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Abstract—We study the electrodynamic characteristics of a strip
loop antenna located on the surface of a circular column filled
with a resonant magnetoplasma and surrounded by a homogeneous
isotropic background medium. The antenna current is excited by a
time-harmonic voltage creating an electric field with the azimuthal
component in a narrow gap on the strip surface. It is shown that
the current distribution and input impedance of such an antenna are
strongly influenced by the presence of an infinite number of propagating
quasielectrostatic modes that are guided by a column containing a
resonant magnetoplasma.

1. INTRODUCTION

The current distribution on metal wire antennas located in a resonant
magnetoplasma and the behavior of their input impedance have been
addressed in a limited number of works. In most papers on the
subject, dipole and loop antennas in a homogeneous plasma medium
are considered [1–10]. By resonant magnetoplasma, we mean a cold,
collisionless magnetized plasma in which the refractive index of one of
the characteristic waves tends to infinity when an angle between the
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wave normal direction and an external dc magnetic field approaches
a certain value determined by the plasma parameters. In this case,
the classical thin-antenna theory cannot be employed readily since
no matter how small the cross section of the antenna wire might be
physically, it is always possible to find some wave normal direction for
which one wavelength in the plasma medium will become less than the
wire cross-sectional extent and the antenna conductor will appear to
be “thick” [2, 3, 9, 10].

Recently, the electrodynamic characteristics of a strip loop
antenna located on the surface of a plasma column have been
studied in the case where the column is filled with a nonresonant
magnetoplasma [11]. In the present article, we extend the analysis
of [11] to the case of a resonant magnetoplasma in the column.

Our article is organized as follows. In Section 2, we present
the formulation of the problem and basic equations. Section 3 deals
with the solution of integral equations for the antenna current. In
Section 4, we give numerical results for the current distribution and
input impedance of the antenna. Section 5 presents conclusions of the
performed analysis.

2. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

As in [11], we consider an antenna having the form of an infinitesimally
thin, perfectly conducting, narrow strip of half-width d, which is coiled
into a circular loop of radius a (d ¿ a). The antenna is located
coaxially on the surface of a uniform plasma column surrounded by
a homogeneous isotropic medium with the real dielectric permittivity
εout = ε0εa, where ε0 is the permittivity of free space. The column is
aligned with an external static magnetic field B0 (see Fig. 1), which is
parallel to the z axis of a cylindrical coordinate system (ρ, φ, z).

a

E
ext

d2
B0

 a∆2

 sgnε sgnη=

z

Figure 1. Geometry of the problem.



Progress In Electromagnetics Research B, Vol. 55, 2013 243

The medium inside the column is a two-component, cold,
collisionless magnetoplasma described by the dielectric tensor

ε = ε0

(
ε −ig 0
ig ε 0
0 0 η

)
. (1)

Expressions for the tensor elements ε, g, and η can be found
elsewhere [11–13]. In contrast to [11], it is assumed throughout this
work that the diagonal elements ε and η of the plasma dielectric
tensor have opposite signs, which corresponds to the case of a resonant
magnetoplasma [13]. Recall that a two-component magnetoplasma
turns out to be resonant if the angular frequency ω belongs to one of
the following three frequency ranges [13]:

ω < ΩH ,

ωLH < ω < min{ωH , ωp}, (2)
max{ωH , ωp} < ω < ωUH.

Here, ΩH , ωH , ωLH, ωp, and ωUH are the ion and electron gyro-
frequencies, the lower hybrid frequency, the electron plasma frequency,
and the upper hybrid frequency, respectively.

The antenna is excited by a time-harmonic (∼ exp(iωt)) voltage
which creates an electric field with the azimuthal component Eext

φ in a
narrow angular interval |φ− φ0| ≤ ∆ ¿ π on the surface of the strip
(i.e., at ρ = a and |z| < d):

Eext
φ (a, φ, z) =

V0

2a∆
[U(φ− φ0 + ∆)− U(φ− φ0 −∆)]

×[U(z + d)− U(z − d)]. (3)

Here, V0 is an amplitude of the given voltage, U a Heaviside function,
and ∆ the angular half-width of the gap centered at φ = φ0. The
excitation field Eext

φ can be written as

Eext
φ =

∞∑
m=−∞

Am exp(−imφ), (4)

where

Am =
V0

2πa

sin(m∆)
m∆

exp(imφ0). (5)

The density J of the electric current excited on the antenna by
field (3) is sought in the form

J = φ0I(φ, z)δ(ρ− a), (6)
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where |z| < d, δ is a Dirac function, and I(φ, z) is the surface current
density which can be represented as follows:

I(φ, z) =
∞∑

m=−∞
Im(z) exp(−imφ). (7)

To find I(φ, z), one should express the azimuthal (Eφ) and
longitudinal (Ez) components of the electric field excited by current (6)
in terms of unknown quantities Im(z) and use the boundary conditions
for the tangential field components on the surface of the plasma column
(ρ = a and −∞ < z < ∞). Then the following boundary conditions
on the antenna surface (ρ = a and |z| < d) are applied:

Eφ + Eext
φ = 0, Ez = 0. (8)

It is shown in [11] that the boundary condition for Eφ in (8) yields
the integral equation

∫ d

−d
Km

(
z − z′

) Im(z′)dz′ = −Am, (9)

whereas the boundary condition for Ez in (8) gives
∫ d

−d
km

(
z − z′

) Im

(
z′

)
dz′ = 0. (10)

It is assumed in (9) and (10) that |z| < d. The kernels of integral
Equations (9) and (10) can be written as [11]

Km(ζ) =
∑

n

2πa

Nm,n
E2

φ;m,n(a) exp (−ik0pm,n|ζ|)

+
ik0

2π

∫ ∞

0

q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

[
Jm+1(Qk) + αkm

Jm(Qk)
Qk

]

× exp(−ik0p(q)|ζ|)dq, (11)

km(ζ) = sgn ζ

{∑
n

2πa

Nm,n
Eφ;m,n(a)Ez;m,n(a) exp (−ik0pm,n|ζ|)

+
i

2πaη

∫ ∞

0

q

p(q)

2∑

l=1

2∑

k=1

B
(l)
mk

∆(l)
m

nkQkJm(Qk)

× exp(−ik0p(q)|ζ|)dq

}
, (12)

where

p (q) =
(
εa − q2

)1/2
, (13)
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Jm is a Bessel function of the first kind of order m and k0 the wave
number in free space. Eφ;m,n(ρ) and Ez;m,n(ρ) are functions describing
the distributions over the transverse coordinate ρ of the azimuthal
and longitudinal electric-field components of eigenmodes (discrete-
spectrum waves) that are guided by the column and have the azimuthal
and radial indices m and n, respectively (m = 0,±1, ±2, . . . and n =
1, 2, . . .), and Nm,n is the norm of an eigenmode with the propagation
constant pm,n. Note that the function p(q) has the meaning of the
normalized (to k0) propagation constant of the characteristic wave
of the background isotropic medium for the transverse wave number
q = k⊥/k0 and satisfies the condition Im p(q) < 0. The integrals over q
in Equations (11) and (12) describe the contribution of continuous-
spectrum waves to the kernels. All the quantities entering the
corresponding integrands and containing p are calculated for p = p(q).

The fields of the eigenmodes supported by a magnetized plasma
column as well as the dispersion relation allowing one to determine
their propagation constants are given in [14]. The norm Nm,n can be
calculated as [13, 15, 16]

Nm,n = 4π

∫ ∞

0

[
Eρ;m,n(ρ)Hφ;m,n(ρ)+Eφ;m,n(ρ)Hρ;m,n(ρ)

]
ρ dρ. (14)

When deriving Equations (11), (12), and (14), we took into account
the fact that without loss of generality, the eigenmode fields can always
be defined so as to satisfy the relationships [13]

E
(T )
ρ;−m,−n(ρ) = −Eρ;m,n(ρ), E

(T )
φ,z;−m,−n(ρ) = Eφ,z;m,n(ρ),

H
(T )
ρ;−m,−n(ρ) = −Hρ;m,n(ρ), H

(T )
φ,z;−m,−n(ρ) = Hφ,z;m,n(ρ),

(15)

where the negative sign of the subscript n denotes modes propagating
in the negative direction of the z axis, and the superscript (T )
designates fields taken in an auxiliary (“transposed”) medium that
is described by the transposed dielectric tensor εT .

The quantities ∆(l)
m and B

(l)
mk in Equations (11) and (12) are

written in the form [11]

∆(l)
m = (−1)l

{
n2

[
η

εa
J (1)

m J̃ (2)
m −

(
J (1)

m +
η

εa
J̃ (2)

m

)
H(l)

m

]

−n1

[
η

εa
J̃ (1)

m J (2)
m −

(
J (2)

m +
η

εa
J̃ (1)

m

)
H(l)

m

]

+(n2 − n1)
[(
H(l)

m

)2
− p2

εa

m2

Q4

]

+p
η

εa

m

Q2

[
J (1)

m − J (2)
m + J̃ (1)

m − J̃ (2)
m

]}
, (16)
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B
(l)
mk = (−1)k+1Z0

k0a

QkJm(Qk)

[
η

εa
nk−vJ̃

(k−v)
m H(l)

m

+p
η

εa

m

Q2
J (k−v)

m − nk−v

((
H(l)

m

)2
− p2

εa

m2

Q4

)]
, (17)

where Z0 is the wave impedance of free space. The other quantities in
Equations (11), (12), (16), and (17) are given by

J (k)
m =

Jm+1(Qk)
QkJm(Qk)

+ m
αk

Q2
k

, J̃ (k)
m =

Jm+1(Qk)
QkJm(Qk)

−m
βk

Q2
k

,

H(l)
m =

H
(l)
m+1(Q)

QH
(l)
m (Q)

− m

Q2
, k, l = 1, 2, v = (−1)k,

Qk = k0aqk(p), Q = k0aq, nk = − ε

pg

[
p2 + q2

k(p) +
g2

ε
− ε

]
,

αk =
[
p2 + q2

k(p)− ε
]
g−1 − 1, βk = pn−1

k + 1,

qk(p) =
1√
2

{
ε− g2

ε
+ η −

(η

ε
+ 1

)
p2 −

(η

ε
− 1

)

× (−1)k
[(

p2 − P 2
b

) (
p2 − P 2

c

)]1/2
}1/2

,

Pb,c =
{
ε−(η+ε)

g2

(η−ε)2
+

2χb,c

(η−ε)2
[
εg2η

(
g2−(η−ε)2

)]1/2
}1/2

,

(18)

where χb = −χc = −1 and H
(l)
m is a Hankel function of the lth kind of

order m.
The above formulas are valid regardless of whether the column

is filled with a resonant or nonresonant magnetoplasma. In the next
section, we will solve the derived integral equations for the antenna
current in the case where the plasma inside the column is resonant,
i.e., sgn ε 6= sgn η.

3. SOLUTION OF THE INTEGRAL EQUATIONS FOR
THE ANTENNA CURRENT

As in the case where the column is filled with a nonresonant
plasma [11], the kernels of integral Equations (9) and (10) can be
represented as the sums of singular and regular parts:

Km(ζ) = K(s)
m (ζ) + K(r)

m (ζ), km(ζ) = k(s)
m (ζ) + k(r)

m (ζ). (19)
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The singular parts K
(s)
m (ζ) and k

(s)
m (ζ) are introduced in such a way

that they tend to infinity for ζ → 0, whereas the regular parts K
(r)
m (ζ)

and k
(r)
m (ζ), which have no singularities at this point, can be taken

for ζ = 0 if the antenna is sufficiently narrow such that the following
inequalities take place:

d ¿ a, d ¿ a|η/ε|1/2, (k0d)2 max{|εa|, |ε|, |g|, |η|} ¿ 1. (20)

It is worth noting that in the case considered here, expressions for
the singular and regular parts of the kernels differ significantly from
those in [11]. The difference is because of the fact that the column
filled with a resonant magnetoplasma supports the guided propagation
of an infinite number of eigenmodes the fields of which contribute
to K

(s)
m (ζ) and k

(s)
m (ζ), whereas eigenmodes of a nonresonant plasma

column in [11] contribute only to the regular parts of the kernels.
The singular parts of the kernels for the column containing a

resonant magnetoplasma can be written as

K(s)
m (ζ) = −Z0

{
2m2

πk0a2

|εη|1/2

|εη|+ ε2
a

∞∑

n=1

exp[−iχ(2n + m + 1/2)]
2n + m + 1/2

+i
k2

0a

2

∫ ∞

0
J2

m+1(k0aq) exp(−k0q|ζ|)dq − i
m2

πk0a2

εa

|εη|

×
∫ ∞

0
q−1/2U(q)Im

(
k0a|η/ε|1/2q

)
exp(−k0q|ζ|) dq

}
, (21)

k(s)
m (ζ) = −sgn ζ

Z0

k0a2

m

|εη|+ ε2
a

{
ε lim

ν→0

∞∑

n=1

exp[−(iχ + ν)

×(2n + m + 1/2)]− k0aεa

π

∫ ∞

0
exp(−k0q|ζ|)dq

}
, (22)

where χ = |ε/η|1/2(π|ζ|/2a) sgn ε, Im is a modified Bessel function of
the first kind of order m, and

U(q) = (2πk0a)1/2|η/ε|1/4
(
1 + ε2

a|εη|−1
)−1 exp

(
−k0a|η/ε|1/2q

)
. (23)

The quantities under the summation and integral signs in Equa-
tions (21) and (22) are obtained by making the limiting transitions
|pm,n| → ∞ (see Appendix A) and q → ∞, respectively, in the corre-
sponding expressions (11) and (12) for the kernels. It should be noted
that in the limit q →∞, the quantities q1, p(q), n1,2, α1,2, and β1,2 are
calculated as in [11]. An exception takes place only for the quantity
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q2, which is now equal to q2 = i|η/ε|1/2q in the considered limit. To
avoid misunderstanding, we also note that in this case, the function
U(q) is initially found to be equal to

U(q) =
Im(k0a|η/ε|1/2q)

q1/2[I2
m+1(k0a|η/ε|1/2q) + ε2

a|εη|−1I2
m(k0a|η/ε|1/2q)]

.

Using the large-argument approximation for Im, we finally arrive at
Equation (23).

The quantities K
(r)
m (ζ) and k

(r)
m (ζ), which are not presented here

for brevity, are given by the sums over n and the integrals over
q in which the terms under the summation and integral signs are
determined by the differences of the respective quantities entering the
rigorous expressions (11) and (12) for the kernels and the corresponding
expressions, taken at |pm,n| → ∞ and q →∞, for the singular parts of
the kernels.

The integrals in (21) are evaluated as [17]
∫ ∞

0
J2

m+1(k0aq) exp(−k0q|ζ|)dq=
1

πk0a
Qm+ 1

2

(
1+

|ζ|2
2a2

)
, (24)

∫ ∞

0
q−1/2U(q)Im(k0a|η/ε|1/2q) exp (−k0q|ζ|) dq

=
2|εη|

|εη|+ ε2
a

Qm− 1
2

(
1 +

√
|ε|
|η|
|ζ|
a

)
, (25)

where Qµ(z) are Legendre functions of the second kind. With
allowance for the first two inequalities in (20), these functions can be
approximated using the following asymptotic formula, which is valid
for z → 1 + 0 and µ 6= −1, −2, . . . [18]:

Qµ(z) = −1
2

ln
(z

2
− 1

2

)
− ψ(µ + 1)− γ. (26)

Here, ψ(z) = d ln Γ(z)/dz is the logarithmic derivative of a gamma
function and γ = 0.5772 . . . is Euler’s constant. When applied to
functions (24) and (25), formula (26) needs to be corrected for very
large values of |m|. However, the terms |m| > m̃, where m̃ ∼ ∆−1

is a sufficiently large integer, do not contribute significantly to the
current series (7) because of the properties of quantities (5) that
will enter the resulting expressions for Im. It can be shown that
the requirement for formula (26) to be valid to approximate (24)
and (25) for |m| < m̃ reduces to the conditions d ¿ 2am̃−1 and
d ¿ 2am̃−1|η/ε|1/2, respectively, whence we have

d ¿ 2a∆, d ¿ 2a∆|η/ε|1/2. (27)
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Using the second inequality in (27), the series in (21) can be
rewritten as

∞∑

n=1

exp[−iχ(2n + m + 1/2)]
2n + m + 1/2

=
∞∑

n=1

exp[−iχ(2n− 1)]
2n− 1

− Φm, (28)

where

Φm =
(
m +

3
2

) ∞∑

n=1

1
(2n− 1)(2n + m + 1/2)

. (29)

When writing (29), we put ζ = 0, since Φm remains finite (regular) in
the limit ζ → 0. The series in (28) is calculated in closed form [17]:

∞∑

n=1

exp[−iχ(2n− 1)]
2n− 1

=
1
2

ln cot
|χ|
2
− i

π

4
sgn ε, (30)

where cot(|χ|/2) ' 2|χ|−1 for ζ → 0.
Thus, we find that kernel (11) possesses the logarithmic

singularity:

Km(ζ) = −iZ0
k0

2π

1
δm

(
ln
|ζ|
2a

+ Sm

)
, (31)

where

δm = − i(k0a)2ξ
m2 + i(k0a)2ξ

, ξ =
|εη|1/2 + iεa

2
, (32)

Sm =
1

m2 + i(k0a)2ξ

{
m2

[
ln

√
|ε|
|η| −

2iεa

|εη|1/2 − iεa

(
ψ

(
m +

1
2

)
+ γ

)

+
|εη|1/2

|εη|1/2 − iεa

(
ln

π

2
+ 2Φm + i

π

2
sgn ε

)]

+i(k0a)2ξ
[
ψ

(
m +

3
2

)
+ γ − i

2π

Z0k0
K(r)

m (0)
]}

. (33)

As a result, Equation (9) takes the form
∫ d

−d
Im(z′) ln

|z − z′|
2a

dz′ = −i
2πAm

Z0k0
δm − Sm

∫ d

−d
Im(z′)dz′. (34)

In turn, the quantity k
(s)
m in (22), after some algebra, can be shown

to have the Cauchy singularity: k
(s)
m (ζ) ∼ m/ζ. Taking into account
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the relation k
(r)
m (0) = 0 (see [11] for details), we reduce Equation (10)

to the form ∫ d

−d
m
Im(z′)
z − z′

dz′ = 0, (35)

where the integral is understood in the sense of the Cauchy principal
value.

Since the solution of Equation (34) with the logarithmic kernel
automatically satisfies Equation (35) with the Cauchy kernel, it is
sufficient to consider only Equation (34). The solution to this equation
can be found using the techniques discussed in [10] and is written as

Im(z) =
2i

Z0k0

√
d2 − z2

Amδm

ln (4a/d)− Sm
. (36)

Substituting (36) into (7) and integrating the linear current density
I(φ, z) over z between −d and d, we obtain the total current IΣ(φ) in
the cross section φ = const:

IΣ(φ) =
iV0

Z0k0a

∞∑
m=−∞

sin (m∆)
m∆

δm exp[−im(φ− φ0)]
ln(4a/d)− Sm

. (37)

Generally, the summation over m in (37) can be performed only
numerically. A closed-form expression for the current distribution can
be derived if the strip is so narrow that the inequality ln(4a/d) À |Sm|
is valid for |m| < m̃. Then, neglecting Sm and making steps similar to
those performed in [10], we deduce

IΣ(φ) = − iV0πh

Z0k0 ln(4a/d)
cos[(π − φ + φ0)ha]

sin(πha)
, (38)

where 0 ≤ φ − φ0 ≤ π and h = k0(1 − i)
√

ξ/2. Approximate
representation (38) evidently corresponds to the transmission-line
theory with the complex current propagation constant h. Such nature
of h is related to the excitation of an infinite number of propagated
quasielectrostatic eigenmodes in the resonant plasma column. If
|εη|1/2 ¿ εa, then h = k0

√
εa/2. In the opposite case |εη|1/2 À εa, we

obtain h = k0(1− i)|εη|1/4/2, which is a factor of
√

2 smaller than the
corresponding quantity for a loop antenna in a resonant homogeneous
magnetoplasma (see [10]).

Using the current distribution IΣ(φ), the input impedance Z =
R+iX of the antenna can be found in a standard way: Z = V0/IΣ(φ0).
Within the framework of approximation (38), we obtain

Z = iZ0k0(πh)−1 ln(4a/d) tan (πha). (39)
In the case π|Im h|a À 1, the input impedance given by (39) simplifies
to Z = Z0k0(πh)−1ln(4a/d). For π|h|a ¿ 1, Equation (39) yields the
inductance of an electrically small loop antenna in free space.
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4. NUMERICAL RESULTS

Using the above-described approach, we have calculated the current
distribution and input impedance of a loop antenna for some cases of
interest. Calculations have been performed for the following values of
the parameters: the angular frequency ω = 1.7 × 108 s−1, the relative
dielectric permittivity of the background medium is equal to εa = 1
(free space), the external static magnetic field B0 = 800 G, and the
plasma density inside the column is equal to N = 1013 cm−3. The
chosen values can easily be realized under laboratory conditions and
correspond to the case of a resonant plasma, for which ωLH ¿ ω <
ωH < ωp and the diagonal elements of the dielectric tensor have the
opposite signs: ε = 1.62× 102 and η = −1.1× 106. For computations,
it was assumed that d/a = 0.02, the midpoint of the region to which
the given voltage is supplied has the azimuthal coordinate φ0 = 0, and
∆ = 0.05 rad.

Figure 2 shows the magnitude |IΣ(φ)| (normalized to its maximum
|IΣmax|) and the phase angle θ(φ) = arctan(Im IΣ(φ)/Re IΣ(φ)) of the
antenna current for two values of the loop and column radius a. The
solid and dashed lines in the figure correspond to the rigorously derived
formula (37) and the approximate formula (38), respectively. It is seen
in the figure that formula (38) describes the current behavior with
acceptable accuracy, especially for small and moderate values of φ.

It is worth noting that in Fig. 2, the distribution given by
Equation (37) demonstrates some asymmetry about the midpoint of
the region to which the excitation voltage is supplied. This asymmetry
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Figure 2. (a) Normalized amplitude and (b) phase of the antenna
current calculated using the rigorous formula (37) (solid lines) and the
approximate formula (38) (dashed lines) as functions of the angle φ for
(1) a = 2 cm and (2) a = 5 cm if d/a = 0.02, ∆ = 0.05 rad, φ0 = 0,
εa = 1, N = 1013 cm−3, B0 = 800G, and ω = 1.7× 108 s−1.
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is stipulated by the gyrotropy of the plasma inside the column. The
reversal of the direction of the external magnetic field results in the
current- and phase-distribution changes described by the replacements
IΣ(φ) → IΣ(−φ) and θ(φ) → θ(−φ), respectively.

It is evident that the dependences |IΣ(φ)/IΣmax| and θ(φ)
for the antenna located on the surface of a resonant plasma
column qualitatively resemble the corresponding distributions for a
loop antenna in a homogeneous magnetoplasma with appropriate
parameters [10]. If the antenna of the same radius were located in free
space, it would have a quasi-uniform current distribution. Therefore,
the presence of a resonant plasma column significantly affects the
current distribution of the loop antenna.

Figure 3 shows the real (R) and imaginary (X) parts of the
antenna input impedance Z as functions of the radius a for the
previously chosen values of the parameters of the problem. These
results were obtained using Equation (39). Calculations based on the
rigorous formula for the antenna current give results which almost
coincide with those in Fig. 3 and, therefore, are not shown for brevity.
For comparison, the figure also presents similar dependences for the
real (R0) and imaginary (X0) parts of the input impedance of the same
antenna located in a homogeneous magnetoplasma the parameters of
which coincide with those inside the column.

It follows from the results obtained that R and X turn out to
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Figure 3. Real and imaginary parts of the input impedance as
functions of the antenna size in the cases where the antenna is located
on the surface of a plasma column (R and X) of the same radius and
in a homogeneous magnetoplasma (R0 and X0). The values of d/a and
the other parameters are the same as in Fig. 2.
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be greater than the corresponding quantities R0 and X0 for the loop
antenna in a homogeneous magnetoplasma. Although the impedance
demonstrates qualitatively similar behavior with increasing antenna
radius in the two cases, an important difference between them is that
the input radiation resistance R is almost completely determined by
the eigenmodes of the plasma column, i.e., the discrete spectrum of the
antenna-excited waves, whereas in the case of a homogeneous plasma,
the quantity R0 is entirely determined by the continuous-spectrum
waves.

5. CONCLUSIONS

In this paper, we obtained the solution to the problem of the current
distribution of a loop antenna in the form of an infinitesimally
thin, perfectly conducting, narrow strip located on the surface of
an axially magnetized plasma column and operated in the resonant
frequency band of a magnetoplasma. The found solution describes the
distribution of the surface-current density both along and across the
strip and makes it possible to study the electrodynamic characteristics
of the antenna as functions of its parameters as well as the parameters
of the plasma column and the surrounding medium. Finally, we note
that the method used in this work can be applied to the case where
the column with a loop antenna is filled with a resonant anisotropic
medium of another type such as, e.g., a hyperbolic metamaterial.
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APPENDIX A. CONTRIBUTION OF EIGENMODES TO
THE SINGULAR PARTS OF THE KERNELS

Although the contribution of eigenmodes to K
(s)
m (ζ) and k

(s)
m (ζ) can

be obtained by calculating the corresponding terms of (11) and (12)
in the limit |pm,n| → ∞, a simpler way is to use formulas of the
quasielectrostatic approximation, which is valid in this limit. Within
the framework of this approximation, the electric field is expressed
as E(r) = −∇Ψ(r), where the potential Ψ(r) is sought in the form
Ψ(r) = Ψ(ρ) exp(−imφ− ik0pz). The function Ψ(ρ) is represented as
Ψ(ρ) = BJm(k0q̃ρ) for ρ < a, and as Ψ(ρ) = DKm(k0sρ) for ρ > a,
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where Km is a modified Bessel function of the second kind of order
m, q̃ = (−p2η/ε)1/2, and s = |ε/η|1/2q̃. The coefficients B and D
as well as the eigenmode propagation constants p = pm,n are found
from the requirement that Ψ(ρ) and the radial electric-displacement
component are continuous at ρ = a. Then the dispersion relation for
quasielectrostatic eigenmodes takes the form

Jm+1(k0aq̃)
Jm(k0aq̃)

= sgn ε
εa

|εη|1/2

Km+1(k0as)
Km(k0as)

. (A1)

If the propagation constants are sufficiently large, so that
k0a|η/ε|1/2|p| À |m| and k0a|p| À |m|, one can use the large-argument
approximation for the Bessel functions in (A1) and arrive at

pm,n = (k0a)−1|ε/η|1/2
[
χ0 +

π

2
(2n + m + 1/2) sgn ε

]
, (A2)

where χ0 = arctan(εa/|εη|1/2). If slight losses in the plasma medium
are allowed for, then each of the quantities pm,n acquires a small
imaginary part such that Im pm,n < 0.

In the case considered, the norm Nm,n of each quasielectrostatic
eigenmode is approximately determined by integration over ρ in the
limits 0 ≤ ρ ≤ a in (14). The magnetic field of such eigenmodes in the
column is found from the equation ∇2H(r) = −iω∇× (ε ·E(r)). Then
we have

Nm,n = Z−1
0 2π(k0a)2|η|pm,nB2J2

m

(
k0a|η/ε|1/2pm,n

)

×
[
1 +

J2
m+1

(
k0a|η/ε|1/2pm,n

)

J2
m

(
k0a|η/ε|1/2pm,n

)
]

sgn ε, (A3)

where the second term in the brackets can approximately be replaced
by ε2

a/|εη|, as is evident from (A1). In addition, for sufficiently large n
when πn À |χ0|, we can neglect the term χ0 in (A2) when substituting
pm,n into (A3). Finally, taking into account that by virtue of the second
inequality in (20), exp(−iχ0|ε/η|1/2|ζ|/a) ' 1, we obtain the series in
Equation (21).

The series in Equation (22) is derived in a similar way, but
one should first allow for a small collisional loss in the plasma by
introducing the term ν (see [10]) to ensure the series convergence, with
subsequent passage to the weak limit ν → 0.
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