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Abstract—In this paper, we investigate electromagnetic problems for nanoscale antennas by using a
boundary integral equation method with fast inverse Laplace transform. The antennas are designed
for realizing ultra-fast and high-density magnetic recording. Characteristics of nanoscale antennas are
discussed in terms of eigenmodes and time domain responses of electric fields. Our computational
method is highly efficient and the computational cost can be reduced by selecting coarse time-step size
and performing parallel computation.

1. INTRODUCTION

As can be seen from recent developments in nanotechnology, analysis of electromagnetic phenomena for
nanoscale objects plays an important role [1, 2]. In this paper, electromagnetic problems for nanoscale
antennas are investigated by a boundary integral equation method with fast inverse Laplace transform
(BIEM-FILT) [3, 4]; novel antennas are designed to realize ultra-fast and high-density magnetic recording
using localized circularly polarized light [5–8]. For this state-of-the-art technology, high intensity and
localized circularly polarized light is required near the antenna. Here, the size of the antenna is much
smaller than the incident wavelength and the generated light is enhanced by plasmon resonances which
can be considered as electrostatic phenomena [9–11]. Characteristics of the antenna are evaluated in
terms of eigenmodes and time domain responses of electromagnetic fields. The former are required to
generate localized high intensity light and the latter are important for estimating the magnetic recording
process due to variation of the electric field intensity and stability of the localized light.

BIEM-FILT can remove computational restriction on selecting time-step size and is suitable for
parallel computing. We verify that the computational error of the time domain response can be
controlled in spite of time-step size. Acceleration of BIEM-FILT is achieved by performing parallel
computation, and load distribution techniques are also discussed.

2. FORMULATION

Figure 1 shows a nanoscale object and coordinate systems. We assume that the object is a homogeneous
dispersible dielectric which is expressed by the Lorentz-Drude model [12] as

ε(s) = ε0
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Figure 1. Geometry and coordinate system. The object is arbitrarily shape with homogeneous
dispersible dielectric media.

where s is the complex frequency, ωp the plasma frequency, and K the number of oscillators with the
frequency ωj . γ0 and γj are collision frequencies, and A0 and Aj are material constants.

When the object permittivity is negative and the free-space wavelength is large in comparison
with object dimensions, plasmon resonance can be observed at certain frequencies [4, 9–11]. Since the
wavelength is much longer than objects, the resonances can be considered as electrostatic phenomena.
They appear at specific negative values of dielectric permittivity for which source-free electrostatic fields
may exist.

Considering the quasi-static approximation, the scattered fields can be expanded in terms of the
complex frequency s

E± = E±0 + (s
√

ε0µ0d)E±1 + (s
√

ε0µ0d)2E±2 + . . . , (2)

H± = H±
0 + (s

√
ε0µ0d)H±

1 + (s
√

ε0µ0d)2H±
2 + . . . , (3)

where, ε0 and µ0 are the permittivity and the permeability in free space, respectively.
For zero order terms in Eq. (2), the electric fields satisfy the following boundary condition;

n · (ε(s)E+
0 − ε0E−0

)
= (ε0 − ε(s))n ·Ei

0f̂(s)in, (4)

where, f̂in(s) is the spectrum of the incident pulse, and n is a unit vector of outward normal to the
surface of the object. The normal components of electric fields at the boundary are given by

n ·E±(r) = ∓σ(r)
2ε0

+
1

4πε0

∮

Ω
σ(r′)

n · (r− r′)
|r− r′|3 dΩ′, (5)

where σ indicates the electric charge density on the surface.
Considering the boundary condition, the normal components of the electric flux density are

continuous at the boundary, and we can obtain the following homogeneous boundary integral equation:

σ(r)− 1
2π

(
ε(s)− ε0

ε(s) + ε0

)∮

Ω

σ(r′)
n · (r− r′)
|r− r′|3 dΩ′ = 2ε0

(
ε(s)− ε0

ε(s) + ε0

)
n ·Eifin(s). (6)

For solving Eq. (6), the unknown surface charge density is expanded in the basis function gi, such
as

σ(r) =
N∑

i=1

aigi(r), (7)

where ai is the unknown expansion coefficient, and N is their number. The integral equation is
discretized by Eq. (7) as

N∑

n=1

Ajiai = Fj , j = 1, 2, . . . , N, (8)
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where

Fj = 2ε0λ̂

∮

Ω
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) n · (r− r′)
|r− r′|3 dΩ′dΩ, (10)

and t̂j is the testing function. We choose the basis and testing functions as the pulse functions. Solving
the matrix equation in Eq. (8), we can obtain the unknown electric charge density.

For the eigenmode analysis, Eq. (6) is transformed into the eigen equationm and trivial solutions
are sought [9–11], that is

σk(r) =
λk

2π

∮

Ω

σk

(
r′

) n · (r− r′)
|r− r′|3 dΩ′, (11)

where
λk =

εk − ε0

εk + ε0
, (12)

k is the mode number. Eigenvalue λk is obtained by solving Eq. (11), and the resonance values of
permittivity εk is found using Eq. (12).

To express the time variation of the surface charge, the set of eigenfunctions σk can be used for
the expansion of actual boundary charges σ(r, t) which is induced on the surface boundary during the
excitation process:

σ(r, t) =
∞∑

k=1

ak(t)σk(r), (13)

where ak(t) is the expansion coefficient. Considering the Laplace transform, ak(t) is transformed into
the complex frequency domain, and Eq. (13) can be rewritten as

σ(r, s) =
∞∑

k=1

ak(s)σk(r), (14)

where
ak(s) = βhk(s)fin(s), (15)

hk(s) =
ε(s)− ε0

εk − ε(s)
, (16)

and β is determined by the direction of the incident wave and the dipole moments [9]. Surface charge
densities σ(r, s) are transformed into the time domain by using FILT.

For the transient analysis, the function in the complex frequency domain F (s) is transformed into
the time domain by the inverse Laplace transform defined by the Bromwich integral

f(t) =
1

2πi

γ+i∞∫

γ−i∞
F (s)estds, (17)

where s is a complex frequency. In FILT, the exponential function in the Bromwich integral is
approximated by [4, 13]

Eap(st, α) =
eα

2 cosh(α− st)
= est − e−2αe3st + e−4αe5st − . . . =

eα

2

∞∑
n=−∞

i(−1)n

st− α + i(n− 0.5)π
, (18)

where α is the approximate parameter. Using Eq. (18), the inverse Laplace transform can be rewritten
as

fap(t) =
1

2πi

γ+i∞∫

γ−i∞
F (s)Eap(st, α)ds =

eα

t

∞∑

n=1

Fn, (19)
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where

Fn = (−1)nIm
[
F

{
α + i(n− 0.5)π

t

}]
. (20)

For the numerical computation, the infinite series in Eq. (19) is truncated as

fap(t) ≈ eα

t

K∑

n=1

Fn, (21)

where K is the truncation number of FILT. Here, the series in Eq. (21) is the alternative. Therefore,
we can achieve rapid convergence by applying the Euler transformation [13]. Correspondingly, Eq. (21)
can be expressed as

fap(t) =
eα

t




K∑

n=1

Fn + 2−(p+1)
p∑

q=1

ApqFK+q


 , (22)

where
App = 1, Apq−1 = Apq +

(p + 1)!
q!(p + 1− q)!

, (23)

and p is the term number of the Euler transformation.
The computational error of FILT can be easily estimated by Eq. (18) and represented by

f(t)− fap(t) = e−2αf(3t)− e−4αf(5t) + . . . . (24)
When the approximate parameter is large, the error decreases exponentially. The first term is the
dominant term for the computational error which can be estimated by 10−α.

Figure 2 shows the flowchart of BIEM-FILT. To obtain the time domain function, we need to
calculate the finite series in Eq. (22) at each time-step. The unknown functions in the complex frequency
domain are obtained by BIEM and the computation is not expensive, since the complex frequency s
is selected as the limited number of poles for the approximated exponential function. Eq. (22) can be
calculated independently at each observation time t and previous time information is not required in
this computational process. Moreover, the time-step size ∆t of FILT can be selected as an arbitrary
number and our method is suitable for the parallel computing. Later, we will discuss load distribution
techniques for efficient computation.

8 

 

Start t loop

Star t n loop

End n loop

BIEM part

Find 

Start q loop

End q loop

End t loop

BIEM  part

Find

Fn

FK+q

Figure 2. Flowchart for time domain analysis. The former loop is main loop for FILT. The latter loop
indicates the Euler transformation to achieve rapid convergence.

3. COMPUTATIONAL RESULTS

3.1. Computational Reliability

To validate the computational accuracy of our method, we investigate eigenmodes for a metallic
nanosphere shown in Table 1. The exact value for each mode number can be obtained by the exact
Mie theory. When the number of unknowns N is larger than 1,000, the relative error defined by the
difference between the exact and computational result is less than 1%.
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Table 1. Comparison of computational eigenvalues and exact solutions for a nanosphere.

Mode number
Eigenvalues

Exact solution Computed values
1 3 3.00564
2 3 3.00580
3 3 3.00584
4 5 5.01778
5 5 5.01919
6 5 5.01936
7 5 5.01976
8 5 5.02002

The time domain response of the electric field for a gold nanosphere is studied. The incident wave
is a rectangular laser pulse such as

fin(t) =

{ 0 t < 0
sinωkt 0 ≤ t ≤ 150 fs
0 150 fs < t

, (25)

where ωk is the angular frequency for the mode k and is determined by the eigenmode analysis.
Figure 3(a) shows the time domain response of the electric field. Here, the amplitude of the electric
field is normalized by the maximum value. The electric field increases as time advances and it decreases
after t > 150 fs. The comparison between the computational result and exact solution [9] is shown in
Figure 3(b). Both results are in excellent agreement.
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Figure 3. Time response for a specific resonance mode of a nanosphere. (a) Time domain response of
electric field from 0 to 250 fs. (b) Comparison between the computational result and the exact solution.

In order to reduce the computational time for estimating the transient states, we achieve fast
computation to select a relatively large time-step size. Figure 4(a) shows the time response for a
gold nanosphere when a sinusoidal wave with the angular frequency ω impinges. Compared to the
conventional the FDTD method for selecting the cell size ∆x = ∆y = ∆z = 1.0 nm, our time-step size
is over 200 times as large. The relative error between the computational result and exact solution for
each observation time is plotted in Figure 4(b). The error can be controlled to be less than 1% at all
the sampling points.
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Figure 4. Time domain analysis using a large time-step size. (a) Time domain response of electric
field. (b) Relative error for each sampling point.
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Figure 5. Convergence process of the relative error for variations in the truncation number. Circle
and square dots indicate relative error of 9.6 fs and that of 19.6 fs, respectively.

Next, the error control method of the time domain analysis is discussed in detail. The convergence
process of the relative error for variations in the truncation number in Eq. (23) is shown in Figure 5. We
choose the Euler transformation number p = 2 and the approximation α = 3. Although the truncation
number increases for the later sampling point t = 19.6 fs, the error converges to the same approximate
value 10−3.

The computational time is examined using a parallel computing system. Here, we discuss two
types of load distribution techniques. Figures 6(a) and 6(b) show examples of time domain responses
for Cases 1 and 2, respectively. In Case 1, the entire time domain is divided into the number of blocks
which have the same period. Tasks are distributed to each computer as the unit of the block. In Case 2,
we distribute tasks to each computer, one by one in chronological order. Results computed by both
techniques are in complete agreement.

The computational time and speed up rate of the two techniques are shown in Figures 7(a) and 7(b),
respectively. The speed up rate is defined by the ratio of computational time for multiple computers to
that for one computer. The computational time can be reduced by using multiple computers. When
the number of computers is 10, the speed up rates are 5.61 for Case 1 and 9.88 for Case 2, respectively.

To verify that Case 2 is more effective, the computational time for variations in the sampling point
is examined in Figure 7(c). The computational time is almost proportional to the observation time
indicated by the horizontal axis and varies in a staircase pattern, since the truncation number K for
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(a) (b)

Figure 6. Load distribution techniques for parallel computing. (a) The entire time domain is divided
into the number of blocks. (b) Tasks are distributed to each computer, one by one in chronological
order.
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Figure 7. Computational time and speed up rate using parallel computing systems. (a) Computational
time. (b) Speed up rate. (c) Computational time for each sampling point.

the observation time t is selected using K = (int(t × 1015) + 1) × 3. This formula is obtained by the
linear interpolation selecting two sufficient truncation numbers in Figure 4. Due to this property of
BIEM-FILT, Case 2 in chronological order is more effective for reducing the computational time, and
the parallel efficiency is close to 100%.
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Figure 8. The computational time for varing the number of unknowns by FMM with parallel
computing. Circle dots, triangulr dots, and square dots indicate ordinary BIEM-FILT, FMM-FILT,
and FMM-FILT with parallel computing, respectively.

Figure 8 shows the computational time for variations in the number of unknowns. Here, we apply
the fast multipole method (FMM) to BIEM part. The load distribution technique is selected as Case 2.
When the number of unknowns is about 25,000, FMM with parallel computing is over 100 times faster
than ordinary BIEM-FILT.

3.2. Design of Nanoscale Antennas

We design nanoscale antennas for ultra-fast and high-density magnetic recording as shown in Figure 9.
The resonant wavelength of the nanoscale antenna is investigated by eigenmode analysis. Table 2 shows
the eigenvalue, resonant wavelength, and dipole moment for each plasmonic resonance mode. The dipole
moment is computed by

Pk =
∫

Ω

rσk(r)dΩ. (26)

The dimension of the nanoscale antenna is normalized by the maximum length from the antenna
center. Figure 10 shows the surface charge distribution for each mode. The incident wave has x and
y components of the electric field and is assumed to be circularly polarized. We investigate resonance
modes for which the electric field at the antenna center can be enhanced. The x and y components of
the electric field become higher for modes 2, 3, 5, and 6, considering the x and y components of dipole
moments. The wavelength response of the electric field is shown in Figure 11. The observation point is

Ei

xy

z

O

Figure 9. Geometry of a nanoscale antenna which is cross aperture type antenna. The incident wave
is assumed to be the circularly polarization.
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Figure 10. Surface charge distribution for each mode. White and black indicate plus charge and minus
charge distribution, respectively.

Table 2. Eigenvalues, resonant wavelength, and dipole moments for each mode.

Mode number Eigenvalues
Wavelength Dipole moments Pk [C m]

[nm] Pkx Pky Pkz

1 1.0674 873.1 1.5066e-15 3.0692e-15 −4.0048e-17
2 1.0475 1020.4 −3.3044e-9 0.24406 2.1955e-18
3 1.0475 1020.4 −0.24407 −1.0834e-10 2.1938e-18
4 1.2363 538.2 −2.1443e-16 1.1334e-14 −1.6946e-18
5 1.2633 520.3 −8.0464e-11 0.10458 −1.1302e-18
6 1.2633 520.3 0.10458 4.1342e-11 8.6626e-18

the antenna center. When the wavelength corresponds to the one obtained by the eigenmode analysis,
the intensity becomes higher.

The transient state of the electric field for the nanoscale antenna needs to be investigated for
estimating the recording process. The time domain response of the electric field evaluated at the
antenna center is illustrated in Figure 12. To reduce the computational time, four sampling points are
selected in one period and parallel computing is performed. We easily estimate the time to reach the
steady state using this coarse time-step. In this example, the response becomes stable after 50 fs. If
the response varies rapidly, we can select denser sampling points to investigate the transient process in
detail. The computational results from 10 to 20 fs with the higher sampling rate are indicated by the
cross dots. Compared with the computational results obtained by the FDTD method, all the results
are in excellent agreements.
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Figure 11. Wavelength response of the electric
field at the antenna center. Resonances can
be observed around wavelength obtained by
eigenmode analysis.
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Figure 12. Time domain response of electric
field for the nanoscale antenna. Circle dots
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obtained by BIEM-FILT. The solid line indicates
computational results obtained by the FDTD
method.

4. CONCLUSIONS

In this paper, electromagnetic problems for nanoscale antennas have been designed by a boundary
integral equation in the complex frequency domain with fast inverse Laplace transform. Our proposed
method is highly efficient, and analysis of nanoscale antennas has been performed in terms of the
resonant wavelength and transient state of electric fields. To obtain high intensity localized light, the
resonant wavelength was computed by eignemode. We have verified that there is no computational
restriction for selecting time-step size and that reliable simulation can be performed. The parallel
computing and load distribution techniques are also discussed. We confirm that the computational
time can be greatly reduced using a parallel computing system, and the efficiency is close to 100% .
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