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A New High-Resolution and Stable MV-SVD Algorithm
for Coherent Signals Detection
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Abstract—The performance of smart antenna greatly relies on the efficient use of direction-of-arrival
(DOA) estimation techniques for both coherent and non-coherent signals. In practice, DOA estimation
problems and difficulties increase when the signals in multipath propagation environments are highly
correlated or coherent. Therefore exploring an algorithm which is capable of estimating coherent signals
is of great importance. To overcome this problem a new high-resolution modified virtual singular value
decomposition (MVSVD) algorithm for DOA estimation of coherent signals is proposed. It is based
on the hybrid combination of the virtual array extension singular value decomposition (SVD), and
modified MUSIC algorithms. The proposed algorithm provides many features such as: decorrelation
of the coherence between the signals without reducing the rank of the covariance matrix or losing the
array aperture size; high-resolution and more stability especially at low SNR values; and an increase in
the maximal number of detectable signals to M − 1, where M is the number of antenna elements.

1. INTRODUCTION

DOA estimation is an important research topic in smart antenna systems for both coherent and non-
coherent signals. It is widely used in many commercial and military applications such as sonar, radar,
mobile communication systems and biomedical engineering.

The most popular subspace algorithms, MUSIC [1, 2] and ESPRIT [3, 4], are well-known algorithms
for estimating the DOA and give high-resolution results when the signals are uncorrelated. However, due
to the multipath propagation or man-made interference, the signals are usually highly correlated or even
coherent. These algorithms can’t effectively distinguish coherent signals. Great efforts areexerted to
solve this problem such as, the spatial smoothing (SS) technique [5], which is based on the partitioning of
the total number of antenna array elements into a number of subarrays, and then averages the subarrays
output covariance matrices to form the spatially smoothed covariance matrix, but it detects only M/2
sources and gives good results only at high SNR.

Forward/backward spatial smoothing (FBSS) [6] is proposed to improve the SS technique. It
increases the number of detectable sources from M/2 to 2M/3. The singular value decomposition (SVD)
method [7–9] detects coherent signals. It reconstructs a covariance matrix by using the eigenvector
corresponding to the largest eigenvalue, and then performs singular value decomposition on this matrix.
However it has poor performance when the SNR is low. It also reduces the rank of data covariance
matrix to achieve decorrelation of coherent sources. To overcome the aperture size reduction problem
of the SS, FBSS, and SVD methods, Toeplitz [10–12] and VSS [13] algorithms are presented without
the need for dimension reduction of the covariance matrix, and there’s no loss of the size of the array
aperture, but signal detection at low SNR remains an important problem.

In this paper, a modified virtual SVD (MV-SVD) algorithm for coherent signals detection is
presented. It is based on the hybrid combination of the virtual array extension, singular value
decomposition (SVD), and modified MUSIC algorithms. Firstly, the virtual array extension is used
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to extend the original receiving antenna array from actual M sensors to virtual (2M − 1) sensors.
This increases the degree of freedom to detect more signals and overcomes the aperture size problem.
Secondly, the SVD algorithm is then used to construct an M × M covariance matrix. Finally, the
directions of arrival of the coherent signals are estimated using the modified MUSIC algorithm. The
proposed algorithm provides high resolution and more stable results, especially at low SNR values
and increases the number of detectable sources to M − 1. These advantages distinguish the proposed
algorithm from other algorithms.

2. PROBLEM FORMULATION

This section introduces the SVD algorithm [7] and illustrates its main drawbacks which will be overcome
using the proposed algorithm. Assume N narrowband far-field sources impinging on a uniform linear
array (ULA) consisting of M antenna elements (N ≤ M) with uniform element spacing d = λ/2,
where λ is the carrier wavelength of the signal. Consider K snapshots are received from different DOAs
(θ1, θ2, θ3, . . . , θN ). The array output vector at a time t is then given by [7]

X(t) = AS(t) + n(t) (1)
where

X(t) = [x1(t), x2(t), . . . , xM (t)]T

S(t) = [s1(t), s2(t), . . . , sN (t)]T

n(t) = [n1(t), n2(t), . . . , nM (t)]T

A(θ) = [a(θ1), a(θ2), . . . , a(θN )]

a(θi) =
[
1, e−j 2π

λ
d sin θi , . . . , e−j(M−1) 2π

λ
d sin θi

]T

where xm(t), (m = 1, 2, . . . ,M) is the input of the mth antenna element, sn(t), (n = 1, 2, . . . , N) the
complex amplitude of the narrow band signals, and A(θ) the array manifold matrix. The superscript T
is a vector or matrix transpose.

Suppose that the signal S(t) and noise n(t) are zero-mean Gaussian processes and uncorrelated.
The noise power of each element is σ2

n. The array output data covariance matrix are given by [7]

Rx = E
[
XXH

]
= ARsA

H + σ2
nI (2)

where Rs = E[SSH ] is the source covariance matrix, E[n(t)n(t)H ] = σ2
nI, I the identity matrix, H the

conjugation transpose, and E[ ] the expectation.
Singular value decomposition (SVD) algorithm is a kind of effective coherent solution algorithm.

It uses the eigenvector corresponding to the largest eigenvalue of the data covariance matrix Rx,
e = [e1, e2, . . . , eM ] to construct the matrix Y as follows;

Y =




e1 e2 . . . ep

e2 e3 . . . ep+1

. . . . . . . . . . . .
em em+1 . . . eM


 (3)

where m > N and m + p− 1 = M .
Then obtain the two matrices Y0 and Y1 from Y as follow [7]:

Y0 = Y Y H (4)

Y1 =
1
2
(Y0 + JmY ∗

0 Jm) (5)

where Jm represents the m × m exchange matrix, and the superscript (·)∗ stands for the complex
conjugate.

Using the eigenvalue decomposition of Y1 to estimate the DOAs of the signals by MUSIC algorithm
according to

PMUSIC =
1

a(θ)HUnUH
n a(θ)

(6)
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where Un represents the noise subspace which is formed by small eigenvalues of Y1.
The SVD algorithm reduces the rank of the data covariance matrix which reduces the aperture

size to achieve decorrelation of coherent sources. It detects only 2M/3 coherent sources and gives very
poor performance at low SNR. In this paper, the proposed algorithm overcomes these problems. It
decorrelates the signals coherence without reducing the array aperture size. It has very high resolution
and more stable results especially at low SNR values. Furthermore, it increases the number of detectable
coherent sources up to M − 1.

3. PROPOSED MV-SVD ALGORITHM

In this paper, the virtual array extension is used to extend the original receiving antenna array from
actual M elements to virtual 2M − 1 elements as shown in Figure 1. Theoretically, it can increase the
array aperture size, identify more sources, and achieve higher resolution especially at low SNR. The
proposed algorithm performs the following steps:

1. Applying the virtual array extension, the received data array X(t) is used to construct a
(2M − 1)×K dimensional matrix X1 according to the literature [13],

X1 =
[

X(t)′

X(t)

]
(7)

where X(t) is (M ×K) data receiving array.

X(t)′= [xM (t)∗, xM−1(t)
∗, xM (t)∗, . . . , x2(t)

∗]T (8)

(a) (b)

Figure 1. (a) M elements ULA array. (b) Equivalent (2M − 1) ULA array obtained using the virtual
array extension technique.
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2. Utilizing X1 to construct a new virtual data covariance matrix Rx1 as follows

Rx1 = E
[
X1X

H
1

]
= A1Rs1A

H
1 + σ

2

n
I2M−1 (9)

3. Performing the eigenvalue decomposition of Rx1 to obtain the eigenvector corresponding to the
largest eigenvalue of the data covariance matrix e = [e1, e2, . . . , e2M−1]. This Eigenvector is a linear
combination of all signal sources’ steering vector. Whether the source is coherent or not, it contains
all the signal information. So, we use it to construct a new data covariance matrix Y applying
Equation (3) substituting m = M , and m + p− 1 = 2M − 1.
The new data covariance matrix Y is M ×M dimensional matrix unlike the SVD algorithm. The
MV-SVD algorithm does not reduce the aperture size, but uses the whole aperture size M that
increases the number of detectable signals to M − 1.

4. Using the new data covariance matrix Y to construct the two matrices Y0 and Y1 applying
Equations (4) and (5) to improve the resolution.

5. Obtaining the noise subspaceusing the singular value decomposition of Y1 .
6. The DOAs of the multiple incident signals can be estimated by locating the peaks of the modified

MUSIC spectrum as in Equation (10) according to the literature [14]. The modified MUSIC
spectrum is used in spite of the original MUSIC spectrum of Equation (5) to enhance the
resolution of the DOA estimation process. In Equation (10), as noticed from the denominator, the
orthogonality between a(θ) and Un will reduce it to a minimum, and hence will increase PMUSIC (θ)
which leads to avery high resolution in detecting the largest peaks of the MUSIC spectrum that
correspond to the DOAs of the signals impinging on the array.

PMUSIC (θ) =
a(θ)HRAa(θ)

a(θ)HUnUH
n a(θ)

(10)

where
a) Un = [eN+1, eN+2, . . . , eM ] from decomposition of the correlation matrix Y1 as SVD (Y1) =

U.S.V H .
b) RA is calculated as RA = UsBUH

s where Us = [e1, e2, . . . , eN ] is the signal subspace.
c) B is obtained by dividing the diagonal of matrix S into two arrays SS and SN where

B = diagonal( 1
SS − sigma × IN ), SS = diagonal(Ss) is the signal Eigenvalues, and SN =

diagonal(Sn) is the noise Eigenvalues.
d) sigma = trce(Sn)

M−N .

4. SIMULATION RESULTS

In this section, the proposed algorithm is verified for different DOA estimation experiments of coherent
and non-coherent signals. The performance of the proposed MV-SVD algorithm is compared to
different coherent DOA estimation algorithms such as SVD, FBSS, Toepltiz, and VSS, and non-coherent
algorithms such as MUSIC and ESPRIT. It is required to estimate the directions of arrival of the
coherent signals impinging on a ULA consisting of M = 9 antenna elements with uniform element
spacing d = λ/2. K = 100 snapshots are used. The noise is a white Gaussian noise with zero mean.

Experiment 1:
In this simulation, a comparison is performed between the proposed MV-SVD algorithm and the

SVD algorithm. Consider six coherent signals impinging on the aforementioned ULA from the directions
−60◦, −30◦, −10◦, 20◦, 40◦, and 60◦ at SNR = 0dB. Applying SVD algorithm to detect the maximum
allowed number of signals (N = 2M/3 = 6 signals), the SVD requires m > N . In this case, m = 7 and
p = 3. Figure 2(a) shows the angular spectrum of the MV-SVD algorithm compared to the angular
spectrum of the SVD algorithm at SNR = 0dB. It is clear that the MVSVD algorithm is significantly
better than SVD at the same conditions. The MV-SVD provides much higher resolution than the SVD.
In addition, when the experiment is performed for five independent runs as shown in Figure 2(a), the
proposed algorithm exhibits highly stable results, as opposed to SVD algorithm which exhibits poor
stability.
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(a) (b)

Figure 2. (a) Angular spectrums of the MV-SVD algorithm compared to the angular spectrums of
the SVD algorithm for N=6 signals at SNR = 0dB. (b) Angular spectrum of the MV-SVD algorithm
compared to the angular spectrum of the SVD algorithm for N = 7 signals at SNR = 0dB.

If the number of the received signals is increased above (2M/3 = 6), assuming N = 7 signals
impinging from the directions −60◦, −40◦, −20◦, 0◦, 30◦, 50◦, and 70◦ respectively at the same
SNR = 0dB. The SVD requires m = 8 and p = 2. The resulting spectrum shown in Figure 2(b)
indicates that SVD completely failed to detect number of signals greater than 2M/3 while the proposed
algorithm accurately detected all the signals. It can detect up to M − 1 sources.

Experiment 2:
In this simulation, the performance of the proposed MV-SVD algorithm is compared to the

performances of SVD, VSS, and FBSS algorithms at low SNR. Consider four coherent signals s1(t), s2(t),
s3(t) and s4(t) impinging on the aforementioned ULA from the directions −40◦, −20◦, 20◦, and 60◦
respectively at SNR = −5 dB. Figure 3 shows the angular spectrum of the proposed MV-SVD algorithm
compared to the angular spectrums of the SVD, VSS, and FBSS algorithms. The estimated angles of
arrivals of the four signals applying these algorithms are listed in Table 1. By comparison, it is clear that
the proposed algorithm provides more accurate results and higher resolution than the other algorithms
at low SNR. Both VSS and SVD provide small spectrum peaks with relatively small drifts in the
estimated angles form the incidence angles. In contrast, the FBSS provides sharp and high peaks but
with large drifts in the estimated angles.

Table 1. Estimated angels of arrival applying the proposed MV-SVD algorithm compared to the SVD,
VSS, and FBSS algorithms at low SNR = −5 dB.

Angles of arrivals in degrees −40 −20 20 60
MV-SVD −40 −20 20.7 60.1

SVD −40.9 −19.1 20.9 615
VSS −40 −20 21 62.2
FBSS −39.3 −21 13.1 73.5

Experiment 3:
In this simulation, the performance of the proposed MV-SVD algorithm is compared to the

performance of SVD, VSS, FBSS, and Toeplitz algorithms for large number of signals at low SNR.
Consider eight completely coherent signalscoming from angles of arrival −60◦, −40◦, −20◦, 0◦,
10◦, 30◦, 50◦ and 70◦ respectively at SNR = −5 dB. Figure 4 shows only the resulting angular spectrums
of the MV-SVD, VSS, and Toeplitzas both SVD and FBSS completely failed to detect the signals. The
estimated angles are listed in Table 2. The proposed algorithmachieves higher resolution than VSS, and
Toeplitz at low SNR.
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Table 2. Estimated angels of arrivals applying the proposed MV-SVD algorithm compared to the SVD,
VSS, FBSS, and Toeplitz algorithms for large number of signals at low SNR = −5 dB.

Angles of

arrivals

in degrees

−60 −40 −20 0 10 30 50 70

MV-SVD −60 −40 −21.2 0.5 9.9 29.8 50.3 70.4

VSS −60.4 −40.2 −22.8 2.5 12.7 29.5 44.5 68.3

Toeplitz −59.7 −39.8 −21.2 0.5 9.8 30 50.9 71.2

SVD
Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

FBSS
Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Not

detected

Figure 3. The angular spectrum of the proposed
MV-SVD algorithm compared to the angular
spectrums of the SVD, VSS, and FBSS algorithms
at low SNR = −5 dB.

Figure 4. The angular spectrum of the proposed
MV-SVD algorithm compared to the angular
spectrums of the SVD, VSS, FBSS, and Toeplitz
algorithms for large number of signals at low SNR
= −5 dB.

Experiment 4:
The root mean square error (RMSE) at different SNR values is investigated in this simulation as a

comparison criterion between the MV-SVD, SVD, VSS, FBSS, and Toeplitz algorithms. The RMSE is
defined as

RMSE =

√√√√ 1
N

i=N∑

i=1

(θEi − θi)
2 (11)

where θEi is the estimated angle of the ith source and θi the true angle of arrival of the ith source. In
this experiment, the RMSE versus SNR at different numbers of coherent signals is estimated as shown
in Figure 5. Obviously, the proposed algorithm provides higher resolution capability and lower RMSE
than SVD, VSS, FBSS, and Toeplitz algorithms especially at low SNR. Consider a ULA consisting of
M = 9 antenna elements with uniform element spacing d = λ/2. The simulation is performed for two
different cases:

Case (1), if the number of coherent signals is N ≤ 2M /3
Figures 5(a), (b), and (c) show that the MV-SVD, SVD, VSS, FBSS, and Toeplitz algorithms can

detect the received signals, but the proposed algorithm provides higher resolution and lower RMSE
than the other algorithms, especially at low SNR values.
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(a) (b)

(c) (d)

(e)

Figure 5. (a) Estimated RMSE at different SNR valuesfor N = 4 coherent signals impinging from
angels of arrivals −60◦, −40◦, −20◦, and 0◦. (b) Estimated RMSE at different SNR values for N = 5
coherent signals impinging from angels of arrivals −60◦, −40◦, −20◦, 0◦, and 10◦. (c) Estimated RMSE
at different SNR values for N = 6 coherent signals impinging from angels of arrivals −60◦, −40◦,
−20◦, 0◦, 10◦, and 30◦. (d) Estimated RMSE at different SNR values for N = 7 coherent signals
impinging from angels of arrivals −60◦, −40◦, −20◦, 0◦, 10◦, 30◦ and 50◦. (e) Estimated RMSE at
different SNR values for N = 8 coherent signals impinging from angels of arrivals −60◦, −40◦, −20◦, 0◦,
10◦, 30◦, 50◦ and 70◦.
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Case (2), if the number of coherent signals is N > 2M /3
If the number of received signals increased more than 2M/3, only the VSS, Toeplitz and MV-SVD

algorithms can detect signals up to M − 1 signals. Figure 5(d) shows that the SVD detected the N = 7
incident signals but with very large RMSE compared to MV-SVD, VSS, and Toeplitz while the FBSS
completely failed to detect the signals. Figure 5(e) shows that for N = 8 incident signals only the
MV-SVD, VSS, and Toeplitz algorithms can detect the signals.

From the two cases, it is concluded that the proposed MV-SVD algorithm provides higher resolution,
higher accuracy, and the lowest RMSE amongst these algorithms especially for large number of signals
and at low SNR values.

Experiment 5: (Detection of Non-Coherent Signals)
In this section, the performance of the proposed algorithm in detecting non-coherent signals is

compared to the performance of non-coherent algorithms such as MUSIC and ESPRIT. Consider a ULA
consisting of M = 10 antenna elements with uniform element spacing d = λ/2. K = 300 snapshots
are used. The noise is a white Gaussian noise with zero mean. Consider four non-coherent signals
impinging on the array from the directions −5◦, 10◦, 20◦, and 30◦ at low SNR = −5 dB. Figure 6 shows
the angular spectrum of the proposed algorithm compared to the angular spectrums of the MUSIC and
ESPRIT algorithms. The estimated angles of arrivals and the RMSE applying these algorithms are
listed in Table 3. By comparison, it is clear that the proposed algorithm provides more accurate results
and higher resolution than the other algorithms at low SNR.

Figure 6. The angular spectrum of the proposed MV-SVD algorithm compared to the angular
spectrums of the MUSIC and ESPRIT algorithms for non-coherent signals detection at low SNR
= −5 dB.

Table 3. Estimated angels of arrivals applying the proposed MV-SVD algorithm compared to the
MUSIC and ESPRIT algorithms for non-coherent signals detection at low SNR = −5 dB.

Angles of arrivals in degrees −5 10 20 30 RMSE

MV-SVD −4.7 10 19.8 30 0.1803

MUSIC −4.8 9.8 19.6 29.3 0.4272

ESPRIT −4.6403 9.8136 18.6423 29.4522 0.7595
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5. CONCLUSION

In this paper, a modified virtual SVD (MVSVD) algorithm is proposed. It is based on applying the
virtual array extension to extend the original receiving data array from actual M sensors to virtual
2M − 1 sensors then use the SVD method to construct the covariance matrix and estimate the angels
of signal source using a modified MUSIC algorithm. The performance of the proposed MV-SVD
algorithm is compared to those of the SVD, VSS, FBSS, and Toeplitz algorithms at different SNR values.
The simulation results indicate that the proposed algorithm’s resolution, stability and robustness are
significantly better, especially at low SNR cases, and it can detect up to M−1 signal sources. In addition,
it provides the lowest RMSE amongst these algorithms especially for large number of signals and at
low SNR values. Furthermore, from the experimental results, the proposed algorithm achieves superior
performance in detecting both coherent and non-coherent signals to the aforementioned algorithms.
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