vacuum
(εr = 1). Like previously, we have metallic boundary conditions on
x = 0, x = a and z = −H, with a = 1.27 cm and H = 1.27 cm.

A comparison between the electric field and the electric current
obtained with an hybrid WCIP/FEM method [21] taken as our
reference is presented, meshing this hybrid method with N = 210,
since an analytical solution is not known. Results obtained for TE1

excitation are detailed in Table 5. In TE case, convergence orders of 1
and 0.5 are found for the electric field and the electric current, while
in TM case convergence orders of 0.5 and 1 are respectively found for
the electric field and the electric current.

4. CONCLUSION

The 2D FDTLM node reformulated for hybridization with the
WCIP is detailed in this paper in the TE and TM cases. The
hybrid FDTLM/WCIP formulation is expressed and tested in an
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analytical case and in two microstrip line cases (homogeneous and
inhomogeneous). In this analytical case (diffraction of one guided
mode on a perfect sheet), the spectra of both scattering operators
are successfully compared. In the microstrip line case, the method
order is 1 (resp. 0.5) on the electric field and 0.5 (resp. 1) on the
electric current for TE modes (resp. for TM modes) for homogeneous
and inhomogeneous examples. Similar works are under process with
other volumic methods such as Finite Element Method (FEM) or a
Hybridizable Discontinuous Galerkin (HDG) method [22].
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APPENDIX A. DEVELOPMENTS IN TM CASE

A.1. Wave Definition

Incident and reflected waves are detailed at each port of the series
FDTLM node:
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A.2. Field Definition

Electromagnetic fields are deduced from wave definitions at each port
of the series FDTLM node:
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)
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A.3. Centered Average for the Field Component
Combinations

Ex (i, k) + Z0Hy (i, k) =
√

Z0 (A2 + B1)

Ex (i, k)− Z0Hy (i, k) =
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√
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APPENDIX B. DEVELOPMENTS IN TE CASE

B.1. Wave Definition

Incident and reflected waves are detailed at each port of the shunt
FDTLM node:
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B.2. Field Definition

Electromagnetic fields are deduced from wave definitions at each port
of the shunt FDTLM node:
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B.3. Centered Average for the Field Component
Combinations

Ey (i, k) + Z0Hx (i, k) =
√

Z0 (A1 + B2)

Ey (i, k)− Z0Hx (i, k) =
√

Z0 (A2 + B1)

Ey (i, k) + Z0Hz (i, k) =
√

Z0 (A3 + B4)

Ey (i, k)− Z0Hz (i, k) =
√

Z0 (A4 + B3)
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