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Abstract—In this paper, transmitter polarization optimization is
firstly proposed to improve the accuracy of azimuth-elevation arrival
angles estimation within MIMO electromagnetic vector-sensor array
(EMVA). Minimizing of Cramér-Rao bound is used as cost function
for the optimal design of transmitting signal polarization. Computer
simulation results verify that the optimal polarization design provides
increased estimation accuracy of direction finding in MIMO-EMVA,
compared with that of using fixed polarization of transmitting signal.
Moreover, the optimal polarization design retains all advantages
of using fixed polarization of transmitting signal for MIMO-EMVA
direction finding.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar [1], which uses multiple
antennas to simultaneously transmit diverse waveforms and uses
multiple antennas to receive the reflected signals, has many potential
advantages over conventional phased-array radar (CPAR). For
example, MIMO radar has more flexible spatial transmitting beam
pattern design [2] and higher resolution spatial spectral estimates [3]
than that of CPAR, etc..

The electromagnetic vectorsensor with six component-antennas
lying in a point-like geometry was introduced into array signal
processing by Nehorai and Paldi [4] in 1994. It generally uses
three orthogonal- electric-dipoles and magnetic-loops to measure
the three electric-field- and three magnetic-field-parameters of the
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incident signals, respectively. The electromagnetic vector-sensor array
(EMVA, note that an array composed of two orthogonal electric-
dipoles vector-sensors is called as polarization sensitive array) has
been extensively investigated during the past two decades owing
to numerical advantages over conventional scalar-sensor array [5],
especially in direction-of-arrival (DOA) estimation field [6, 7]

Polarimetric MIMO radar [8–10] and MIMOEMVA [11] combines
waveform diversity offered by MIMO radar with polarization diversity
offered by polarization sensitive vector-sensor to further improve
direction finding accuracy. Especially for MIMOEMVA [11], it also
provides automatic pairing between azimuth and elevation estimation,
and require no restrictions on the localization of transmitting
antennas. We then can avoid the pairing processing between
azimuth and elevation estimation and calibration for the positions
of transmitting antennas. Despite their outstanding contributions,
all of the aforementioned methods work in fixed polarization of
transmitting signal. However, it is well known that controlling the
polarization information of transmitting waveform enables improving
the performance of target estimation, detection, and tracking [12].

In this paper, transmitter polarization optimization based on
minimizing of Cramér-Rao bound (CRB) is firstly proposed to estimate
two-dimensional DOA for MIMO-EMVA. The optimal polarization
design provides increased estimation accuracy of direction finding
in MIMO-EMVA, compared with that of using fixed polarization of
transmitting signal [11]. Moreover, the optimal polarization design
retains all advantages of using fixed polarization of transmitting signal
for MIMO-EMVA direction finding.

2. PROBLEM FORMULATION

Exploiting the same MIMO-EMVA configuration as that of Ref. [11],
the returns due to the mth transmitted waveform can be recovered by
a matched filter for the nth received antenna, which can be expressed
as [11, Eq. (8)]

xm,n(p)

=
K∑

k=1

rk(p)Q(θk, φk)Skξexp
[
− j2π/λ(pt,m + pr,n)T rk

]
∈ C6×1, (1)

where rk(p) denotes the complex reflection coefficient of kth target
at the pth pulse assumed to the Swerling II model. Q(θk, φk) ∈
R6×2 denotes the response of an electromagnetic vector-sensor
(see [11, Eq. (1)]). θk ∈ [0, π] and φk ∈ [0, 2π) denote kth
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target’s elevation and azimuth angles. Sk ∈ C2×2 represents the
scattering matrix of kth target. ξ = [sin γ exp(jη), cos γ]T denotes
the transmitted waveform polarization, where γ ∈ [0, π

2 ] is the
auxiliary polarization angle and η ∈ [0, π] is the polarization phase
difference. λ is the signal wavelength. pt,m = [xt,m, yt,m, zt,m]T and
pr,n = [xr,n, yr,n, zr,n]T are the localizations of mth transmitted and
nth received electromagnetic vector-sensor, respectively, which can be
arbitrary. rk = [uk, vk, wk]T = [sin θk cosφk, sin θk sinφk, cos θk]T

denotes the normalized Poynting vector. (·)T denotes the transpose.
K is the number of targets. Assume that total transmitting vector-
sensors is M and total receiving vector-sensor is N . In noise case, we
stack all the matching filtered data into a column vector:

x(p) = Ar(p)+n(p), (2)
where A = [a1, a2, . . . , aK ] is an 6MN × K matrix, the columns
of which are K steering vectors: ak = Q(θk, φk)Skξ ⊗ br,k ⊗ bt,k ∈
C6MN×1, k = 1, . . . , K. bt,k = [exp(−j2π/λpT

t,1rk), . . . , exp(−j2π/λ

pT
t,Mrk)]T ∈ CM×1 and br,k = [exp(−j2π/λpT

r,1rk), . . . , exp(−j2π/λ

pT
r,Nrk)]T ∈ CN×1 denote the transmitted steering vector and the

received steering vector, respectively. ⊗ denotes the Kronecker
product. r(p) = [r1(p), . . . , rK(p)]T . n(p) represents an 6MN × 1
complex Gaussian white noise vector with zeros mean and covariance
matrix σ2

nI6MN . Therefore, the goal of this paper is to select the
transmitting polarization state (γ, η) to obtain the best accuracy of
azimuth-elevation (φ, θ) arrival angles estimation from Equation (2).

3. OPTIMAL POLARIZATION DESIGN BASED ON
MINIMIZING OF CRB

First, we must define a cost function to select the optimal transmitting
polarization. It is well known that the CRB is a universal lower bound
on the variance for all unbiased estimators. Thus, we will consider
the optimal polarization design subject to minimizing the CRB cost-
function. The CRB equals the inverse of Fisher information matrix
(FIM). Given that the system output x(p) is a zero-mean Gaussian
random process, then the (i, j)th entry of the FIM for P snapshots
equals

[FIM(ψ)]i,j = P · Tr

{
R−1 ∂R

∂ψi
R−1 ∂R

∂ψj

}
, (3)

where ψ = [θ, φ]T is the unknown parameter to be estimated. Note

that the covariance matrix equals R = E{x(p)xH(p)} = σ2
s

K∑
k=1

akaH
k +
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σ2
nI6MN , where σ2

s denotes signal power. We then have: ∂R
∂ψk

=
σ2

s∂akaH
k

∂ψk
= σ2

s
∂ak
∂ψk

aH
k + σ2

sak
∂aH

k
∂ψk

, where ψk = θk, φk. When ψk denotes
the elevation angle θk:

∂ak

∂θk
= UkSkξ ⊗ br,k ⊗ bt,k + Q(θk, φk)Skξ ⊗ {[br,k ⊗ bt,k]

¯{
[cr,k,1, . . . , cr,k,N ]T ⊗ [ct,k,1, . . . , ct,k,M ]T

}}
, (4)

where

cr,k,n = −j
2π

λ
(xr,n cos θk cosφk + yr,n cos θk sinφk − zr,n sin θk),

n = 1, . . . , N,

ct,k,m = −j
2π

λ
(xt,m cos θk cosφk + yt,m cos θk sinφk − zt,m sin θk),

m = 1, . . . , M,

and

Uk =
[−uk, −vk, −wk, 0, 0, 0

0, 0, 0, uk, vk, wk

]T

.

In Equation (4), ¯ denotes the Hadamard product. When ψk

denotes the azimuth angle φk:
∂ak

∂φk
= VkSkξ ⊗ br,k ⊗ bt,k + Q(θk, φk)Skξ ⊗ {[br,k ⊗ bt,k]

¯{
[dr,k,1, . . . , dr,k,N ]T ⊗ [dt,k,1, . . . , dt,k,M ]T

}}
, (5)

where

Vk

=
[− cos θk sinφk, cos θk cosφk, 0, − cosφk, − sinφk, 0

− cosφk, − sinφk, 0, cos θk sinφk, − cos θk cosφk, 0

]T

,

and

dr,k,n = −j
2π

λ
(−xr,nvk + yr,nuk),

dt,k,m = −j
2π

λ
(−xt,mvk + yt,muk).

Until now, the FIM of azimuth-elevation (θk, φk, k = 1, . . . , K)
can be easily evaluated, then the CRB can be expressed as:

CRB(θk) =
[
FIM−1

]
k,k

CRB(φk) =
[
FIM−1

]
K+k,K+k

(6)

Finally, searching the two dimensional polarization of transmitting
signal: {γ ∈ [0, π

2 ], η ∈ [0, π]}, we pick up the polarization (γopt, ηopt)
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corresponding to minimum sum of CRB for (θk, φk, k = 1, . . . , K) as
the optimal result:

(γopt, ηopt) = arg min
γ,η

{
K∑

k=1

[CRB(θk) + CRB(φk)]

}
(7)

To evaluate the CRB, we must know the value of the targets’
parameters. Those parameters can be offered by a tracking filter of
the system according to the previous parameters estimation values [12].
The targets’ parameters can also be offered by the estimation results
using the algorithm in [11].

4. SIMULATION RESULTS

In this section, the ESPRIT-based algorithm in [11] is used to verify
the effectiveness of our CRB-based polarization design. The root
mean squared error (RMSE) of proposed method is computed by the
ESPRIT-based algorithm. We perform a grid search over the possible
waveform polarizations to obtain the minimum RMSE. It is called
as the best polarization method. The angles estimation algorithm
with non-optimal for polarization in [11] is called as fixed polarization
method. In the following simulations, we compare proposed method
with the best polarization method and fixed polarization method.

The MIMO-EMVA with M = 2 and N = 2 is considered.
The first transmitted electromagnetic vector-sensor locates at the
origin. The position of the second electromagnetic vector-sensor
can be arbitrary Here we set pt,2 = [5λ, 6λ, 7λ]T . And we set
pr,1 = [1λ, 3λ, 2λ]T and pr,2 = [5λ, 3λ, 4λ]T . We assume that there
are K = 2 closely spaced targets, which are located at the angles
(θ1, θ2) = (40◦, 42◦), (φ1, φ2) = (25◦, 29◦). The two scattering

matrices are S1 =
[

2j, 0.5
0.5, −j

]
and S2 =

[
j, 1− j

1− j, 0.5

]
. The

number of snapshots is P = 200. The RMSE is defined as RMSE =√
1
K

K∑
k=1

E[(θ̂k − θk)2 + (φ̂k − φk)2]. The number of Monte Carlo trials

is 1000. Fixed polarization method uses the random polarization state
Here we set (γ, η) = (50◦,−90◦)

Figure 1 shows the results of 50 Monte Carlo tests with SNR =
5dB. The crosses denote the true location of the targets, and the
asterisks denote the results estimated by the proposed method and
fixed polarization method. It is shown that the two-dimensional
directions are automatically paired and all targets are well localized.
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Figure 1. Paired results of two targets. (a) Proposed method.
(b) Fixed polarization method.
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Figure 2. RMSE of angle estimation versus SNR.

It implies that the proposed method retains all advantages of using
fixed polarization method for MIMO-EMVA direction finding.

Figure 2 shows the RMSE of estimation versus SNR. It can be
seen from the figure that the RMSE of the proposed algorithm is
about 2.4 dB lower than that of the fixed polarization method, and
it is very close to that of the best polarization method. It verifies that
the proposed polarization optimization method is resultful.

5. CONCLUSION

In this paper, we present a CRB-based transmitting polarization design
algorithm for two-dimensional angles estimation in MIMO-EMVA. The
proposed method provides better estimation performance than that
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of fixed polarization method and obtains almost the best optimized
result. In addition, the proposed method keeps all advantages of
fixed polarization method because it only changes the transmitting
polarization.
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