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Electromagnetic Wave Scattering from Rough Boundaries Interfacing
Inhomogeneous Media and Application to Snow-Covered Sea Ice

Alexander S. Komarov1, 2, *, Lotfollah Shafai1, and David G. Barber2

Abstract—In this study a new analytical formulation for electromagnetic wave scattering from rough
boundaries interfacing inhomogeneous media is presented based on the first-order approximation of the
small perturbation method. First, we considered a scattering problem for a single rough boundary
embedded in a piecewise continuously layered medium. As a key step, we introduced auxiliary wave
propagation problems that are aimed to link reflection and transmission coefficients in the layered media
with particular solutions of one-dimensional wave equations at the mean level of the rough interface. This
approach enabled us to express the final solution in a closed form avoiding a prior discretization of the
inhomogeneous medium. Second, we naturally extended the obtained solution to an arbitrary number
of rough interfaces separating continuously layered media. As a validation step, we demonstrated that
available solutions in the literature represent special cases of our general solution. Furthermore, we
showed that our numerical results agree well with published data. Finally, as a particular special case,
we presented a formulation for scattering from inhomogeneous snow-covered sea ice when the dominant
scattering occurs at the snow-ice and air-snow interfaces.

1. INTRODUCTION

Accelerated decline of the Arctic sea ice extent [1] and thickness [2, 3] causes dramatic changes in
the coupled ocean-sea ice-atmosphere system. Over the past three decades the ice-albedo feedback
mechanism played a major role in a pervasive increase in the amount of solar energy deposited in the
upper Arctic Ocean, with maximum values of 4% per year [4]. Larger heat fluxes from the ocean
to the atmosphere are expected to cause significant warming of the Arctic region [5]. Furthermore,
extensive solar heating led to a sharp depletion of thick multiyear (MY) ice and concomitantly increased
proportion of first-year (FY) ice. Monitoring, modeling and predicting these climatic changes in the
Arctic is becoming increasingly important because of the increase in development of recently accessible
Arctic resources.

Microwave radar remote sensing has been extensively used for detecting dynamic [6, 7] and
thermodynamic changes [8] in sea ice. However, improved algorithms for extracting key parameters
of sea ice from radar observations such as synthetic aperture radar (SAR) imagery are still required.
To better understand the linkage between the geophysical and thermodynamic state of sea ice and
radar signatures, modeling techniques for electromagnetic wave scattering from snow-covered sea ice are
particularly important. These models should reproduce scattering characteristics in the bistatic case
(when transmitter and receiver antennas are spanned in space) to anticipate future bistatic spaceborne
SAR systems [9].

In the literature various approaches to modeling of electromagnetic wave scattering from rough
surfaces can be found.
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Semi-empirical composite scattering models [10–12] allow to naturally account for volume scattering
in sea ice (based on the radiative transfer theory [13]); however, the surface scattering terms in these
models need to be separately determined from empirically or physically based theories.

All other models considered are based on solution of Maxwell’s equations. They can be classified
into numerical and analytical (wave theory) methods. Unlike the radiative transfer models, the physical
models are able to provide phase information as well.

Numerical finite-difference time-domain (FDTD) [14, 15] and finite-volume time-domain
(FVTD) [16] methods exactly solve Maxwell’s equations, within numerical approximation. These meth-
ods can account for surface and subsurface roughness and an arbitrary behavior of the dielectric constant
within the media. However, the time domain methods require significant computational resources due
to a number of reasons. Among them are (a) numerous realizations of the random rough surface, and
(b) extremely fine mesh in the situations where absorption is high (e.g., sea water under the ice). Un-
fortunately, the computational constrains make the numerical methods difficult to apply to practical
remote sensing problems such as simulation of temporal changes in SAR signatures over the sea ice.

Analytical methods are aimed to derive a closed-form solution of Maxwell’s equation under various
approximations. These methods are not computationally expensive and thereby more suitable for
practical geophysical applications. The small perturbation method (SPM) was introduced by Rice [17]
in 1951 to analytically describe wave scattering from slightly rough surfaces. Since then the SPM theory
was extended to solving more complex scattering problems. In [18] an SPM solution for wave scattering
from a rough surface embedded in a three-layered structure was derived. Scattering from a layered
structure with a rough upper boundary was treated in [19]. In [20] a unified formulation of perturbative
solutions derived by [18, 19] was presented. Later the SPM solution was extended to scattering from
two [21] and several rough interfaces [22] embedded in a layered medium. The recent study by [22]
presents an SPM solution for the medium treated as a number of homogeneous discrete layers separated
by rough interfaces. Meanwhile, most natural media (e.g., snow, ice, soil) have continuous profiles of
dielectric constants and a few rough interfaces separating the inhomogeneous media. Therefore, it is
important to consider the SPM formalism for wave scattering from rough surfaces interfacing continuous
dielectric fillings between them.

Our main goal is to build a geoscience user-oriented SPM solution expressed through physically
meaningful reflection and transmission coefficients associated with the continuously layered media
(e.g., snow, ice, soil). These reflection and transmission coefficients could be either modelled through
discretization of the layered media, in some cases found analytically, or measured directly (in the field
or laboratory).

An important application of the SPM theory is modeling of microwave scattering from the FY snow-
covered sea ice. This type of ice is anticipated to prevail in the Arctic Ocean in the near future [23]. In the
frequency range between 0.5 GHz (P-band) and 10 GHz (X-band) the dominant scattering mechanism
for the FY ice is the surface scattering from two rough interfaces: air-snow and snow-ice interfaces [24].
Both interfaces are slightly rough in these frequency bands, and thereby, the SPM theory is applicable
to model microwave interactions with snow-covered FY sea ice.

Thus, in this study we pursue three main objectives. (1) To derive a general analytical formulation
for electromagnetic wave scattering from an arbitrary number of rough interfaces separating continuously
layered media with the use of the first-order approximation of the SPM theory. The solution must be
expressed through complex reflection and transmission coefficients associated with the inhomogeneous
media. (2) To validate the obtained solution by treating special cases available in the literature
and comparing numerical results with those available in the literature. (3) To present an analytical
formulation for electromagnetic wave scattering from snow-covered sea ice as a special case of the
general solution.

2. STATEMENT OF SCATTERING PROBLEM

Geometry of the general scattering problem is displayed in Figure 1 in cylindrical coordinates {ρ, z}.
The area z > 0 is a free space with relative permittivity and permeability of one. Complex dielectric
constant (CDC) and complex magnetic constant (CMC) of the inhomogeneous half space z < 0 are
described by piecewise continuous functions through a set of continuous functions εn(z), μn(z) such
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that their derivatives are continuous within layers −dn < z < −dn−1. The continuously inhomogeneous
media are separated by N rough interfaces located at z = −dn, where n = 0, 1, 2, . . . , N − 1, and
d0 = 0. Suppose, that roughness of interfaces is described by stationary random functions ζn(ρ) with
zero average value 〈ζn(ρ)〉 = 0, where the sharp brackets 〈. . .〉 denote ensemble averaging. A plane
electromagnetic monochromatic wave with circular frequency ω, harmonic time dependence e−iωt and
an arbitrary polarization is incident upon this structure. The incidence angle is 0 ≤ Θ0 <

π
2 relative to

the vertical axis z.
Our purpose is to determine electromagnetic fields in far zone in the upper half-space and to

calculate the normalized radar cross-sections (NRCS) σV V , σHH , σHV and σV H as functions of azimuth
and elevation angles in the upper half-space z > 0. We assume that the formulated problem is considered
within the validity range of the first-order approximation of the SPM theory.

3. DERIVATION OF SOLUTION

First, we derive a formulation for a key scattering problem with a single rough interface ζn(ρ) located
at z = −dn, where n = 0, 1, 2, . . . , N − 1, and d0 = 0. Then we generalize the obtained solution for
an arbitrary number of rough boundaries. The SPM formalism applies to surfaces with a small surface
height variation and small surface slopes with respect to the incident wavelength [25]:

kLn < 3, kσn < 0.3,
σn

Ln
< 0.3, (1)

where k is the wave number in the medium, Ln the correlation length, and σn =
√〈ζ2

n〉 the standard
deviation of the rough surface ζn(ρ). Also, we assume that the gradient of the dielectric constant in the
vicinity of the rough interface is small, i.e.,

∣∣∣ε′(−dn±0)
ε(−dn±0)

∣∣∣σn � 1. Following the first-order approximation
of the SPM formalism the electric and magnetic fields are expanded in a perturbation series [26–28] as
follows:

E(ρ, z) ≈ E(0)(ρ, z) + E(1)(ρ, z)

H(ρ, z) ≈ H(0)(ρ, z) + H(1)(ρ, z)
, (2)

where E(0), H(0) are zero-order fields when the roughness is absent, and E(1), H(1) are first-order
fields dependent on the roughness function [28]. The first-order fields represent a random component
of the electromagnetic field due to the rough interface. Thus, the roughness influence is taken into
account by a random additive component (first-order fields). To solve the scattering problem with
only one rough interface at z = −dn zero-order and first-order fields must be defined in three regions:
z ≥ 0, −dn ≤ z ≤ 0 and z ≤ −dn. Since we have the only rough interface at z = −dn we introduce the
boundary conditions for zero-order and first-order fields at z = 0 and z = −dn as follows.

Zero-order approximation:
At z = 0:

E(0)
t (ρ,+0) − E(0)

t (ρ,−0) = 0,

H(0)
t (ρ,+0) − H(0)

t (ρ,−0) = 0.
(3)

At z = −dn:

E(0)
t (ρ,−dn + 0) − E(0)

t (ρ,−dn − 0) = 0,

H(0)
t (ρ,−dn + 0) − H(0)

t (ρ,−dn − 0) = 0.
(4)

First-order approximation:
At z = 0:

E(1)
t (ρ,+0) − E(1)

t (ρ,−0) = 0,

H(1)
t (ρ,+0) − H(1)

t (ρ,−0) = 0.
(5)
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At the rough interface z = −dn [28]:

E(1)
t (ρ,−dn + 0) − E(1)

t (ρ,−dn − 0) = −ζn(ρ)

[(
∂E(0)

t

∂z

)
z=−dn+0

−
(
∂E(0)

t

∂z

)
z=−dn−0

]

−∇⊥ζn(ρ)
[
E(0)

z (ρ,−dn + 0) − E(0)
z (ρ,−dn − 0)

]
,

H(1)
t (ρ,−dn + 0) −H(1)

t (ρ,−dn − 0) = −ζn(ρ)

[(
∂H(0)

t

∂z

)
z=−dn+0

−
(
∂H(0)

t

∂z

)
z=−dn−0

]

−∇⊥ζn(ρ)
[
H(0)

z (ρ,−dn + 0) −H(0)
z (ρ,−dn − 0)

]
,

(6)

where ∇⊥ is the gradient operator in the horizontal plane (x-y). Two sets of boundary conditions (3)
(at z = 0) and (4) (at z = −dn) are introduced in order to express zero-order fields through reflection
and transmission coefficients associated with the inhomogeneous slab −dn ≤ z ≤ 0 and the reflection
coefficient from the half-space z ≤ −dn. Zero-order fields are required only to determine magnitudes of
the first-order fields through boundary conditions (6).

Below we present formulations for zero-order and first-order fields.

3.1. Zero-order Fields

The total zero-order fields do not contain scattering components, and they should satisfy regular
boundary conditions (3) and (4) at smooth interfaces.

Electromagnetic fields in an arbitrary layered medium are described by one-dimensional wave
equations (for horizontal and vertical polarizations) with nonconstant coefficients dependent on the
vertical coordinate z. These differential equations could potentially be solved numerically with respect
to the electromagnetic fields. At the same time, the general solution for fields in a finite inhomogeneous
layer can be expressed as a superposition of particular solutions of auxiliary Cauchy problems for a
given wave equation. These solutions define the field distribution in the medium as well as magnitudes
of reflected and transmitted waves at the interfaces.

3.1.1. Fields in the Air Half-space z ≥ 0

In the upper half-space zero-order fields are presented as a superposition of the incident and specularly
reflected plane waves. In our problem it is convenient to represent magnitudes of electric E(0) and
magnetic H(0) fields through an expansion over the basis vectors {ρ̂, φ̂, ẑ} of the cylindrical coordinate
system as our medium is homogeneous with respect to the azimuth angle and inhomogeneous with
respect to the vertical coordinate only. This means that all the reflection and transmission coefficients
do not depend on the azimuth angle. Also, the total field is symmetric with respect to the azimuth
incidence angle Φ0. The basis vectors {ρ̂, φ̂, ẑ} of the cylindrical coordinate system are linked with the
Cartesian unit vectors {x̂, ŷ} as follows:

ρ̂ = x̂ cos Φ0 + ŷ sinΦ0

φ̂ = −x̂ sin Φ0 + ŷ cos Φ0.

It is worthwhile to point out that we consider a general case Φ0 	= 0 in order to take into account more
complex problems. For example, for anisotropic rough surfaces it could be more convenient to choose
the coordinate system associated with the principal direction of anisotropy (and not with the direction
of wave propagation).

The zero-order fields in the upper half space can be expressed as follows:

E(0)(ρ, z) =
{
EH

[
e−iw0(q0)z + 
H(q0)eiw0(q0)z

]
φ̂− EV

w0(q0)
k0

[
e−iw0(q0)z −
V (q0)eiw0(q0)z

]
ρ̂

−EV
q0
k0

[
e−iw0(q0)z + 
V (q0)eiw0(q0)z

]
ẑ

}
eiq0ρ, (7a)
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H(0)(ρ, z) =
1
Z0

{
EV

[
e−iw0(q0)z + 
V (q0)eiw0(q0)z

]
φ̂+ EH

w0(q0)
k0

[
e−iw0(q0)z −
H(q0)eiw0(q0)z

]
ρ̂

+EH
q0
k0

[
e−iw0(q0)z + 
H(q0)eiw0(q0)z

]
ẑ

}
eiq0ρ. (7b)

In (7a) and (7b) EH and EV denote magnitudes of the electric field of the incident wave for
horizontal and vertical polarizations respectively. k0 = ω

√
ε0μ0, and Z0 =

√
μ0/ε0 are the wave number

and impedance in free space respectively; ρ = xx̂+ yŷ = ρ(x̂ cosϕ + ŷ sinϕ) is a position vector of an
observation point in the horizontal plane, where ϕ is an azimuth angle of the observation point. Also
q0 = k0 sin Θ0 (x̂ cos Φ0 + ŷ sinΦ0) = k0 sin Θ0ρ̂ is the longitudinal wave vector which is a projection
of the wave vector in the air onto the horizontal plane. The transverse wave number is a projection
of the incident wave vector onto the axis z which can be written as w0(q0) =

√
k2

0 − q20 = k0 cos Θ0.

H,V (q0) are reflection coefficients from the entire inhomogeneous structure z ≤ 0 for horizontal and
vertical polarization with respect to electric and magnetic fields respectively. Solution (7a) and (7b)
satisfy Maxwell’s equations, boundary conditions at z = 0 and the conditions at infinity.

3.1.2. Fields in the Inhomogeneous Medium −dn ≤ z ≤ 0

In the inhomogeneous medium a closed-form analytical solution does not exist; however, the solution
can be expressed through piecewise continuous functions u(0)

H (q0, z) and u(0)
V (q0, z) as follows:

E(0)(ρ, z) =
{
u

(0)
H (q0, z)φ̂+

1
ik0ε(z)

u
′(0)
V (q0, z)ρ̂− q0

k0ε(z)
u

(0)
V (q0, z)ẑ

}
eiq0ρ, (8a)

H(0)(ρ, z) =
1
Z0

{
u

(0)
V (q0, z)φ̂− 1

ik0μ(z)
u
′(0)
H (q0, z)ρ̂+

q0
k0μ(z)

u
(0)
H (q0, z)ẑ

}
eiq0ρ, (8b)

where

u
(0)
H,V (q0, z) = c

(0)
1H,V u1H,V (q0, z) + c

(0)
2H,V u2H,V (q0, z). (9)

In Equations (8a) and (8b) the stroke denotes a derivative with respect to z. In (9) u1H,V (q0, z) and
u2H,V (q0, z) are particular solutions of one-dimensional wave equations for continuously layered media
given as follows:

μ(z)
d

dz

[
1

μ(z)
du1,2H(q0, z)

dz

]
+
[
k2(z) − q20

]
u1,2H(q0, z) = 0, (10)

ε(z)
d

dz

[
1
ε(z)

du1,2V (q0, z)
dz

]
+
[
k2(z) − q20

]
u1,2V (q0, z) = 0, (11)

where k(z) = k0

√
ε(z)μ(z). We accept that the introduced particular solutions satisfy the following

initial conditions at the upper boundary z = 0:

u1H(q0, 0) = 1, u′1H(q0, 0) = 0, u2H(q0, 0) = 0, u′2H(q0, 0) = iμ1(0)w0(q0), (12)
u1V (q0, 0) = 1, u′1V (q0, 0) = 0, u2V (q0, 0) = 0, u′2V (q0, 0) = iε1(0)w0(q0). (13)

Wronskians of these particular solutions at z = −dn are equal to:

u1H(q0,−dn)u′2H(q0,−dn) − u′1H(q0,−dn)u2H(q0,−dn) = iμn(−dn)w0(q0)
u1V (q0,−dn)u′2V (q0,−dn) − u′1V (q0,−dn)u2V (q0,−dn) = iεn(−dn)w0(q0)

}
. (14)

3.1.3. Fields in Half-space z ≤ −dn

In the lower half-space zero-order fields are given by:

E(0)(ρ, z) =
{
v

(0)
H (q0, z)φ̂+

1
ik0ε(z)

v
′(0)
V (z)ρ̂− q0

k0ε(z)
v

(0)
V (q0, z)ẑ

}
eiq0ρ, (15a)
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H(0)(ρ, z) =
1
Z0

{
v

(0)
V (q0, z)φ̂ − 1

ik0μ(z)
v
′(0)
H (z)ρ̂+

q0
k0μ(z)

v
(0)
H (q0, z)ẑ

}
eiq0ρ, (15b)

where v(0)
H,V (q0, z) are solutions of wave Equations (10) and (11).

Plugging zero-order fields in boundary conditions (3) and (4) we obtain the following:

c
(0)
1H,V =

EH,V

iw0(q0)
[
ik0M

n
H,V (q0)u2H,V (q0,−dn) + Ln

H,V (q0)u′2H,V (q0,−dn)
]
,

c
(0)
2H,V = − EH,V

iw0(q0)
[
ik0M

n
H,V (q0)u1H,V (q0,−dn) + Ln

H,V (q0)u′1H,V (q0,−dn)
]
,

(16)

where

Ln
H,V (q0) =

w0(q0)
wn(q0)

T n
H,V (q0)

1 − rn
H,V (q0)Rn

H,V (q0)
[
1 + rn

H,V (q0)
]
, (17)

Mn
H,V (q0) =

w0(q0)
k0

T n
H,V (q0)

1 − rn
H,V (q0)Rn

H,V (q0)
[
1 − rn

H,V (q0)
]
. (18)

To obtain (16) we also needed to derive the following relationships:

v
′(0)
H (q0,−dn)

v
(0)
H (q0,−dn)

= −iwn(q0)
μn+1(−dn)
μn(−dn)

1 − rn
H(q0)

1 + rn
H(q0)

, (19a)

v
′(0)
V (q0,−dn)

v
(0)
V (q0,−dn)

= −iwn(q0)
εn+1(−dn)
εn(−dn)

1 − rn
V (q0)

1 + rn
V (q0)

. (19b)

In (17) and (18), T n
H,V (q0) and Rn

H,V (q0) are transmission and reflection coefficients for a set of upper
layers in the area z > −dn, when the wave propagates from a homogeneous half-space z < −dn with
CDC εn(−dn) and CMC μn(−dn) for horizontal and vertical polarizations respectively.

In (17)–(19), wn(q0) =
√
k2

0εn(−dn)μn(−dn) − q20, Imwn ≥ 0; rn
H,V (q0) are reflection coefficients in

the problem where a plane wave is incident from a homogeneous area z > −dn with CDC εn(−dn) and
CMC μn(−dn) upon the inhomogeneous half-space z < −dn.

If the rough boundary is located on top of the inhomogeneous structure (i.e., n = 0) then
T 0

H,V (q0) = 1, R0
H,V (q0) = 0 , r0H,V (q0) = 
H,V (q0). In this special case Equations (17) and (18)

can be reduced as follows:
L0

H,V (q0) = 1 + 
H,V (q0), (20)

M0
H,V (q0) =

w0(q0)
k0

[1 −
H,V (q0)] . (21)

Using expressions (16) for coefficients c(0)1,2H,V and Wronskians (14) in conjunction with equations for
zero-order fields, the required expressions for boundary conditions (6) can be written as follows:

E(0)
z (−dn + 0) − E(0)

z (−dn − 0) = − Δεn+1q0
εn+1(−dn)k0

EV L
n
V (q0)eiq0ρ,

∂E(0)
t

∂z

∣∣∣∣∣
z=−dn+0

− ∂E(0)
t

∂z

∣∣∣∣∣
z=−dn−0

= − ik0

[
EV

(
Δμn+1εn(−dn) +

Δεn+1

εn+1(−dn)
q20
k2

0

)
Ln

V (q0)ρ̂

−Δμn+1EHM
n
H(q0)φ̂

]
eiq0ρ

, (22)

H(0)
z (−dn + 0) −H(0)

z (−dn − 0) =
1
Z0

Δμn+1q0
μn+1(−dn)k0

EHL
n
H(q0)eiq0ρ,

∂H(0)
t

∂z

∣∣∣∣∣
z=−dn+0

− ∂H(0)
t

∂z

∣∣∣∣∣
z=−dn−0

=
ik0

Z0

[
EH

(
Δεn+1μn(−dn) +

Δμn+1

μn+1(−dn)
q20
k2

0

)
Ln

H(q0)ρ̂

+Δεn+1EVM
n
V (q0)φ̂

]
eiq0ρ.

(23)
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In these expressions we introduced dielectric and magnetic contrasts at the boundary z = −dn as
Δεn+1 = εn+1(−dn) − εn(−dn) and Δμn+1 = μn+1(−dn) − μn(−dn) respectively.

3.2. First-order Fields in Integral Form

First-order approximation defines scattered fields by a rough surface. The scattered field is random and
can be treated as a superposition of infinite number of plane waves outgoing in different directions from
the rough interface. Therefore, it is convenient to represent the first-order fields through the Fourier
integral. A Fourier transform of the rough surface is introduced as follows:

ζ̃n(ξ − q0) =
∫∫

ζn(ρ′)e−i(ξ−q0)ρ′
dρ′. (24)

The magnitudes of spectral functions can be found through boundary conditions for the first-order
approximation. Below we provide integral representations of the first-order fields in three media.

3.2.1. Fields in the Air Half-Space z ≥ 0

In the upper half-space the first-order fields from the nth rough boundary can be written as follows:

E(1)(ρ, z) =
1

(2π)2

∫∫ {
a

(1)n
H (ξ)ψ̂ +

w0(ξ)
k0

a
(1)n
V (ξ)ξ̂ − ξ

k0
a

(1)n
V (ξ)ẑ

}
ζ̃n(ξ − q0)eiw0(ξ)z+iξρdξ, (25a)

H(1)(ρ, z) =
1

Z0(2π)2

∫∫ {
a

(1)n
V (ξ)ψ̂−w0(ξ)

k0
a

(1)n
H (ξ)ξ̂ +

ξ

k0
a

(1)n
H (ξ)ẑ

}
ζ̃n(ξ−q0)eiw0(ξ)z+iξρdξ, (25b)

where a
(1)n
H,V (ξ) are magnitudes of the scattered field. The functions under the integral sign are

represented as expansions over a basis in the cylindrical coordinate system {ξ, ψ, z} in the wave numbers’
space. ψ̂ and ξ̂ are the azimuth and radial unit vectors associated with the floating coordinate system
in the wave numbers’ space. In (25) dξ = ξdξdψ and the vertical component of the wave number of
partial plane waves in free space is given by w0(ξ) =

√
k2

0 − ξ2 , Imw0(ξ) ≥ 0.

3.2.2. Fields in the Medium −dn ≤ z ≤ 0

In the inhomogeneous medium the first-order fields can be given by:

E(1)(ρ, z)=
1

(2π)2

∫∫ {
u

(1)
H (ξ, z)ψ̂ +

1
ik0ε(z)

u
′(1)
V (ξ, z)ξ̂ − ξ

k0ε(z)
u

(1)
V (ξ, z)ẑ

}
ζ̃n(ξ−q0)eiξρdξ, (26a)

H(1)(ρ, z)=
1

Z0(2π)2

∫∫ {
u

(1)
V (ξ, z)ψ̂− 1

ik0μ(z)
u
′(1)
H (ξ, z)ξ̂+

ξ

k0μ(z)
u

(1)
H (ξ, z)ẑ

}
ζ̃n(ξ−q0)eiξρdξ, (26b)

where

u
(1)
H,V (ξ, z) = c

(1)n
1H,V (ξ)u1H,V (ξ, z) + c

(1)n
2H,V (ξ)u2H,V (ξ, z). (27)

In the last equation u1,2H(ξ, z) and u1,2V (ξ, z) are particular solutions of wave Equations (10) and (11)
except that the longitudinal wave number q0 is replaced by ξ.

We accept that the introduced particular solutions satisfy the following initial conditions at the
upper boundary z = 0:

u1H(ξ, 0) = 1, u′1H(ξ, 0) = 0, u2H(ξ, 0) = 0, u′2H(ξ, 0) = iμ1(0)w0(ξ), (28)
u1V (ξ, 0) = 1, u′1V (ξ, 0) = 0, u2V (ξ, 0) = 0, u′2V (ξ, 0) = iε1(0)w0(ξ). (29)

3.2.3. Fields in the Half-Space z ≤ −dn

In the lower half-space the first-order fields can be represented as follows:

E(1)(ρ, z) =
1

(2π)2

∫∫ {
v

(1)
H (ξ, z)ψ̂ +

1
ik0ε(z)

v
′(1)
V (ξ, z)ξ̂ − ξ

k0ε(z)
v

(1)
V (ξ, z)ẑ

}
ζ̃n(ξ − q0)eiξρdξ, (30a)
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H(1)(ρ, z)=
1

Z0(2π)2

∫∫ {
v

(1)
V (ξ, z)ψ̂− 1

ik0μ(z)
v
′(1)
H (ξ, z)ξ̂+

ξ

k0μ(z)
v

(1)
H (ξ, z)ẑ

}
ζ̃n(ξ − q0)eiξρdξ , (30b)

where v(1)
H,V (ξ, z) are solutions of wave Equations (10) and (11) with the replacement of q0 by ξ.

3.3. Spectral Magnitudes of the Scattered Field from the Rough Surface

Substituting the first-order fields into the boundary conditions (5) at the smooth interface z = 0 and
taking into account (28) and (29), we obtain the following:

c
(1)n
1H,V (ξ) = c

(1)n
2H,V (ξ) = a

(1)n
H,V (ξ). (31)

Then plugging the first-order fields in boundary conditions (6) accounting for Equations (22) and (23),
and applying the Fourier transform to both sides of the obtained pair of equations we derive the following
relationships for magnitudes a(1)n

H,V (ξ) in the air:

a
(1)n
H (ξ) =

EHμn(−dn)k2
0

2iw0(ξ)

[
− Δεn+1μn(−dn)Ln

H(q0)Ln
H(ξ) cos(ψ − Φ0)

− Δμn+1ξq0
μn+1(−dn)k2

0

Ln
H(q0)Ln

H(ξ) +
Δμn+1

μn(−dn)
Mn

H(q0)Mn
H(ξ) cos(ψ − Φ0)

]

−EV μn(−dn)k2
0

2iw0(ξ)

[
Δεn+1M

n
V (q0)Ln

H(ξ)−Δμn+1εn(−dn)
μn(−dn)

Ln
V (q0)Mn

H(ξ)
]

sin(ψ−Φ0), (32)

a
(1)n
V (ξ) = −EV εn(−dn)k2

0

2iw0(ξ)

[
Δμn+1εn(−dn)Ln

V (q0)Ln
V (ξ) cos(ψ − Φ0)

+
Δεn+1ξq0

εn+1(−dn)k2
0

Ln
V (q0)Ln

V (ξ) − Δεn+1

εn(−dn)
Mn

V (q0)Mn
V (ξ) cos(ψ − Φ0)

]

+
EHεn(−dn)k2

0

2iw0(ξ)

[
Δμn+1M

n
H(q0)Ln

V (ξ)−Δεn+1μn(−dn)
εn(−dn)

Ln
H(q0)Mn

V (ξ)
]

sin(ψ−Φ0). (33)

3.4. Normalized Radar Cross-Sections

First-order fields in far zone are estimated using the method of stationary phase [29]. Then, radar
cross-sections are calculated through the Poynting vector of electromagnetic field in far zone. We omit
details of this part and present the derived radar cross-sections for co- and cross-polarized components
at the observation point (θ, ϕ):

σn
αβ(θ, ϕ) =

k4
0

4π

∣∣∣a(1)n
αβ (θ, ϕ)

∣∣∣2 K̃n(q − q0), (34)

where subscripts α = H,V and β = H,V denote polarizations of the incident (α) and the scattered (β)
waves respectively. In (34) we have:

a
(1)n
HH (θ, ϕ) =

2w0(q)
k2

0EH
a

(1)n
H (q)

∣∣∣
EV =0

, a
(1)n
V V (θ, ϕ) =

2w0(q)
k2

0EV
a

(1)n
V (q)

∣∣∣
EH=0

, (35)

a
(1)n
HV (θ, ϕ) =

2w0(q)
k2

0EH
a

(1)n
V (q)

∣∣∣
EV =0

, a
(1)n
V H (θ, ϕ) =

2w0(q)
k2

0EV
a

(1)n
H (q)

∣∣∣
EH=0

. (36)

Also q = k0 sin θ (x̂ cosϕ+ ŷ sinϕ); K̃n(q − q0) is the spatial power spectral density of the roughness
linked with the autocorrelation function Kn(ρ) = 〈ζn(ρ + ρ′)ζn(ρ′)〉 at interface z = −dn as follows:

K̃n(q − q0) =
∫∫

Kn(ρ)e−i(q−q0)ρdρ. (37)
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Magnitudes of the scattered field in the direction of observation (θ, ϕ) are the following:

a
(1)n
HH (θ, ϕ) = i

[
Δεn+1μ

2
n(−dn)Ln

H(q0)Ln
H(q) cos(ϕ− Φ0) + Δμn+1

μn(−dn)qq0
μn+1(−dn)k2

0

Ln
H(q0)Ln

H(q)

−Δμn+1M
n
H(q0)Mn

H(q) cos(ϕ− Φ0)
]
, (38)

a
(1)n
V V (θ, ϕ) = i

[
Δμn+1ε

2
n(−dn)Ln

V (q0)Ln
V (q) cos(ϕ− Φ0) + Δεn+1

εn(−dn)qq0
εn+1(−dn)k2

0

Ln
V (q0)Ln

V (q)

−Δεn+1M
n
V (q0)Mn

V (q) cos(ϕ− Φ0)
]
, (39)

a
(1)n
HV (θ, ϕ) = −i [Δμn+1εn(−dn)Mn

H(q0)Ln
V (q) − Δεn+1μn(−dn)Ln

H(q0)Mn
V (q)] sin(ϕ− Φ0), (40)

a
(1)n
V H (θ, ϕ) = i [Δεn+1μn(−dn)Mn

V (q0)Ln
H(q) − Δμn+1εn(−dn)Ln

V (q0)Mn
H(q)] sin(ϕ − Φ0). (41)

Thus, the general formulations for NRCS of the initial problem displayed in Figure 1 can be written as
follows:

σαβ(θ, ϕ) =
k4

0

4π

N−1∑
n=0

⎧⎨
⎩
∣∣∣a(1)n

αβ (θ, ϕ)
∣∣∣2 K̃n(q− q0) +

∑
m�=n

Re
[
a

(1)m
αβ (θ, ϕ)a(1)n ∗

αβ (θ, ϕ)
]
K̃mn(q − q0)

⎫⎬
⎭, (42)

where the asterisk denotes the complex conjugate and the cross power spectral density between interfaces
m and n is defined as follows:

K̃mn(q − q0) =
∫∫

Kmn(ρ)e−i(q−q0)ρdρ. (43)

In the last equation the cross-correlation function between interfaces m and n

Kmn(ρ) =
〈
ζm(ρ + ρ′)ζn(ρ′)

〉
.

If all rough surfaces are statistically independent, then the second term in Equation (42) disappears,
and the total radar cross-section is a sum of radar cross-sections from each of the rough interfaces:

σαβ(θ, ϕ) =
N−1∑
n=0

σn
αβ(θ, ϕ). (44)

It is worthwhile to note that for grazing elevation angles the accuracy of the SPM theory becomes
lower. At grazing elevation angles the shadowing effects (which are negligible at other angles) start
dominating [25]. These phenomena are not taken into account by the SPM theory. In the literature
there are attempts to introduce additional factors accounting for the shadowing effects in the second-
order approximation of the SPM theory for the cross-polarized signal [25]. In general, it is assumed that
the SPM theory is valid within the range from 20 to 60 degrees of incidence and observation elevation
angles. At the elevation angles close to nadir the mirror reflection appears. We would like to note
that elevation angles of currently operational radar systems fall within the range of validity of the SPM
theory. For example, incidence angles of Canadian RADARSAT-2 vary from 20 to 60 degrees [30].

3.5. Monostatic Scattering

In the monostatic case the receiver elevation and azimuth angles are θ = Θ0 and ϕ = π+Φ0 respectively.
Therefore, general equations from the previous section can be reduced to the following:

σ0
αα =

k4
0

4π

N−1∑
n=0

⎧⎨
⎩
∣∣∣a(1)n0

αα

∣∣∣2 K̃n(−2q0) +
∑
m�=n

Re
[
a(1)m0

αα a(1)n0 ∗
αα

]
K̃mn(−2q0)

⎫⎬
⎭, α = H,V, (45)
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Figure 1. Illustration of a general problem for wave scattering from rough interfaces separating
continuously layered media.

where

a
(1)n0
HH = i

[
Δμn+1

μn(−dn)q20
μn+1(−dn)k2

0

[Ln
H(q0)]

2 + Δμn+1 [Mn
H(q0)]

2 − Δεn+1μ
2
n(−dn) [Ln

H(q0)]
2

]
, (46)

a
(1)n0
V V = i

[
Δεn+1

εn(−dn)q20
εn+1(−dn)k2

0

[Ln
V (q0)]

2 + Δεn+1 [Mn
V (q0)]

2 − Δμn+1ε
2
n(−dn) [Ln

V (q0)]
2

]
. (47)

The cross-polarization components of the first-order solution for the monostatic case are zeros. However,
we expect that the second-order solution would provide a non-zero result for backscatter coefficients.
The derivation of such a second-order solution for wave scattering from a homogeneous rough half-space
is presented in [31]. Derivation of the second-order solution for wave scattering from rough boundaries
interfacing inhomogeneous media is an important topic of future research.

4. VALIDATION OF SOLUTION

In this section we consider three special cases of the derived general solution. In all cases the permeability
of all media is one. The obtained scattering characteristics for these cases are evaluated and compared
with formulations available in the literature. Furthermore, we calculate bistatic scattering coefficients
for a three-layered structure and compare the results with those available in the literature.

4.1. Scattering from a Rough Surface on Top of Homogeneous Half-Space

In the simplest case the wave is scattered by a rough surface ζ(ρ) on top of a homogeneous medium
with CDC ε1. Then L0

H,V (q0) = 1 + 
0
H,V (q0), M0

H,V (q0) = cos Θ0

[
1 −
0

H,V (q0)
]
, where 
0

H,V (q0)
are ordinary Fresnel reflection coefficients from a homogeneous half-space with CDC ε1 [32]. It is not
difficult to demonstrate that our general formulations for backscatter coefficients (45)–(47) are reduced
to the following:

σ0
HH =

4k4
0

π

∣∣∣∣∣∣∣
ε1 − 1[

cos Θ0 +
√
ε1 − sin2 Θ0

]2
∣∣∣∣∣∣∣
2

K̃(−2q0) cos4 Θ0, (48)
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σ0
V V =

4k4
0

π

∣∣∣∣∣∣∣(ε1 − 1)
(ε1 − 1) sin2 Θ0 + ε1[

ε1 cos Θ0 +
√
ε1 − sin2 Θ0

]2
∣∣∣∣∣∣∣
2

K̃(−2q0) cos4 Θ0, (49)

where K̃ is the spatial power spectral density of the rough surface. The obtained results are identical
to those presented among other sources in [12, 25, 26].

4.2. Scattering from a Rough Surface Embedded in a Three-Layered Structure

Consider wave scattering from a rough interface embedded in a three layered medium displayed in
Figure 2. The original solution of this problem was derived by Yarovoy et al. in [18], and an alternative
formulation in terms of reflection and transmission coefficients was proposed in [20]. In this case
each medium is homogeneous, i.e., ε1(z) = ε1, −d1 < z < 0, ε2(z) = ε2, −d2 < z < −d1,
ε3(z) = ε3, z < −d2 and in Equations (17), (18) n = 1. Also it is possible to show that T 1

H(q0) =
w1(q0)
w0(q0)τ01H(q0)eiw1(q0)d1 , T 1

V (q0) = w1(q0)
ε1w0(q0)

τ01V (q0)eiw1(q0)d1 , and R1
H,V (q0) = −r01H,V (q0)e2iw1(q0)d1 .

Here w1(q0) = k0

√
ε1 − sin2 Θ0, τ01H,V (q0) and r01H,V (q0) are Fresnel transmission and reflection

coefficients for the interface between air and medium 1 when wave is incident from the air.
rH,V (q0) ≡ r1H,V (q0) are reflection coefficients from the two-layered structure (medium 2 and medium
3). Substituting Equations (17) and (18) taken for n = 1 into our general formulations for backscatter
coefficients (45)–(47) we obtain:

σ0
HH =

k4
0

4π

∣∣∣∣∣∣(ε2 − ε1)

(
τ01H(q0)eiw1(q0)d1

1 + rH(q0)r01H(q0)e2iw1(q0)d1

)2

[1 + rH(q0)]
2

∣∣∣∣∣∣
2

K̃(−2q0), (50)

σ0
V V =

k4
0

4π

∣∣∣∣∣∣
ε2−ε1
ε1

(
τ01V (q0)eiw1(q0)d1

1+rV (q0)r01V (q0)e2iw1(q0)d1

)2{
sin2 Θ0

ε2
[1+rV (q0)]

2+
ε1−sin2 Θ0

ε1
[1−rV (q0)]

2

}∣∣∣∣∣∣
2

K̃(−2q0), (51)

where K̃ is the spatial power spectral density of the rough surface. These formulations are identical to
those presented in [20] for Yarovoy model [18].

Figure 2. Geometry of scattering from a rough
surface embedded in a three-layered medium.

Figure 3. Geometry of scattering from a rough
surface embedded in a layered medium.
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4.3. Scattering from a Rough Surface Embedded in a Discretely Layered Medium

Consider a more general case when an electromagnetic wave is scattered by a rough surface embedded
in a discretely layered medium shown in Figure 3.

Taking into account the phase change of the wave in layer n we obtain:

Ln
H,V (q) =

w0(q)
wn(q)

T n−1
H,V (q)eiwn(q)Δn

1 − rn
H,V (q)Rn−1

H,V (q)e2iwn(q)Δn

[
1 + rn

H,V (q)
]
, (52)

Mn
H,V (q) =

w0(q)
k0

T n−1
H,V (q)eiwn(q)Δn

1 − rn
H,V (q)Rn−1

H,V (q)e2iwn(q)Δn

[
1 − rn

H,V (q)
]
, (53)

where Δn = dn−dn−1 is the layer thickness over the rough surface; T n−1
H,V (q) are transmission coefficients

through the upper (n− 1) layers when the wave is incident from the half-space with CDC εn; Rn−1
H,V (q)

are reflection coefficients from the upper (n− 1) layers when the wave is incident from the half-space
with CDC εn; rn

H,V (q) are reflection coefficients from the lower half-space when the wave is incident
from the half-space with CDC εn.

Given (52) and (53), our general solution (38)–(42) can be reduced to the formulations presented by
Imperatore et al. in [22]. At the same time, our solution is more general and elegant than the solution
obtained by [22]. Unlike [22] we do not discretize the medium to derive the solution. Instead, we use
properties of particular solutions of wave equations in the continuously layered media. Our solution
is expressed through physically meaningful reflection and transmission coefficients for inhomogeneous
media.

4.4. Numerical Results for a Three-Layered Structure

To further validate our model we calculate bistatic scattering coefficients for a special case illustrated in
Figure 4. To compare the numerical results with the literature data we chose exactly the same scattering
geometry and parameters of the media as considered in [22]. All the three rough interfaces have the
same root mean square (RMS) height and correlation length. Each rough surface is described by the
Gaussian autocorrelation function. The spectrum of this function is given as follows:

K̃m (q− q0) = K̃m (|q− q0|) = πL2
mσ

2
m exp

(
−L

2
m |q− q0|2

4

)
, (54)

where σm, Lm are RMS height and correlation length of the rough interface m = 0, 1, 2.

Figure 4. Three layered scattering geometry of the validation problem.
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The incidence elevation and azimuth angles were chosen to be Θ0 = 45◦ and Φ0 = 0◦ respectively.
The observation azimuth angle is ϕ = 45◦ while the observation elevation angle has been varied. Figure 5
demonstrates numerically calculated bistatic scattering coefficients for all polarizations (HH, V H, HV ,
and V V ) from each rough boundary and from the whole structure (as a sum). In order to compare our

Figure 5. Comparison of numerical results computed according to our model (solid lines) against the
(digitized) data presented in [22] (dots) for the geometry shown in Figure 4. Red: scattering from
the upper boundary; green: scattering from the middle boundary; blue: scattering from the bottom
boundary; black: total scattering.

Figure 6. Illustration of wave scattering from snow-covered sea ice.



214 Komarov, Shafai, and Barber

outputs with the results presented in literature we digitized 120 data points from Figure 4 of [22] and
transferred them to our graphs. From Figure 5 one may observe a very good agreement between our
numerical results and data from [22] for all polarizations. A small disparity can be attributed to the
error coming from digitizing the low resolution graphs taken directly from the digital version of [22].

5. ELECTROMAGNETIC WAVE SCATTERING BY SNOW-COVERED SEA ICE

Electromagnetic wave scattering by snow-covered sea ice is an important special case of the general
problem being considered. A plane electromagnetic wave is scattered by snow-covered sea ice. Snow
and sea ice are characterized as continuous or discrete layered media. CDC of snow and sea ice are
known functions εs(z) and εi(z) of vertical coordinate z as displayed in Figure 6. The roughness of the
air-snow and snow-ice interfaces are described by stationary random functions ζs(ρ) and ζi(ρ) which
define deviations from planes z = 0 and z = −d respectively; d is the snow thickness. The dominant
scattering mechanism in this problem is the surface scattering at the air-snow and snow-ice interfaces.

The obtained general solution (38)–(42) can be reduced to the snow-covered sea ice case by setting
the number of rough interfaces to two and permeability of all media to one. Thus, the scattering
component from rough sea ice can be written as follows:

σice
HH(θ, ϕ) =

k4
0 |Δεi|2

4π
|LH(q0)LH(q)|2 cos2(ϕ − Φ0) K̃i(q − q0), (55)

σice
V V (θ, ϕ) =

k4
0|Δεi|2
4π

∣∣∣∣εs(−d)εi(−d) sinΘ0 sin θLV (q0)LV (q)−MV (q0)MV (q) cos(ϕ−Φ0)
∣∣∣∣
2

K̃i(q−q0), (56)

σice
HV (θ, ϕ) =

k4
0 |Δεi|2

4π
|LH(q0)MV (q)|2 sin2(ϕ− Φ0)K̃i(q − q0), (57)

σice
V H(θ, ϕ) =

k4
0 |Δεi|2

4π
|LH(q)MV (q0)|2 sin2(ϕ− Φ0)K̃i(q − q0), (58)

where

LH,V (q) =
w0(q)
ws(q)

TsH,V (q)
1 − riH,V (q)RsH,V (q)

[1 + riH,V (q)], (59)

MH,V (q) =
w0(q)
k0

TsH,V (q)
1 − riH,V (q)RsH,V (q)

[1 − riH,V (q)]. (60)

In (55)–(58) Δεi = εi(−d)−εs(−d) is the dielectric contrast between ice and snow at the rough interface.
K̃i is the spatial power spectral density of the ice-snow surface. In (59)–(60), ws(q) =

√
k2

0εs(−d) − q2,
w0(q) =

√
k2

0 − q2; TsH,V and RsH,V are transmission and reflection coefficients for the inhomogeneous
snow layer when the wave is incident from the half-space with CDC εs(−d); riH,V are reflection
coefficients from the inhomogeneous sea ice when the wave is incident from the half-space with CDC
εs(−d).

The scattering components from the rough snow can be written as follows:

σsnow
HH (θ, ϕ) =

k4
0 |Δεs|2

4π
|[1 + 
H(q0)][1 + 
H(q)]|2 cos2(ϕ− Φ0)K̃s(q − q0), (61)

σsnow
V V (θ, ϕ) =

k4
0 |Δεs|2

4π

∣∣∣∣sinΘ0 sin θ
εs(0)

[1 + 
V (q0)][1 + 
V (q)]

−[1 −
V (q0)][1 −
V (q)] cos(ϕ− Φ0) cos Θ0 cos θ|2 K̃s(q − q0), (62)

σsnow
HV (θ, ϕ) =

k4
0 |Δεs|2

4π
|[1 + 
H(q0)][1 −
V (q)] sin(ϕ− Φ0) cos θ|2 K̃s(q − q0), (63)

σsnow
V H (θ, ϕ) =

k4
0 |Δεs|2

4π
|[1 −
V (q0)] [1 + 
H(q)] sin(ϕ− Φ0) cos Θ0|2 K̃s(q − q0). (64)
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In (61)–(64) Δεs = εs(0)− 1 is the dielectric contrast at the air-snow interface; K̃s is the spatial power
spectral density of the snow surface; 
H,V are reflection coefficients from the entire snow-covered sea
ice structure at horizontal and vertical polarizations.

If the air-snow and snow-ice interfaces are statistically independent then the total NRCS is a sum
of NRCS from the snow and sea ice:

σαβ(θ, ϕ) = σice
αβ(θ, ϕ) + σsnow

αβ (θ, ϕ). (65)

The last equation is a special case of the more general Equation (42) for two rough interfaces, i.e.,
N = 2. If the rough interfaces are correlated then according to (42) an additional correlation term
should be introduced.

In the monostatic scattering case θ = Θ0 , ϕ = π + Φ0 and the cross-polarization component is
zero. Therefore, the radar backscatter coefficients from sea ice can be presented as follows:

σ0ice
HH =

k4
0 |Δεi|2

4π
|LH(q0)|4 K̃i(−2q0), (66)

σ0ice
V V =

k4
0 |Δεi|2

4π

∣∣∣∣εs(−d)εi(−d) sin2 Θ0L
2
V (q0) +M2

V (q0)
∣∣∣∣
2

K̃i(−2q0), (67)

σ0ice
HV = σ0ice

V H = 0. (68)

The radar backscatter coefficients from the rough snow surface can be written as follows:

σ0snow
HH =

k4
0 |Δεs|2

4π
|[1 + 
H(q0)]|4 K̃s(−2q0), (69)

σ0snow
V V =

k4
0 |Δεs|2

4π

∣∣∣∣sin2 Θ0

εs(0)
[1 + 
V (q0)]2 + [1 −
V (q0)]2 cos2 Θ0

∣∣∣∣
2

K̃s(−2q0), (70)

σ0snow
HV = σ0snow

V H = 0. (71)

The total radar backscatter from snow-covered sea ice is a sum of the backscatter coefficients from
snow and sea ice similar to (65) (if the rough interfaces are statistically independent).

Modeling of dielectric properties of snow-covered sea ice (as a function of depth) is a separate
problem which will be discussed in more details in our future publication on numerical modeling and
measurements of scattering characteristics from real snow-covered sea ice. Here we briefly describe how
the CDC of snow and sea ice can be found as functions of the vertical coordinate.

Snow on sea ice is a mixture of pure ice, air and brine (wicked from the sea ice surface). CDC of
brine in snow is estimated as a function of temperature using Stogryn and Desargant model [33]. CDC
of pure ice is nearly a constant (∼ 3.15) in a wide range of frequencies [10]. The brine volume content
in snow can be found through sea ice surface temperature and salinity (according to [34]) as well as
snow density (which is a function of depth). We use physical properties of snow and sea ice from our
field campaigns in the Arctic Ocean. There are a few dielectric models for estimating the CDC of moist
snow (such as [35, 36]). However, a reliable dielectric mixture model for estimating the CDC of brine
wetted snow on top of sea ice has not been developed. At the same time it has been shown that the
refractive mixture model (which is linear with respect to refractive indices) is effective for sea ice [37].
In addition, the refractive mixture model has been proven to be the most accurate for wet soils [38].
Using this mixture model with input physical parameters measured in the field we obtain the CDC of
snow as a function of depth.

The CDC of sea ice is calculated using the refractive mixture model for an isotropic two-phase
medium consisting of pure ice and brine inclusions. In the study by [37] it was found that the refractive
dielectric mixture model agrees very well with the dielectric measurements of sea ice reported in [39].
The brine volume of sea ice can be estimated as a function of ice temperature and bulk salinity
according to [40]. The CDC of brine in sea ice can be found through the Debye relaxation model
with temperature dependent parameters empirically derived by [33]. In the field campaigns we usually
conduct measurements of temperature and bulk salinity as functions of sea ice depth (see e.g., [8]).
Therefore, the CDC of sea ice is also derived as a function of depth.
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We note that, if necessary, the sea water below the ice and the rough ice-water interface can be
naturally included in the obtained formulation, but this is not the usual case as the penetration depth in
natural FY sea ice is on the order of the wavelength (e.g., 5.5 cm in C-band and 21 cm in L-band) while
FY ice grows to about 2 m thick by winters end. At the same time, if we model scattering characteristics
from newly formed sea ice (with no snow cover) with the thickness around 10–20 cm, then the sea water
half-space below the ice must be introduced. In this case the CDC of sea water can be found using the
Debye-based model by Stogryn [41].

6. CONCLUSION

In this study we present a new analytical formulation for electromagnetic wave scattering from an
arbitrary number of rough surfaces interfacing continuously layered media and derived a solution for
wave scattering from snow-covered sea ice as a special case of the general problem. We solved Maxwell’s
equations within the first-order approximation of the SPM theory. First, we derived a solution for wave
scattering from a single rough boundary while the other rough interfaces are absent. A key step in this
solution is the introduction of two auxiliary problems on wave propagation in inhomogeneous media. In
the first problem a plane wave is incident upon a piecewise continuously layered medium located above
the rough interface from a medium with an arbitrary CDC and CMC. This problem allowed to link the
reflection and transmission coefficients for the layered slab with the wave equations’ particular solutions
and their normal derivatives at the bottom of this slab. In the second problem a plane wave is incident
upon a piecewise continuously layered medium located below the rough surface from the same medium
as in the first problem. In this problem reflection coefficients from this medium are linked with the wave
equations’ particular solutions and their normal derivatives at the mean level of the rough interface.
The results obtained in these two problems in conjunction with the boundary conditions allowed us to
derive necessary equations for zero-order fields and their normal derivatives at the mean level of the
rough interface. According to the SPM theory, these equations for zero-order fields are substituted into
the boundary conditions for first-order fields. The first-order fields are represented through the Fourier
integral over the partial plane waves outgoing from the rough surface. The under integral functions are
written analogously to the first-order fields using particular solutions of the wave equations. Similarly
to the zero-order case we found a link between the particular solutions of wave equations at the rough
interface with reflection and transmission coefficients. Boundary conditions for the first-order fields
enabled to resolve magnitudes of the scattered fields in the air. Finally, the radar characteristics are
derived through the analytical evaluation of the Fourier integrals in far zone.

In our formulation we avoided any discretization of the continuously layered media; instead, we
introduced particular solutions of wave equations and associated with them reflection and transmission
coefficients at the rough interface. Such an approach makes our solution compact and physically
meaningful. For example, the symmetry of the bi-static solution with respect to transmitting and
receiving points is straightforward. The solution obtained for a single rough interface is naturally
expanded to an arbitrary number of rough boundaries interfacing continuously layered media.

To validate the derived general solution we considered three special cases of the scattering problem.
We demonstrated that our solution can be reduced to the formulations available in the literature
including the most recent solution [22]. Furthermore we showed that our numerical results for wave
scattering from a three-layered structure agree very well with those presented in [22].

We would like to point out that our formulation has been expressed through physically meaningful
reflection and transmission coefficients associated with continuously layered media. To numerically
implement the model, these coefficients must be estimated separately. For example, they can be
computed using the following approaches: (1) invariant embedding method (where the inhomogeneous
media are discretized) [42], (2) Runge Kutta method directly applied to one-dimensional wave equations
(with non-constant coefficients), (3) analytical exact or analytical approximate approaches (applied in
some cases) to solving the differential wave equations with non-constant coefficients. In practice, we use
the invariant embedding approach [42].

The novelty of our model can be outlined as follows:

1. The obtained formulation is user-oriented and convenient for practical geophysical remote sensing
applications. Our solution operates with physically meaningful reflection and transmission
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coefficients associated with certain geophysical media (e.g., snow, ice, soil, etc.).
2. Our solution is fairly flexible because the numerical implementation can be split into two separate

algorithmic units: (a) estimation of the reflection and transmission coefficients for inhomogeneous
media using the approach that is best suited to a given structure of the inhomogeneous media; (b)
calculation of scattering characteristics by plugging in these coefficients in the general solution.

3. If the complex reflection and transmission coefficients (for layered media) can be directly measured
in the field (using, for example, a portable vector network analyzer), then the obtained values (at
a given frequency) can be plugged in our model. In this case step (a) from the previous point is
not required.

4. It appears that our analytical formulation is the only solution for wave scattering from layered
media where both the complex dielectric and complex magnetic constants are continuous functions
of depth.

5. Mathematical derivation and final formulation of our model is quite compact and at the same time
general and physically meaningful compared to the previous solutions.

As the final step of this study, we presented an important special case of our formulation for wave
scattering from snow-covered sea ice where both air-snow and snow-ice interfaces are rough and snow
and ice are continuously layered media. The developed theory could be beneficial for the interpretation
of sequential SAR signatures over snow-covered sea ice and inverse modeling. Beyond polar applications,
the obtained theoretical formulation could be useful in remote sensing of various environmental media
(e.g., snow-covered soil).

In our ongoing work we are currently validating this theory against in-situ C-band scatterometer
measurements collected over natural snow-covered sea ice in the Canadian Arctic and experimentally
grown sea ice at the Sea Ice Environmental Research Facility (SERF) at the University of Manitoba.
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