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Abstract—A new discontinuous Galerkin Finite Element Time
Domain (DG-FETD) method for Maxwell’s equations is developed.
It can suppress spurious modes using basis functions based on
polynomials with the same order of interpolation for electric field
intensity E and magnetic flux density B. Compared to FETD
based on EH scheme, which requires different orders of interpolation
polynomials for electric and magnetic field intensities, this method uses
fewer unknowns and reduces the computation load. The discontinuous
Galerkin method is employed to implement domain decomposition for
the EB scheme based FETD. In addition, a well-posed time-domain
perfectly matched layer (PML) is extended to the EB scheme to
simulate the unbounded problem. Leap frog method is utilized for
explicit time stepping. Numerical results demonstrate that the above
proposed methods are effective and efficient for 2D time domain TMz
multi-domain problems.

1. INTRODUCTION

The finite element method (FEM) has received significant attention
in computational electromagnetics during the last three decades
and has become one of the most widely used numerical methods
for electromagnetics problems both in engineering and scientific
research [1–7]. Recently, much progress has been made in Finite
Element Time Domain (FETD) method [8–12], which extends the
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FEM to time domain. It inherits the advantages of meshing flexibility,
material generality and matrices sparseness from FEM and advantages
of performing wideband analysis, simulating non-linear and transient
phenomena from the time domain method.

FETD can be implemented in two ways, one based on the curl-
curl second order wave equation [13–16] and the other based on the
first order Maxwell’s equations [17–20]. The former one can use the
relatively plenty of research results from frequency domain FEM, such
as the choice of basis functions and stability analysis, however, it
is difficult to implement the perfectly matched layer (PML) as an
absorbing boundary condition. The latter one based on first order
Maxwell’s curl equations is more suitable to use a well-posed PML
when an unbounded region is simulated. The FETD based on electric
field intensity E and magnetic flux density B has been developed
in [21, 22]. This method works very well and has been combined with
nonlinear circuit solvers [23, 24].

On the other hand, the FETD method can be also developed using
E and H as field variables. Then, both E and H fields must use edge
based basis functions in order to satisfy the continuity conditions for
the tangential field components across element interfaces. However,
this EH scheme has the problem of spurious modes, i.e., modes which
are non-physical. These non-physical solutions appear when the same
order of basis functions are used for E and H, for example, EnHn (n-
th order basis functions for both E and H) [25, 26]. Because H and
E have the same continuous condition on the tangential components,
H will not be compatible with the nullspace of the curl operator if
H and E also have the same order. To suppress the spurious modes,
different orders of interpolation polynomials should be employed, for
example, EnHn+1 (n-th and (n+1)-th order basis functions for E and
H respectively) or En+1Hn ((n + 1)-th and n-th order basis functions
for E and H respectively) [27–29]. Numerical results have shown that
this FETD method based on the E and H fields works well, although
at the expense of more unknowns than the EnHn scheme.

One drawback of the FETD method, compared to the FDTD
method, is its need to invert a large sparse matrix. To overcome
this, Domain Decomposition Method (DDM) can be used in FETD
to further enhance the computation efficiency. In previous FETD
research, discontinuous Galerkin method has been employed to
implement DDM based on the EH scheme for large-scale problems
where the inversion of a large mass matrix is too expensive. This
method has been shown useful as the tangential continuous basis
functions for E and H naturally satisfy the requirements by the
numerical flux [28, 30–35]. However, the EH scheme needs more
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unknowns than the EB scheme. Therefore, a combination of EB
scheme based FETD and discontinuous Galerkin method is proposed
for the first time to further accelerate simulation. This is the first new
contribution of this work. The second new contribution of this work is
the application of a strongly well posed perfectly matched layer (PML)
in the FETD with E and B fields.

2. PROBLEM STATEMENT AND RESEARCH GOAL

The governing equations are the first order Maxwell’s curl equations
with electric field intensity E and magnetic flux density B as the
variables

ε
∂E
∂t

= ∇× µ−1B− σeE− J (1)

∂B
∂t

= −∇×E− σmµ−1B−M (2)

where ε, µ, σe, and σm denote material’s permittivity, permeability,
electric conductivity and magnetic conductivity, respectively. J and
M are electric current density and magnetic current density due to the
imposed sources.

The goal in this research can be divided into 3 parts:

• Analyze the eigenvalues of FETD to show the effectiveness of
EB scheme to suppress the spurious modes with the same order
basis functions for E and B. Advantages of the EB scheme
in computation costs can be shown via comparison to the EH
scheme.

• Apply the strongly well-posed PML to EB scheme FETD and find
the optimal thickness of PML, which will provide a guidance for
future possible applications with unbounded problems.

• As the EB scheme is advantageous, the DG-FETD based on EB
scheme can be implemented to further enhance the computation
efficiency compared to single domain EB scheme FETD.

Details of these three parts are elaborated in the following sections.

3. FORMULATION

To solve (1) and (2), curl-conforming vector basis functions are used
to discretize E, and divergence-conforming vector basis functions are
used to discretize B. These basis functions are from the first and
second families of Nedlec elements, i.e., the edge elements and face
elements [36, 37], respectively.
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In FETD, reference elements are introduced to make the code
more generalizable and easier to debug. We denote the curl-conforming
basis functions for E as Φ and Φ̂ in the physical and reference domains,
respectively, and denote the divergence-conforming basis functions for
B as Ψ and Ψ̂ in the physical and reference domains, respectively.

To transform the basis functions from reference domain to physical
domain, covariant and contravariant projections are needed [38], which
can be expressed as

Φ = J−1
a Φ̂ ∇×Φ =

1
|Ja|J

T
a ∇̂ × Φ̂ (3)

Ψ =
1
|Ja|J

T
a Ψ̂ ∇×Ψ = J−1

a ∇̂ × Ψ̂ (4)

where

∇̂ =
∂

∂ξ
ξ̂ +

∂

∂η
η̂ +

∂

∂ζ
ζ̂ (5)

and Ja is the Jacobian matrix defined as

Ja =




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 (6)

x, y, z are the coordinates in the physical domain, and ξ, η, ζ are the
coordinates in the reference domain.

3.1. The EB Scheme Based FETD Method

3.1.1. Single Domain with PML Region

The compact vector form Maxwell’s equations for the strongly well-
posed PML region are given by Fan and Liu [39]

∇×Ẽ =−∂B̃
∂t

− (σmµ−1+Λ1)B̃−(σmµ−1Λ1+Λ2)B(1)−σmµ−1Λ3B(2)

(7)

and

∇×µ−1B̃=ε
∂Ẽ
∂t

+(σe+εΛ1)Ẽ+(σeΛ1+εΛ2)E(1)+σeΛ3E(2) (8)
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The auxiliary time-integrated fields are governed by ordinary
partial differential equations

∂E(1)

∂t
= Ẽ−Λ0E(1) ∂E(2)

∂t
= E(1) (9)

∂B(1)

∂t
= B̃−Λ0B(1) ∂B(2)

∂t
= B(1) (10)

where

B̃ = B + Λ0B(1) Ẽ = E + Λ0E(1) (11)

Λ0 = diag{ωx, ωy, ωz} (12)

Λ1 = diag{(ωy + ωz − ωx)(ωx + ωz − ωy), (ωy + ωz − ωx)} (13)

Λ2 = diag{(ωx − ωy)(ωx − ωz), (ωy − ωx)(ωy − ωz),
(ωz − ωx)(ωz − ωy)} (14)

Λ3 = diag{ωyωz, ωxωz, ωxωy} (15)

ωη is the attenuation coefficient in the direction η (η = x, y, z).
B̃, B(1), B(2) are expanded with the same divergence-conforming
basis functions, and Ẽ, E(1), E(2) are expanded with the same curl-
conforming basis functions, that is, B̃ =

∑
b̃iΨi, B(1) =

∑
b
(1)
i Ψi,

B(2) =
∑

b
(2)
i Ψi, Ẽ =

∑
ẽiΦi, E(1) =

∑
e
(1)
i Φi, E(2) =

∑
e
(2)
i Φi.

Applying the Galerkin’s method to (7), (8) and combining them
to (9)–(11), the discretized system with PML is as below:




Mẽẽ

Mb̃b̃
I

Mb(1)b(1)

I
I







∂tẽ

∂tb̃

∂te(1)

∂tb(1)

∂te(2)

∂tb(2)




=




j
m




+




Cẽẽ Kẽb̃ Cẽe(1) Cẽe(2)

Kb̃ẽ Cb̃b̃ Cb̃b(1) Cb̃b(2)

I Ce(1)e(1)

Cb(1)b̃ Cb(1)b(1)

I
I







ẽ

b̃

e(1)

b(1)

e(2)

b(2)




(16)

where I is the identity matrix, and the blanks are filled with zeros.
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Other elementary matrices in (16) are as follows
(Mẽẽ)e

pq = 〈Φp, εΦq〉Ve (17)
(Mb(1)b(1))

e
pq = (Mb̃b̃)

e
pq = (Cb(1)b̃)

e
pq = 〈Ψp,Ψq〉Ve (18)

(Kẽb̃)
e
pq = 〈Φp,∇× µ−1Ψq〉Ve (Kb̃ẽ)

e
pq = −〈Ψq,∇×Φp〉Ve (19)

(Cẽe(1))e
pq = −〈Φp, (σeΛ1 + εΛ2)Φq〉Ve (20)

(Cẽẽ)e
pq = −〈Φp, (σe + εΛ1)Φq〉Ve (21)

(Cẽe(2))e
pq = −〈Φp, σeΛ3Φq〉Ve (Ce(1)e(1))e

pq = −〈Φp,Λ0Φp〉Ve (22)

(Cb̃b̃)
e
pq = −〈Ψp, (σmµ−1 + Λ1)Ψq〉Ve (23)

(Cb̃b(1))
e
pq = −〈Ψp, (σmµ−1Λ1 + Λ2)Ψq〉Ve (24)

(Cb(1)b(1))
e
pq = −〈Ψp,Λ0Ψq〉Ve (25)

(Cb̃b(2))
e
pq = −〈Ψp, σmµ−1Λ3Ψq〉Ve (26)

The non-open cases are just special configurations of the above
situation, the only difference is that Λ0, Λ1, Λ2 and Λ3 are set to 0.

3.2. Formulation of the EB Scheme Based DG-FETD

Assume the computational domain is divided into N subdomains.
Denote the ith subdomain as the local subdomain, and jth as an
adjacent one. Performing integration by parts with the Galerkin’s
weak form of Maxwell’s equations for the local subdomain, we can
obtain

∫

V

Φ(i)
p ·

(
ε
∂E(i)

∂t
+ σeE(i) + J(i)

)
dV

=
∫

V

∇×Φ(i)
p · µ−1B(i)dV +

∫

S

Φ(i)
p ·

(
n̂(i) × µ−1Btot

)
dS (27)

∫

V

Ψ(i)
p ·

(
∂B(i)

∂t
+ σmµ−1B(i) + M(i)

)
dV

= −
∫

V

∇×Ψ(i)
p ·E(i)dV −

∫

S

Ψ(i)
p ·

(
n̂(i) ×Etot

)
dS (28)

where (·)(i) represents the vector for the ith subdomain, n̂(i) is its
outward normal vector on the boundary, and (·)tot represents the total
field. For the volume integration term, (·)tot = (·)(i) and for the
surface integration term, (·)tot is from the contribution of both the
ith subdomain and the jth subdomain.
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To deal with n̂(i) × Etot and n̂(i) × µ−1Btot, central flux is
implemented, that is,

(
n̂(i) ×Etot

)
=

1
2

(
n̂(i) ×E(i) + n̂(i) ×E(j)

)
(29)

(
n̂(i) × µ−1Btot

)
=

1
2

(
n̂(i) × Bi

µ(i)
+ n̂(i) × B(j)

µ(j)

)
(30)

The discretized system for the ith subdomain is

M(i)
ee

de(i)

dt
= K(i)

eb b(i) + C(i)
ee e(i) + j(i) +

N∑

j=1

L(ij)
eb e(j) (31)

M(i)
bb

db(i)

dt
= K(i)

be e(i) + C(i)
bb b(i) + m(i) +

N∑

j=1

L(ij)
be b(j) (32)

where the mass matrices M(i)
eepq, M(i)

bbpq, the damping matrices C(i)
eepq,

C(i)
bbpq and the stiffness matrices K(i)

ebpq, K(i)
bepq are the same as equations

(17)–(19) and other elemental matrices are

(
L(ij)

eb

)
pq

=

〈
Φ(i)

p ,

(
n̂(i) × Ψ(j)

q

µ(j)

)〉

Sij(
L(ij)

be

)
pq

=
〈
Ψ(i)

p ,
(
n̂(i) ×Φ(j)

q

)〉
Sij

(33)

(
L(ii)

eb

)
pq

=
1
2

N∑

j=1

〈
Φ(i)

p ,

(
n̂(i) × Ψ(i)

q

µ(i)

)〉

Sij

(
L(ii)

be

)
pq

=
1
2

N∑

j=1

〈
Ψ(i)

p ,
(
n̂(i) ×Φ(i)

q

)〉
Sij

(34)

Sij is the interface between the ith and jth subdomains.

3.3. Time Stepping Scheme

The explicit leap frog is chosen as the time stepping scheme for FETD,
in which the E and B use half step staggered grids in the temporal
dimension. Compared to other explicit time stepping schemes such as
Runge Kutta, leap frog is relatively easier to implement and it is also
suitable for hybrid methods such as FDTD.
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3.3.1. Leap Frog for the EB Scheme Based FETD with PML

In the leap frog for the EB scheme based FETD with PML, b̃ is half
step staggered with b(1) and b(2), while ẽ is half step staggered with
e(1) and e(2). One feasible updating sequence for the unknown vectors
is as below

b(1)
n =

(
Mb(1)b(1)

∆t
− Cb(1)b(1)

2

)−1

[(
Mb(1)b(1)

∆t
+

Mb(1)b(1)

2

)
b(1)

n−1 + Mb(1)b̃b̃n− 1
2

]
(35)

b(2)
n = b(2)

n−1 +
∆t

2

[
b(1)

n + b(1)
n−1

]
(36)

b̃n+ 1
2

=
(
Mb̃b̃

∆t
−Cb̃b̃

2

)−1[(Mb̃b̃

∆t
+

Cb̃b̃

2

)
b̃n− 1

2
+Kb̃ẽẽn+Cb̃b(1)b

(1)
n

]
(37)

e(1)

n+ 1
2

= e(1)

n− 1
2

+ ∆tẽn e(2)

n+ 1
2

= e(2)

n− 1
2

+ ∆te(1)

n− 1
2

+
(∆t)2

2
ẽn (38)

ẽn+1 =
(

Mẽẽ

∆t
− Cẽẽ

2

)−1 [(
Mẽẽ

∆t
+

Cẽẽ

2

)
ẽn

+Kẽb̃b̃n+ 1
2

+ Cẽe(1)e(1)

n+ 1
2

+ Cẽe(2)e(2)

n+ 1
2

+ jn+ 1
2

]
(39)

3.3.2. Leap Frog for the EB Scheme Based DG-FETD

In leap frog for the EB scheme based DG-FETD, the unknown vectors
are updated in the subdomain-major sequence, that is, b and e of a
certain subdomain are updated, then the next subdomain. The pseudo-
code is as follows:



for n = 1: Nt

for i = 1: Nd

b(i)

n+ 1
2

= b(i)

n− 1
2

+ ∆t
(
M(i)

bb

)−1

[
K(i)

be e(i)
n + C(i)

bb b(i)

n− 1
2

+ M(i)
n +

∑Nd
j=1 L(ij)

be e(j)
n

]

e(i)
n+1 = e(i)

n + ∆t
(
M(i)

ee

)−1

[
K(i)

eb bi
n+ 1

2

+ C(i)
ee e(i)

n + J(i)
n +

∑Nd
j=1 L(ij)

eb b(j)
n

]

end
end

(40)
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where Nt is the number of time steps and Nd is the number of
subdomains.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. Eigenvalue Analysis and Single Domain Result

The frequency domain discretized system is obtained from (1) and (2)
assuming harmonic plane wave travels in a lossless medium

jωMeee−Kebb = 0 jωMbbb−Kbee = 0 (41)

From (41), spurious eigenvalues and error convergence are
analyzed. After eliminating the unknown vector b, the eigenvalue
problem of e can be obtained

Ye = ω2Xe (42)

where
Y = Keb(Mbb)−1Kbe X = Mee (43)

The solution e is the eigenvector while ω2 is the eigenvalue. A 2D PEC
cavity model of TMz mode with triangle mesh shows the effectiveness
of the EB scheme based FETD. The basis functions for E degenerate
to nodal basis functions and volume integrations degenerate to surface
integration. The cavity size is

√
3m × √2m, the basis functions are

E1B1, that is, first order nodal basis functions for E and constant
normal linear tangential basis functions for B as shown in Fig. 1.
The sampling density is 15 points per wavelength (PPW). Table 1 is
the comparison between the numerical eigenvalues and the analytical
eigenvalues, from which we can see that the EB scheme based FETD
is valid in suppressing spurious modes even with the same order basis

(a)

P

(b)

Figure 1. First order basis functions for 2D TMz case. (a) Constant
normal linear tangential (CN/LT) basis function corresponding to the
dot-line edge of the triangle; (b) nodal basis function (shaded part)
corresponding to the vertex P of the triangle.
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functions and the eigenvalue accuracy is good (first eight numerical
eigenvalues are listed as examples). A pulse of Blackman-Harris
window (BHW) function with characteristic frequency of 150 MHz is
added as the source at the location of (0.7m, 0.4 m), the observer is
located at (0.05m, −0.35 m) (the origin of the coordinates is at the
center of the cavity). The observation time window is 50 ns. High
accuracy FDTD result from commercial software Wavenology is used as
the reference signal. The time domain results agree very well as shown
in Fig. 2(a). The main part of the spectrum of the received signal
is shown in Fig. 2(b), where the peaks agree well with the analytical
resonant frequencies. Therefore, both the time domain and frequency
domain results demonstrate the effectiveness of the EB scheme based
FETD.
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Figure 2. EB FETD cavity results. (a) Time domain comparison;
(b) resonant frequency comparison.

Table 1. Comparison between analytical eigenvalues and EB scheme
based FETD numerical eigenvalues.

Analytical EB FETD Error
1.36836e8 1.36880e8 3.228e-4
2.02960e8 2.03104e8 7.091e-4
2.28970e8 2.29174e8 8.900e-4
2.73672e8 2.74023e8 1.285e-3
2.80430e8 2.80809e8 1.306e-3
3.29545e8 3.30152e8 1.842e-3
3.35178e8 3.35827e8 1.938e-3
3.62034e8 3.62837e8 2.218e-3
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Table 2. Comparison between EB scheme FETD and EH scheme
FETD.

E1B1 E1H2
Unknowns for B 2971 0
Unknowns for H 0 9838
Unknowns for E 926 926

Total number of unknowns 3987 10764
Time cost for 1000 leap frog steps (sec) 4.26 39.77
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Figure 3. Relative error vs maximal edge length in log-log scale.
(a) TM11 mode; (b) TM21 mode; (c) TM12 mode; and (d) TM22 mode.

Basis functions of E1H2 are needed to suppress the spurious
modes if the EH scheme is used. With the same PEC cavity above,
the relative error versus maximal edge length obtained from E1H2 and
E1B1 for the first 4 modes, that is, TM11, TM21, TM12 and TM22,
is illustrated in Fig. 3. It is clear that both E1H2 and E1B1 have
the same error convergence speed over maximal edge length of mesh,
however, E1B1 is more efficient than E1H2, the comparison of the
number of unknowns and time consuming with PPW = 10 is shown
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Figure 4. Relative error vs DoF. (a) TM11 mode; (b) TM21 mode;
(c) TM12 mode; and (d) TM22 mode.

in Table 2. If the number of unknowns is fixed, the error in the EB
scheme is always smaller than the EH scheme, as Fig. 4 shows. From
Fig. 3, Fig. 4 and Table 2, we can see the advantages of EB scheme in
computation efficiency.

4.2. A Single Domain with PML

An open region with PML is shown in Fig. 5. The square in the center
is the computational region and the squares around the center one are
the PML regions, which have attenuation factors

ωη = Kmaxω
|η − ηb|p

dp
, η = x, y, z (44)

those are used in (12)–(15).
For the 2D TMz case, ωz is zero. Ẽ, E(1), E(2) have only ẑ

component and B̃, B(1), B(2) have x̂ and ŷ components. Usually Kmax

is a constant between 5 and 12, and p is the order of the attenuation
factor which can be chosen from 0 to 2. d is the thickness of the PML
region, ηb is the location of the interface shared by the PML region
and computational region.
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Figure 5. Mesh of an open region with PML.

The size of the computational region is 0.2m× 0.2m with air; the
source is first derivative of BHW pulse with characteristic frequency
of 200 MHz located at (0.05 m, 0.05m); the observer is located at
(−0.05m,−0.05m). We choose p = 1 and Kmax = 10, and the electric
field intensity at the observer is shown in Fig. 6(a). The errors of the
received signals from different thickness of the PML region is shown
in Fig. 6(b). It can be observed that, when d = 0.5m, the error is
less than 0.5%, which can be regarded as an acceptable error. As
the central frequency of first derivative of BHW pulse in this case is
about 300 MHz, 0.5m is about half of the wavelength. So λ

2 can be an
economic choice for this strongly well-posed PML thickness.
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Figure 6. PML performance of different thickness d. (a) Received
signals; (b) relative errors (the received signal of d = 1 m is chosen as
the reference).

A comparison between result from FDTD (Wavenology) and result
from EB FETD with PML thickness of d = 0.5m is shown Fig. 7.
There is no reflection and the two results agree well, so the EB FETD
with PML is effective to simulate the unbounded region.



398 Ren, Tobón, and Liu

0 5 10 15 20
 -1

 -0.5

0

0.5

1

Time (ns)

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e
 

FETD with PML

FDTD (Wavenology)

Figure 7. Comparison between EB scheme FETD with PML and
FDTD.

4.3. DG-FETD with Multi-domains

A non-conformal TMz FETD case is investigated to verify the
effectiveness and advantage of the DG-FETD method based on the EB
scheme. The basis functions are E1B1. As shown in Fig. 8(a), the size
of the PEC cavity is 1.6 m×1.2m, and it is divided into 3 subdomains.
The interface locations are x = −0.3m and x = 0.3m. As shown, there
are two PEC objects, a rectangle and a circle. Due to the existence of
these objects, a relatively fine mesh is needed. The sampling density
in terms of PPW (number of points per wavelength) for the three
subdomains are 8, 11 and 8, respectively. The mesh of the same case
with a single domain FETD is shown in Fig. 8(b). Without domain
decomposition, the whole computation region needs a fine mesh, that
is, the sampling density is about 11 PPW. The source is the first
derivative of BHW pulse [40] with characteristic frequency of 200 MHz
located at (−0.5 m, 0m), and the observer is located at (0.5m, 0m).
Observation window is 50 ns. The time-domain result obtained from
the proposed EB scheme based DG-FETD method is compared to
the results from single domain FETD and FDTD methods. The
computation load and accuracy comparison is in Table 3. We can see
the three time domain results agree well in Fig. 9. Taking the dense
meshed FDTD results as the reference solution, the L2 error of DG-
FETD is less than 2 percents, that is, including the interfaces between
subdomains does not obviously decrease the accuracy, compared to 1.3
percent error in that of a single domain FETD method. However, the
speedup of the DG-FETD is obvious: it only takes about one fourth of
the time of the single domain FETD method and about one tenth of
the FDTD method. The reason lies in the following aspects: first, the
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ability of meshing fine structures enables the FETD to avoid many of
the wasted unknowns for the coarse part, and the time step interval
can be larger than FDTD because FDTD needs small cells to catch
the geometry of the fine structure; second, compared to single domain
FETD, the DG-FETD can have less unknowns for the coarse mesh part
via a non-conformal mesh; third, for DG-FETD, the system is divided
into a few smaller ones, and the inversion of the matrices for these
smaller systems is faster than the inversion of the big matrix which
contains all the unknowns in the computation region. So the proposed
EB scheme based DG-FETD method is computationally economic
compared to the single domain EB scheme FETD and FDTD methods,
and has the potential of application to large scale or/and multiscale
problems with efficiency improvement over previous methods.

(a) (b)

Figure 8. Mesh of the cavity. (a) DG-FETD mesh of 3 subdomains;
(b) single domain FETD mesh.
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Figure 9. Time domain results comparison.
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Table 3. Computational costs comparison.

EB DG-FETD EB FETD FDTD
Maximal ∆t (ps) 21.4 19.6 2.1
CPU time (sec) 4.95 22.58 51.04

DoF 5893 9392 8908
L2 error 1.892 1.371 0

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new FETD method for Maxwell’s
equations which is based on the variables E and B with Galerkin’s
method. Compared to the widely used EH scheme FETD, it can
suppress the spurious modes with the same order basis functions for
E and B. Therefore the total number of unknowns can be much fewer
than the EH scheme, and the computation costs will be reduced.
In addition, a strongly well-posed PML is implemented with the
newly proposed EB scheme FETD and shown to be effective. An
optimistic choice of the PML region thickness is found which can be
used as an empirical reference in the future research. Then this EB
scheme based FETD is extended to domain decomposition, where the
central flux is employed to fulfill the energy communication between
the adjacent subdomains. This new algorithm, EB scheme based
DG-FETD method, is shown to be accurate and advantageous in
computation loads.

The effectiveness of the algorithms developed here are demon-
strated with 2D TMz numerical results, but it is straightforward to
apply this to the DH based FETD and DG-FETD methods in 2D. In
the following research, the new EB scheme based FETD can be ex-
tended to 3D cases to test the effectiveness. The advantage is expected
to become even more obvious for 3D problems. As the leap frog scheme
is chosen to be the time stepping scheme, the hybrid methods, such
as combining FDTD with EB scheme based FETD, can be introduced
for further enhancing computation efficiency.
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