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Abstract—A major challenge in UWB signal processing is the
requirement for very high sampling rate under Shannon-Nyquist
sampling theorem which exceeds the current ADC capacity. Radar
signal is essentially a delayed and scaled version of the transmitted
pulse, determined by sparse parameters such as time delays and
amplitudes. A system for sampling UWB radar signal at an ultra-
low sampling rate based on the Finite Rate of Innovation (FRI)
and the estimation of time delays and amplitudes to detect UWB
radar signal is presented in the paper. This sampling scheme which
acquires the Fourier series coefficients often results in sparse parameter
extraction for UWB radar signal detection. The parameters such as
time-delays and amplitudes are estimated using the total variation
norm minimization. With this system, the UWB radar signal can be
accurately reconstructed and detected with overwhelming probability
at the rate much lower than Nyquist rate. The simulation results show
that the proposed approach offers very good recovery performances for
noisy UWB radar signal using very small number of samples, which is
effective for sampling and detecting UWB radar signal.

1. INTRODUCTION

Because of the advantage of the ability of high spatial resolution and
object-distinction capability, ultra-wideband (UWB) technology has
been widely utilized in radar system. UWB radar transmits the pulse
of very short period, characterized by its very high bandwidth, up
to several gigahertzes. To digitize such UWB radar signal, a very
high sampling rate is required according to Shannon-Nyquist sampling
theorem [1], namely, the received signals must be sampled at twice
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their baseband bandwidth. However, the very high sampling rate
brings a great challenge of acquiring and detecting the UWB radar
signal at the receiver side, especially for a lower rate analog-to-digital
converter (ADC), which requires less computational power. To address
this issue, some special sampling systems (e.g., parallel ADCs) are
developed. The U.S. Army Research Laboratory (ARL) has been
developed low-frequency UWB radar systems [2] with inexpensive
ADC to sample UWB radar signal, in which a much higher equivalent
sampling rate can be achieved via the synchronous time equivalence
sampling technique where the same radar signal waveform of interest
is acquired with many observations with different phase offsets and
the resulting under-sampled data records are then interleaved to yield
the equivalent over-sampled data record. The idea of this technique is
same to the multicoset sampling scheme [3]. However, except that
this technique has a drawback due to the longer time required to
complete a data acquisition cycle, it is suggested that this technique
introduces an inherent bandwidth limitation which distorts the samples
due to a preceding low-pass filter in practice [3]. In addition, the
emerging compressed sensing (CS) theory [4, 5] indicates that sparse
signals may be reconstructed with high probability by relatively
fewer non-adaptive random measurements beyond Nyquist limit with
optimization techniques, if the signal has a sparse representation in
some bases or frames. Based on the CS theory, Tropp et al. [6]
presented an efficient sampling of sparse bandlimited signal, named
as Random Demodulator. The input signal is mixed by multiplying it
with a high-rate pseudorandom sign sequence and the mixed output
is then integrated and dumped at sub-Nyquist rate. In the recovery
stage, CS algorithms are performed to recover the original signal from
these samples. Random Demodulator is restricted to measure the on-
grid tones and performs poorly for the off-grid tone model.

Some continuous-time signal classes, such as streams of Dirac,
piecewise polynomials, are called the Finite Rate of Innovation (FRI)
which are not bandlimited but still have a finite number of degrees
of freedom per unit time [7]. Many classes of FRI signal can be
recovered from samples taken at the rate of innovation, which is
far below the Nyquist rate [7, 8]. Vetterli et al. [7] formulated the
relationship between the signal’s Fourier series coefficients and its
unknown parameters in the form of a spectral analysis problem. The
latter may be solved using existing techniques, given a subset of
consecutive Fourier series coefficients, with a minimal cardinality of
2L. Lie et al. [9] proposed UWB Direction of Arrival estimation using
digital channelization receiver architecture which split the UWB array
output into multiple frequency channels and then down-convert each
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channel into much lower frequency, hence allowing the low sampling
rate ADC to be used. Xampling framework [10] based on FRI is also
developed to capture the information carried by an analog signal, by
filtering with an appropriate sampling kernel and then sampling it
at the sub-Nyquist rate. Xampling aims to successfully acquire the
FRI signal at the minimal sampling rate. The two sampling schemes
based on single processing channel and multiple processing channels
respectively were developed to extract a small subset of the detected
signal’s frequency samples [11, 12].

Generally, the radar signals are formed by scattering of a
transmitted pulse from multiple reflectors, may be modeled by
a relatively small number of pulses, all replicas of some known
transmitted pulse shape. Given the number of reflected pulses by L, the
radar signals can be defined by 2L degrees of freedom corresponding to
the replicas unknown time delays and amplitudes, which are described
within the FRI framework. The UWB radar signal have a wide
band but a small non-zero information rate. The sampling scheme
based on FRI can capture the information of UWB radar signal using
a small number of samples, even a minimal number 2L, which is
less than the required number of samples when employing Random
Demodulator sampling scheme, since it still acquires some samples
with zero information. Thus in the paper, we follow the FRI sampling
scheme which is described in the papers [10, 12] to acquire sub-Nyquist
samples, which allows us to detect UWB radar signals using very small
number of samples.

To estimate the underlying unknown parameters such as time
delays and amplitudes, many mature techniques, such as spectral
analysis frameworks [13], can be used, however, these techniques
require prior knowledge of the model order L and are not highly
stable in the presence of noise. In the real case, the model order L
is unknown. Another alternative approach is CS algorithm based on
l1 norm minimization [14], which need quantize the analog time axis
with a small-size discrete grid, but some conditions, such as restricted
isometry property [15] and discrete uncertainty principle [16] that are
required in CS to guarantee perfect signal recovery by `1 sparsity
constraint, are not well satisfied due to the off-grid problem [17], which
seriously degrade the recovery performance of l1 norm minimization.
The convex program based on total variation minimization which can
be interpreted as being the continuous analog to the `1 norm for
discrete signals can overcome these conditions [17]. In the paper,
we use the convex program based on total variation minimization to
estimate the unknown parameters form a small subset of Fourier series
coefficients. Simulation results showed that convex program based on
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total variation minimization yields better performances than recovery
algorithms based on `1 norm minimization to detect the UWB radar
with both on-grid and off-grid models using very small number of
samples.

The remainder of the paper is organized as follows. The next
section establishes the mathematical foundation of our radar signal
model. Section 3 introduces the sampling scheme to extract Fourier
series coefficients at sub-Nyquist rate for UWB radar signal within
FRI framework. In Section 4, we estimate the unknown parameters
form a small subset of Fourier series coefficients using CS based on
the total-variation minimization. The results for the simulated and
experimental radar signals are presented in Section 5.

2. UWB RADAR SIGNAL MODEL

The basic principle of UWB radar is to transmit electromagnetic (EM)
radar pulse to image the subsurface. When the transmitted EM wave
reflects from a scatter or a boundary with different dielectric constants
in a scene, the receiving antenna records the reflected return signal. A
model which is a simple linear superposition of targets is obtained as

x(t; r0) =
∫

σ(r)g(t− τ(r; r0))
A(r; r0)

dr (1)

where x(t; r0) is the measured space-time data at the antenna position
r0, τ(r; r0) the total travel time from the transmitting antenna to the
target space point r and back onto the receiver, σ(r) the reflection
coefficient at the target space point r, and A(r; r0) accounts for
spreading and losses during prorogation.

Under the common point-target model, according to Born
approximation, the received signal x(t) of (1) can be written as

x(t) =
L∑

i=1

σig(t− τi), t ∈ [0, τ) (2)

where L is the number of scatters in the target space, τi the total
trip delay from the transmitting antenna to the scatter i and back
to receiving antenna, σi the complex amplitude proportional to
the target’s radar cross section (RCS), dispersion attenuation and
spreading losses through propagation, and τ the total receiving period.
Thus, the received signal is essentially a delayed and scaled version of
the transmitted pulse, which is defined by the following parameters:
transmitted pulse g(t), the number of scatters reflected L, time delays
{τi}L

i=1, and complex amplitudes {σi}L
i=1. We make the following

assumptions on UWB radar signal:
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• UWB transmitted pulse g(t) is known;
• Each time delay is in the total signal period: {τi}L

i=1 ⊂ [0, τ); and
• g(t− τi) = 0, t 6∈ (0, τ), so that x(t) = 0, t 6∈ (0, τ).

3. ULTRA-LOW SAMPLING RATE SCHEME FOR UWB
RADAR SIGNAL

Since the received signal x(t) is confined to the interval [0, τ), we can
extend x(t) in a Fourier series as

x(t) =
∑

k∈Z
X[k]ej 2π

τ
kt, t ∈ [0, τ), (3)

where
X[k] =

1
τ

∫ τ

0
x(t)e−j 2π

τ
ktdt (4)

Substituting (2) into (4), we obtain

X[k] =
1
τ

L∑

i=1

σi

∫ τ

0
g(t− τi)e−j 2π

τ
ktdt

=
1
τ

L∑

i=1

σie
−j 2π

τ
kτi

∫ ∞

−∞
g(t)e−j 2π

τ
ktdt=

1
τ

G

(
2π

τ
k

) L∑

i=1

σie
−j 2π

τ
kτi (5)

where G(w) denotes the continuous time Fourier transformation of
G(t).

Choose a set K of K indices for which G(2π
τ k) 6= 0, ∀k ∈ K. Such

a integer subset exists for UWB radar transmitted pulse due to its very
large relative bandwidth. (5) can be rewritten as

Y [k] =
X[k]

1
τ
G

(
2π

τ
k

) =
L∑

i=1

σie
−j 2π

τ
kτi (6)

Denote V (t) as the K×L Vandermonde matrix with klth element given
by e−j 2π

τ
kτl , where t = {τ1, . . . , τL} is the vector of the unknown time

delays. In addition, let α = (σ1, . . . , σL)T , and y = (Y [1], . . . , Y [K])T ,
we may now write (6) in the matrix form as

y = V (t)α (7)

Given vector y, the problem of retrieving α and {τ1, τ2, . . . , τL} in
(7) is a standard sum-of-exponentials problem. As long as K ≥ 2L and
the time delays are distinct, these time delays {τi}L

i=1 can be estimated
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using methods such as annihilating filter [7] or ESPRIT [18]. Once the
time-delays are known, the linear set of Equations (7) may be solved
via least-squares for the unknown amplitudes {αi}L

i=1. Due to the
Vandermonde form of V (t), it is left invertible as long as K ≥ L, so
that α = V †(t)y, where V † is the pseudoinverse of V .

Given the certain vector of K ≥ 2L Fourier series coefficients
X, we can determine the parameters {τi, σi}L

i=1 to detect the target.
To acquire Fourier series coefficients, we employed a Xampling scheme
described in the papers [10, 12], which allows extraction of its necessary
samples of Fourier series coefficients at sub-Nyquist rate (see Figure 1).
The multichannel sampling scheme is used to directly extract the
required Fourier series coefficients from the signal, where the analog
input signal x(t) in each channel is firstly mixed with the harmonic
signal e−j 2π

τ
kt, integrated over the whole time period, and then

sampled. An alternative Xampling method uses the Sum of Sincs filter,
following by uniform sampling of the output with sub-Nyquist sampling
rate as described in [11].

Figure 1. Sampling scheme of Fourier series coefficients.

As we have seen in the above analysis, the minimal sample rate
of the signal x(t) is 2L

τ , which is usually much lower than Nyquist
sampling rate. Let k0 = bfc ∗ τc, where fc is the central frequency of
the transmitted pulse, and bαc represents the largest integer less than
α. We can choose the integers K = {k + k0, k = −m, . . . , m}, where
m = K

2 (assume K is a even number.), such that G(2π
τ k) 6= 0, k ∈ K.

The number of Fourier series coefficients is a parameter which controls
the tradeoff between sampling rate and recovery performances. In our
numerical experiments, we will investigate the effect of the number of
Fourier series coefficients.
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4. SIGNAL RECOVERY USING COMPRESSING SENSE

The total-variation (TV) norm is the continuous version which can be
interpreted as finding the shortest linear combination — in an l1 sense
— of elements taken from a continuous and infinite dictionary [17] is
used to estimate the unknown parameters of the UWB radar signal.
The TV norm minimization problem of (7) is expressed as:

minimizeα ||α||TV

subject to ||V α− y||2 ≤ δ
(8)

where δ is the noise level. The solution of (8) can be obtained by using
semidefinite program (SDP) as the following [17]: the convex problem
dual to (8) is

maximizec Re < y, c > −δ||c||2
subject to ||V ∗c||∞ ≤ 1 (9)

where V ∗ is conjugate transpose of V .
For a consecutive subset of the Fourier series coefficients (i.e.,

choose the consecutive indices K = {k + k0, k = −m, . . . , m}), the
dual problem can be recast as SDP:

maximizec,Q Re < y, c > −δ||c||2
subject to

[
Q c
c∗ 1

]
º 0

m−j∑

i=1

Qi,i+j =
{

1, j = 0,
0, j = 1, 2, . . . , m− 1

(10)

where Q is an m × m Hermitian matrix. SDP can be solved using
software CVX. Once a dual solution c is found, the solution of (8) can
be estimated in the following way: the trigonometric polynomial

p(t) =
∑

k∈K
cke

i2πkt (11)

satisfies the following properties{ |p(ti)| = 1, ti ∈ T
|p(ti)| < 1, ti 6∈ T

where T is the support of time delays. Consider the function

q(t) = 1− |p(t)|2 = 1−
m−1∑

k=−(m−1)

uke
i2πkt, uk =

∑

j

cjcj−k (12)

Let z = ei2πkt, zm−1q(z) is a real polynomial of degree of 2(m − 1),
which is either equal to zero everywhere or has at most m − 1 roots
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on the unit circle. We can obtain the support T of time delays by
locating the roots of zm−1q(z) on the unit circle. Having obtained the
estimation for the time delays, the amplitudes α of the signal can be
reconstructed by solving the system of Equation (7).

Consecutive Fourier series coefficients can be easily obtained
using a simple low-pass filter [10], but it is suggested to use a non-
consecutive set of Fourier series coefficients randomly selected in
a distributed manner from wide frequency aperture, which greatly
increases the resolution of the underlying signal, i.e., an exponential
improvement [19]. Tang et al. [19] proposed an atomic norm
minimization approach, similar to the TV norm minimization, to
recover the missing Fourier series coefficients. Assume that a subset
of entries K selected at random form a set {yk, k ∈ K} of consecutive
Fourier coefficients are observed, as prescribed in the paper [19], a
natural algorithm for estimating the missing samples of a sparse sum
of complex exponentials is the atomic norm minimization problem

minimizeỹ ||ỹ||A
subject to |ỹj − yj | < δ, j ∈ K (13)

where ||y||A is the atomic norm of A associated with conv(A) (the
convex hull of A), defined by

||ỹ||A = inf{t > 0|ỹ ∈ tconv(A)}
(13) is equivalent to the following SDF:

minimizeu,y,t trace(Toep(u)) + t

subject to
[
Toep(u) y

y∗ t

]
º 0

|ỹj − yj | < δ, j ∈ K
(14)

where Toep(u) denotes the Toeplitz matrix whose first column is equal
to u. By solving (14), the whole set {yk, k ∈ K} of consecutive Fourier
coefficients can be obtained, then following the above procedure,
unknown signal parameters such as time delays and amplitudes can be
estimated. Tang et al. [19] had showed that the resolution of the signal
from 4

s log s log n of the consecutive samples to 4
n of random samples,

where n = |K| and s is the number of time delays.

5. NUMERICAL AND EXPERIMENTAL SIMULATION

This section investigates the performances of signal reconstruction and
echo detection in a UWB radar system. Assume that transmitted
signal g(t) is Gaussian monocycle pulse with the central frequency fc =
1.5GHz, showed in the Figure 2. To achieve accurate reconstruction
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Figure 2. Gaussian monocycle pulse with the central frequency
fc = 1.5GHz.

of the signal, based on Shannon-Nyquist sampling theorem, we set
the “raw” sampling rate and the corresponding sampling interval
of the testing echo signal be fs = 3B = 9 GHz and Ts = 1/fs

respectively, which results to 1024 samples for the testing signal.
Assume that the echo signal includes five target echoes with time
delays [50Ts, 100Ts, 120Ts, 400Ts, 800Ts] and the amplitudes [0.8 1.0
0.6 0.9 0.5], respectively. The signals were corrupted by zero-mean
white Gaussian noise, with variance σ2 determined such that the SNR,
defined with respect to the weakest target as

SNR =
1
σ2

min
l=1,...,L

|al|2 (15)

To measure the recovery performances, we define successful detection
ζ as

ζ =
{

1#{τ̂i} == L and |τ̂i − τi| ≤ Ts, i = 1, . . . , L
0 otherwise (16)

and Root Mean Square Error (RMSE) metric of the time delays and
amplitudes as:

α =

√√√√ 1
L

L∑

i

(τ̂i − τi)2

Ts

β =

√√√√ 1
L

L∑

i

(âi − ai)2

(17)
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where {τ̂i, âi}L
i=1 are the estimated time delays and amplitudes, and

{τi, ai}L
i=1 are the actual time delays and amplitudes. In order to

statistically analyze the stable results, we also measure the probability
of recovery of the experiment as

P =
#{ζ == 1}

#{experiments repeated} (18)

and each experiment is repeated 100 times.

Figure 3. Probability of recovery vs. oversampling factor η and SNR.

We choose a subset of entries K at random such that G(2πk
τ ), k ∈ K

is above −3 dB. Define the number of chosen Fourier series coefficients
as K = 2bηLc+ 1, where η > 1 is the desired factor. Figure 3 showed
the probability of recovery for multiple combinations of SNR and the
factor η, where η = 2 : 0.5 : 6 corresponding to sampling rates
from 180 MHz to 540 MHz which are far below Nyquist rate. From the
Figure 3, the target echoes can be successfully detected at very low
sampling rate and noisy Fourier series coefficients. It is observed that
increasing the number of Fourier series coefficients allows the method
to perform at lower SNR values. In particular, even with small number
of Fourier series coefficients, all the target echoes can successfully be
detected as long as their amplitudes are above the variance of the noise,
i.e., SNR ≥ 0. When SNR < 0, we need more samples to detect the
weak target with high successful recovery rate. Figure 4 illustrates the
RMSE for the estimated time-delays and amplitudes of the targets,
which shows that we can robustly estimate the parameters of radar
signals with a very low sampling rate.

We also compare the performances of TV-norm minimization
method with `1 norm minimization solved by Orthogonal Matching
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(b)(a)

Figure 4. RMSE for the estimated (a) time-delays and (b) amplitudes
of the targets.

Pursuit (OMP) [14]. We define the Hit-Rate in the following manner:

Hit-Rate =
1
L
|{ τ̂i| p τ̂i − τi p≤ εth, i = 1, . . . , L}| (19)

where we choose εth = 1
2B . Figure 5 illustrates the results of two

methods using the above signal as a function of the factor η or a
function of SNR, where for OMP method, the time axis is quantized
with a Ts quantization step, i.e., all the time delays are on the grid. For
a given noisy signal (SNR = 0 dB) or a fixed Fourier series coefficients
(η = 4), the method of TV-norm minimization yields much better
performances than OMP method, especially using lower number of
Fourier series coefficients, and for lower noisy signal. In order to
investigate the off-grid problem, we set five target echoes with time
delays [50.5Ts, 100.2Ts, 120.4Ts, 400.7Ts, 800.3Ts] off the grid. Figure 6
shows the results of two methods using the off-grid signal. Examining
the results, it is not surprising that the Hit-Rate for the off-grid signal
is lower than that for the on-grid signal using OMP method, while
TV-norm minimization yields the similar performances. Therefore,
we can conclude that TV-norm minimization method outperformed
the `1 norm minimization, since the former does not quantize the
time axis and does not degrade the performances due to the off-grid
problem. In addition, we also examine the same situation expect that
the transmitted signal is the Ricker pulse. We obtain the similar
performances, showed in the Figure 7. These simulations demonstrate
the detection performances of our propose method are barely affected
by the choice of the transmitted pulse, as long as it has enough large
bandwidth to choose the appropriate Fourier series coefficients.
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(b)(a)

Figure 5. A comparison of on-grid signal model for a given (a) SNR
= 0 dB and (b) η = 4.

(a) (b)

Figure 6. A comparison of off-grid signal model for a given (a) SNR
= 0 dB and (b) η = 4.

Next we examine the results obtained by the proposed method
to raw through-wall radar signal acquired by GSSI radar equipment.
The raw signal was collected with frequency range 1–3 GHz in the time
period 25 ns with 1024 time points. Figure 8 depicts the transmitted
pulse and raw signal collected using this transmitted pulse. The
signals are reconstructed using 20 or 30 samples of Fourier series
coefficients respectively, which are far less than the sampling rate of
raw signal (downsampling rate 1024

20 and 1024
30 ), as also showed in the

Figure 8. Figure 9 showed reconstructed signal SNR values using the
different numbers of samples of Fourier series coefficients, calculated



Progress In Electromagnetics Research, Vol. 141, 2013 491

(a) (b)

(c) (d)

(e) (f)

Figure 7. The transmitted ricker pulse in (a) time domain and
(b) frequency domain; A comparison of on-grid signal model for a
given (c) SNR = 0 dB and (d) η = 4; A comparison of off-grid signal
model for a given (e) SNR = 0 dB and (f) η = 4.
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for the reconstructed signal, after envelope detection with the Hilbert
transform as:

sSNR = 10log10

∫ τ

0
|H (x̂(t))|2 dt

∫ τ

0
|H (x(t)− x̂(t))|2

(20)

where H(·) denote the Hilbert transform, and x̂(t)), x(t) are the
reconstructed and actual signal. From these results, we can find that
the reconstructed signals perfectly match the raw signal, and the target
echoes are successfully detected using very small number of samples.

(a) (b)

(c) (d)

Figure 8. (a) Transmitted pulse used in GSSI. (b) Though-wall radar
signal collected using GSSI. (c) Reconstructed signal using 20 Fourier
series coefficients. (d) Reconstructed signal using 30 Fourier series
coefficients.
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Figure 9. Reconstructed signal SNR values using the different
numbers of samples of Fourier series coefficients.

6. CONCLUSION

We have presented in this paper an effective approach to detect UWB
radar echo signals at sub-Nyquist rate based on CS. We made use of
FRI framework to acquire samples at an ultra-low sampling rate and
estimated the radar parameters such as time-delays and amplitudes
based on TV-norm minimization. The simulation results demonstrated
that the UWB radar signal can be detected at an ultra-low sampling
rate. Compared to `1 norm minimization, TV-norm minimization
has seen its clear advantage in the simulation. This study suggests
that the proposed approach offers very good recovery performances for
noisy UWB radar signal using very small number of samples, which is
effective for realistic UWB radar scenarios. Future work will involve
testing UWB radar signal under the complex environment, particularly
for very week target echo detection, and validating the results on the
realistic UWB radar scenarios.
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