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Quantum Analysis of Modified Caldirola-Kanai Oscillator Model
for Electromagnetic Fields in Time-Varying Plasma

Jeong R. Choi1, *, Samira Lakehal2, Mustapha Maamache2, and Salah Menouar2

Abstract—Quantum properties of a modified Caldirola-Kanai oscillator model for propagating
electromagnetic fields in a plasma medium are investigated using invariant operator method. As a
modification, ordinary exponential function in the Hamiltonian is replaced with a modified exponential
function, so-called the q-exponential function. The system described in terms of q-exponential function
exhibits nonextensivity. Characteristics of the quantized fields, such as quantum electromagnetic energy,
quadrature fluctuations, and uncertainty relations are analyzed in detail in the Fock state, regarding
the q-exponential function. We confirmed, from their illustrations, that these quantities oscillate with
time in some cases. It is shown from the expectation value of energy operator that quantum energy of
radiation fields dissipates with time, like a classical energy, on account of the existence of non-negligible
conductivity in media.

1. INTRODUCTION

One of the main factors responsible for the complexity of media is the time dependence of electromagnetic
parameters, such as permittivity, permeability, and conductivity. In case that at least one of these three
parameters is not a positive scalar constant, the medium is classified as a complex one. Thanks to the
development of materials science, it is now not difficult to obtain a complex plasma, which has required
characteristics for a specific purpose, from the critical synthesis of plasma materials.

There are many scientific reports relevant to the characteristics of electromagnetic fields in complex
media that are intrinsically space-varying, anisotropic, and dispersive. On the other hand, Maxwell
equations for an electromagnetic field described by time-dependent Hamiltonian in plasma are in general
very difficult to manage. It is recently known that Lewis-Riesenfeld invariant [1] is useful for deriving
analytical solutions associated with quantum electromagnetic fields in time-varying media (see Ref. [2]
and references there in). Indeed, the knowledge for characteristics of radiation fields propagating through
an electromagnetic medium which has time-dependent parameters is crucial for analyzing and diagnosing
plasma [3, 4].

One of simple systems that are described by a time-dependent Hamiltonian is Caldirola-Kanai (CK)
oscillator [5, 6] that exhibit exponential decay characteristic of energy. If the conductivity in media is
non-negligible, the electromagnetic fields can be modeled by the CK oscillator. In this paper, we study
the quantum characteristics of a modified CK oscillator model of electromagnetic fields propagating
through plasma. As a modification, we replace the normal exponential function in the CK Hamiltonian
with a modified exponential function, so-called the q-exponential function. Usually, q-exponential
function is used to study nonextensive features of dynamical systems [7–9]. The statistics of relativistic
plasma and gas under an external electromagnetic field follows q-distribution and exhibit nonextensive
properties [9].
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Abbas Sétif 1, Sétif 19000, Algeria.



72 Choi et al.

In this paper, quantum characteristics of electromagnetic fields in plasma medium, such as quantum
energy, quadrature fluctuations, and uncertainty relations, will be analyzed with consideration of
nonextensivity of their modified CK oscillator model. To this end, we make an assumption that only
the electromagnetic waves are quantized, and the medium is treated classically. Coulomb gauge will be
taken when developing quantum theory of the system for convenience.

2. HAMILTONIAN DYNAMICS OF FIELDS

For the case that the parameters of a plasma medium vary with time, the relations between fields and
current density inside it are given by D = ε(t)E, H = B/µ(t), and J = σ(t)E, where ε is electric
permittivity, µ magnetic permeability, and σ conductivity. The velocity of light is also dependent on
time and is given by c(t) = 1/

√
ε(t)µ(t).

Let us assume that there is no net free charge distribution in media. Then, the scalar potential
vanishes in the Coulomb gauge and the vector potential can be written as

A(r, t) =
∑

l

ul(r)ql(t), (1)

where ul(r) is a mode function determined from the geometric of the medium and ql(t) is a time function.
Notice that ql(t) follows an equation of motion of the form [2, 10]

q̈l +
σ(t) + ε̇(t)

ε(t)
q̇l + ω2

l (t)ql = 0, (2)

where ωl(t) = c(t)kl and kl is the lth mode wave number which is constant. In general, the wave number
varies only when the electromagnetic wave passes through a boundary where spatial discontinuity
exists [3]. On account of the second term associated with q̇l in Eq. (2), the system dissipates with
time. Hence, not only the existence of conductivity in media but also the steady increase of permittivity
causes the dissipation of radiation fields.

From now on, let us regard a particular mode and drop the subscript l from all subsequent equations
for convenience. Then the corresponding Hamiltonian is expressed in the form

Ĥ(q̂, p̂, t) =
1

2ε0
e−Λ(t)p̂2 +

1
2
ε0e

Λ(t)ω2(t)q̂2, (3)

where p̂ = −i~(∂/∂q), ε0 is a constant with dimension of permittivity and Λ(t) is defined as

Λ(t) =
∫ t

0

σ (t′) + ε̇(t′)
ε(t′)

dt′ + δ, (4)

with a real constant δ. Using Hamilton’s equation, you can easily check that Eq. (3) gives exact classical
equation of motion represented in Eq. (2). Notice that this Hamiltonian is actually the same as that
of the parametric harmonic oscillator treated by Maamache et al. [11]. It is proved that parametric
harmonic oscillator is unitarily equivalent to a generalized time-dependent harmonic oscillator [11].

Considering the case that all parameters are constant, i.e., ε(t) = ε0, µ(t) = µ0, and σ(t) = σ0, we
obtain the CK Hamiltonian originally defined by Caldirola and Kanai [5, 6] such that

Ĥ(q̂, p̂, t) =
1

2ε0
e−(σ0t/ε0+δ)p̂2 +

1
2
ε0e

σ0t/ε0+δω2
0 q̂

2, (5)

where ω0 = k/(µ0ε0)1/2.
An elegant generalization of the ordinary exponential function appeared in Eq. (5) is q-exponential

function of the form [7]
expq (y) = [1 + (1− q)y]1/(1−q), (6)

where q is considered as a nonextensive parameter. Physically, q is the degree of nonextensivity,
i.e., the degree of deviation of a system or physical quantities from extensivity. It is discovered
by Tsallis [12] through his try to generalizing Boltzmann-Gibbs statistical mechanics considering the
systems whose experimental data do not match with usual critical phenomena in statistical mechanics.
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Clearly speaking, nonextensive thermostatistics is a generalization of the conventional Boltzmann-Gibbs
statistics.

Comprehensive studies have been carried out for various physical properties of elementary
excitations including light waves, such as thermodynamical characteristics, Tsallis nonextensivity,
energy profiles, and so on [13]. In particular, for q → 1, Eq. (6) recovers to the ordinary exponential
function. By replacing the exponential function with the q-exponential function from Eq. (5), we have
a new Hamiltonian as

Ĥq(q̂, p̂, t) =
p̂2

2ε0 expq(σ0t/ε0 + δ)
+

1
2
ε0 expq(σ0t/ε0 + δ)ω2

0 q̂
2. (7)

Apparently, this modified Hamiltonian generalizes the original CK oscillator so that it can cover
the nonextensive dynamical situations of electromagnetic phenomena. The system is sub-extensive
when q > 1 and, for q < 1, it is super-extensive [14, 15]. Özeren [8] studied nonextensive quantum
characteristics of the generalized CK oscillator in connection with SU(1,1) coherent states, on the basis
of exactly the same Hamiltonian given in Eq. (7) (except for disregarding a trivial factor δ).

The equation of motion for q corresponding to the modified Hamiltonian is

q̈(t) +
σ0/ε0

1 + (1− q)(σ0t/ε0 + δ)
q̇(t) + ω2

0q(t) = 0. (8)

If we denote two linearly independent classical solutions of Eq. (8) as s1(t) and s2(t), they are easily
derived to be

s1(t) = s1,0

√
πω0

2σ0(1− q)/ε0
[expq (σ0t/ε0 + δ)]−q/2 × Jν

(
ω0

(1− q)σ0/ε0
+ ω0t

)
, (9)

s2(t) = s2,0

√
πω0

2σ0(1− q)/ε0
[expq (σ0t/ε0 + δ)]−q/2 ×Nν

(
ω0

(1− q)σ0/ε0
+ ω0t

)
, (10)

where s1,0 and s2,0 are integral constants, Jν and Nν are the first and the second kind Bessel functions,
respectively, and ν = q/[2(1− q)]. Further, a general classical solution is represented as

q(t) = c1s1(t) + c2s2(t), (11)

where c1 and c2 are arbitrary real constants.

3. ANALYSIS OF QUANTUM PROPERTIES

The Hamiltonian, Eq. (7), which we will manage in this section is time-dependent. Notice that the
separation of time functions from others in that equation is impossible, leading to the failure of the
conventional separation of variables method for solving the corresponding Schrödinger equation. Hence
we need another method for quantum mechanical treatment of the system. One of the potential methods
useful for this situation is the invariant operator method [1] which we will employ here.

From the Liouville-von Neumann equation,

dÎ

dt
=

∂Î

∂t
+

1
i~

[
Î , Ĥq

]
= 0, (12)

we derive a quadratic invariant operator to be [2]

Î = ~Ω
(

â†â +
1
2

)
, (13)

where Ω is a positive time-constant defined as

Ω = (h1h3 − h2
2/4)1/2ε0 expq (σ0t/ε0 + δ)[s1ṡ2 − ṡ1s2], (14)

with the real constants h1, h2, and h3, and â and its Hermitian adjoint â† are the annihilation and the
creation operators, respectively. If we regard Eqs. (9) and (10) with additional conditions that s1,0 > 0
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and s2,0 > 0, [s1ṡ2 − ṡ1s2] is always positive. Hence, h1 − h3 should be taken to be h1h3 > h2
2/4 so

that Ω > 0. The definition of â (and, consequently, â†) is more or less different from that of the simple
harmonic oscillator and is given by

â =
1√
2Ω

[(√
Ωη(t)− i

ṡ(t)ε0√
~

expq(σ0t/ε0 + δ)
)

q̂ + i
s(t)√
~

p̂

]
, (15)

where s(t) is a time function of the form

s(t) =
√

h1s2
1(t) + h2s1(t)s2(t) + h3s2

2(t), (16)

and η(t) = Ω/[s2(t)~].
The wave functions in the configuration space are represented as [1]

〈q|ψn(t)〉 = 〈q|φn(t)〉 exp [iθn(t)]. (17)

Here, 〈q|φn(t)〉 are the eigenstates of the invariant operator, that are given by

〈q|φn(t)〉 = 4

√
η(t)
π

1√
2nn!

Hn

(√
η(t)q

)
× exp

[
−1

2

(
η(t)− i

ṡ(t)ε0
s(t)~

expq(σ0t/ε0 + δ)
)

q2

]
, (18)

and the phases θn(t) have the form

θn(t) = −
(

n +
1
2

)
~
ε0

∫ t

0

η(t′)dt′

expq(σ0t′/ε0 + δ)
. (19)

For a system that is described by a time-dependent Hamiltonian, the energy operator is no longer
the same as the Hamiltonian of the system. In this case, the energy operator is represented in terms of
Hamiltonian such that [16]

Êq = Ĥq/ expq (σ0t/ε0 + δ). (20)

The quantized energy En,q in Fock state can be derived by evaluating the expectation value of this
operator with the aid of Eq. (17), to be

En,q = 〈ψn(t)|Êq|ψn(t)〉 =
~
2

{
ε0
Ω

[
ṡ2(t) + ω2

0s
2(t)

]
+

Ω

ε0s2(t)
[
expq(σ0t/ε0 + δ)

]2

}(
n +

1
2

)
. (21)

We have illustrated this quantum energy in Fig. 1, bearing in mind that the condition h1h3 > h2
2/4

which is previously mentioned should be preserved. When h1 = h3 and h2 = 0, En,q dissipates with
time in a monotonous manner. However, for the cases of h1 6= h2 and/or h2 6= 0, En,q oscillates with
time. By comparing Fig. 1(d) with Fig. 1(c), we see that the energy oscillation is amplified when h1×h3

approaches h2
2/4. Fig. 1(f) shows that the phase of oscillation for (h1, h2, h3) = (xa, x0, xb) is roughly out

of phase with that for (h1, h2, h3) = (xb, x0, xa) where xa, xb, and x0 are arbitrary numbers, provided
that xa is sufficiently larger than x0 and xb. However, for the case xa ≈ xb with x0 6= 0, they keep
nearly in phase with each other, provided that x2

0/4 is sufficiently large (but not exceeds xa × xb).
For a more simple case, i.e., the case of ordinary CK oscillator that is described by Eq. (5), the

solutions, s1 and s2, are given by

s1 = s1,0e
−(σ0t/ε0+δ)/2 cos(ω̃t + ϕ1), (22)

s2 = s2,0e
−(σ0t/ε0+δ)/2 sin(ω̃t + ϕ2), (23)

where
ω̃ =

[
ω2

0 − σ2
0/

(
4ε20

)]1/2
. (24)

Then, by choosing s1,0 = s2,0, ϕ1 = ϕ2, h1 = h3 = 1, and h2 = 0 and replacing the q-exponential
function with the ordinary exponential function, the quantized energy, Eq. (21), reduces to

En = ~
ω2

0

ω̃
e−(σ0t/ε0+δ)

(
n +

1
2

)
, (25)
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Expectation value of the energy operator, En,q, given in Eq. (21). The values of (h1, h2, h3)
are (a) (1, 0, 1), (b) (10,0,1), (c) (10, 2, 1), (d) (5, 2, 1), and (e) (1, 0.9, 1). The values of q for (a)–(e)
are 0.9 (long dashed line), 1.0 (solid line), and 1.1 (short dashed line). On the other hand, (f) is
a comparison of energy oscillation between two cases of (h1, h2, h3) = (xa, x0, xb) (solid line) and
(h1, h2, h3) = (xb, x0, xa) (dashed line) where xa = 10, xb = 1 and x0 = 2 with the choice of q = 0.9.
We used n = 0, σ0 = 0.1, ω0 = 1, ε0 = 1, ~ = 1, s1,0 = s2,0 = 1, and δ = 0.

which agrees well with the previous result [17].
Now we turn our attention to the nonextensivity of fluctuations of the electromagnetic fields. The

fluctuations of an arbitrary observable O are defined as

(∆O)n =
[〈

ψn(t)|Ô2|ψn(t)
〉
−

(〈
ψn(t)|Ô|ψn(t)

〉)2
]1/2

. (26)

For instance, we easily get the fluctuations of q and p, which are considered to have nonextensive
characters, using Eq. (7):

(∆q)n =
[
η−1(t)

(
n +

1
2

)]1/2

, (27)

(∆p)n =
[
~
Ω

(
ṡ2(t)ε20[expq(σ0t/ε0 + δ)]2 +

Ω2

s2(t)

) (
n +

1
2

)]1/2

. (28)
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(a) (b)

(c)

Figure 2. Fluctuations (a) (∆q)n and (b) (∆p)n and uncertainty product (c) (∆q)n(∆p)n. The values
of (h1, h2, h3) are (1, 0, 1) and the values of q are 0.9 (long dashed line), 1.0 (solid line), and 1.1 (short
dashed line). We used n = 0, σ0 = 0.1, ω0 = 1, ε0 = 1, ~ = 1, s1,0 = s2,0 = 1, and δ = 0.

(a) (b)

(c)

Figure 3. The same as Fig. 2 but the values of (h1, h2, h3) are (5, 0, 1).
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(a) (b)

(c)

Figure 4. The same as Fig. 2 but the values of (h1, h2, h3) are (5, 2, 1).

The corresponding uncertainty product is also obtained by multiplying these two quantities. From
Figs. 2–4, we see that the fluctuations and uncertainty products oscillate with time similarly to quantized
electromagnetic energy. The envelop of (∆q)n decreases while that of (∆p)n increases with time, but
the envelop of their product does not decrease or increase. The time behaviours of these quantities
are slightly different depending on parameter q and this reflects delicate nonextensive characteristics of
electromagnetic phenomena.

4. CONCLUSION

Quantum mechanical properties of the modified CK oscillator model for propagating electromagnetic
fields in plasma medium, described in terms of q-exponential function, are investigated. The quantized
energy, quadrature fluctuations, and the uncertainty product are analyzed by means of the invariant
operator method.

In some cases, quantized electromagnetic energy and fluctuations of canonical variables oscillate
with time. We confirmed that, when we are unable to neglect the conductivity in media, the quantum
energy dissipates with time like the classical energy. The rate of energy dissipation is slightly different
depending on the nonextensive parameter q. The quantum energy somewhat rapidly dissipates for
large q as shown in Fig. 1. There are many reports in connection with quantum dissipation [5, 6, 8, 16–
26]. Fujii and Suzuki studied Jaynes-Cummings model for quantum dissipative systems [18, 19]. The
possibility of generation of squeezing by damping for amplitudes of quantum superposition of coherent
states is found by Bužek et al. [20]. Choi used dissipation of the scalar field in inflation model of
cosmology in order to fix the well known cosmological constant problem in cosmology [25, 26]. Özeren
investigated the effects of nonextensive parameter q on time evolution of the complex SU(1,1) coherent
state parameter for the modified CK oscillator [8]. However, the effect of q on the quantum energy
dissipation, which is illustrated here, do not reported until now as far as we know.

The variation of both quadrature fluctuations and quantum energy increases as q become large due
to nonextensive characteristics of the system. The envelop of the fluctuation (∆q)n decreases with time
whereas that of (∆p)n increases. On the other hand, the corresponding uncertainty product is always
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larger than ~/2 which is the minimal value allowed in quantum harmonic oscillator and its envelop
neither decays nor increases with time.
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