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Emadeldeen Hassan*, Eddie Wadbro, and Martin Berggren

Abstract—We use a gradient-based material distribution approach to design conductive parts of
microstrip antennas in an efficient way. The approach is based on solutions of the 3D Maxwell’s equation
computed by the finite-difference time-domain (FDTD) method. Given a set of incoming waves, our
objective is to maximize the received energy by determining the conductivity on each Yee-edge in the
design domain. The objective function gradient is computed by the adjoint-field method. A microstrip
antenna is designed to operate at 1.5 GHz with 0.3 GHz bandwidth. We present two design cases. In the
first case, the radiating patch and the finite ground plane are designed in two separate phases, whereas
in the second case, the radiating patch and the ground plane are simultaneously designed. We use more
than 58,000 design variables and the algorithm converges in less than 150 iterations. The optimized
designs have impedance bandwidths of 13% and 36% for the first and second design case, respectively.

1. INTRODUCTION

Microstrip antennas are widely used in various wireless systems because of their many unique and
attractive properties [1]. The design of microstrip antennas has benefited from the unrelenting growth
in computational power and the increased availability of accurate and efficient methods to numerically
solve Maxwell’s equations [2]. The traditional design procedure is to define an initial, conceptual layout
that is parameterized using a set of design variables, such as the length and width of the patch, the
substrate depth, and the position of the feed. If desired, curved boundary shapes can also be designed
by parameterizing the positions of control points in a spline, for instance. The performance of the
antenna can then be investigated by using either manual parameter variations [3–7] or by employing
a numerical optimization approach, where the most common choice is a metaheuristic such as genetic
algorithms or particle swarm optimization [8–13].

Such explicit parameterization strategies have been extensively used to design microstrip
antennas [3–7, 13–15]. To help the optimization algorithms to find a design in a reasonable time,
only a small number of design variables are typically used. Moreover, for antennas mounted over finite
ground planes, usually the design of the ground plane is considered in a separate design phase [16–20],
which is typically pursued after the design of the antenna patch.

A conceptually different approach to geometry descriptions, which shows promising results [9–
11, 21, 22], is to divide the patch surface into small, equally-sized elements. The material property of
each element is then directly mapped to the design variables, which will attain binary (0/1) values,
typically corresponding to air or conductor. When using a large enough set of such elements, virtually
any shape can be obtained through an image representation of the conducting area. However, the use of
metaheuristics such as genetic algorithms is computationally intractable for very large dimensions of the
design space [23]. To find a suitable design, metaheuristic-based algorithms typically require a number
of iterations that is two to three orders of magnitude larger than the number of design variables. For
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example, Su et al. [24] used 200 design variables, and their genetic algorithm required 10,000 calls to the
Maxwell solver to provide the solution. In another design optimization example, the algorithm developed
by Bayraktar et al. [11] called the Maxwell solver 12,500 times to design an artificial magnetic conductor
parametrized with 64 design variables. Therefore, only quite crudely shaped geometries can be designed
when metaheuristics is used, and design symmetries are often imposed to reduce the dimensions of the
design problems.

The material distribution approach to topology optimization was originally proposed for structural
optimization [25], and it has been successfully extended to many areas in engineering, such as acoustics,
optics, and electromagnetics [26–32]. In this approach, a material indicator function p is used to indicate
presence, p = 1, or absence, p = 0, of a material in each of a large number of small elements inside a
design domain. But unlike the binary design approach mentioned above, in the material distribution
approach, the material indicator function p is allowed to attain intermediate values during the design
process (that is, values between 0 and 1, known also as gray values). By the end of the design process,
these intermediate values typically vanish, and the final designs have only binary values (0/1). The
reason to allow intermediate values is to enable the use of computationally efficient gradient-based
optimization algorithms [33]. Such algorithms require derivatives with respect to the design variables of
the objective function and the constraints. These derivatives may in many cases be efficiently computed
using the adjoint-field method [34–38].

The material distribution approach to topology optimization has been used to design the dielectric
parts of patch antennas and dielectric resonator antennas (DRAs) [29, 39]. Further, this technique was
recently used to design the metallic radiating elements of different antenna types [30, 31]. In this work,
we use the material distribution approach to design the metallic parts of microstrip antennas. We
formulate the antenna design problem as an optimization problem, where the objective is to maximize
the energy received by the antenna from a given set of far-field sources. The FDTD method is used for
the numerical computations [40]. The design variables are directly mapped to the physical conductivities
of the Yee-edges inside a specific domain. We use the adjoint-field method [34–38] in order to efficiently
calculate the gradient of the objective function. The gradient expression has been derived in the
fully discrete case based on the FDTD discretization of Maxwell’s equations. Due to the use of the
adjoint-field method, the objective function gradient is computed for an arbitrary number of design
variables using only two FDTD simulations. The efficiency of the design algorithm makes it possible to
simultaneously design both the radiating patch and the ground plane of the antenna.

2. PROBLEM SETUP AND GOVERNING EQUATIONS

The problem setup is schematically shown in Figure 1. A design domain Ω ⊂ Ω∞ holds a conductivity
distribution σ(x) that defines the conductive parts of the antenna, with x representing a point in the
design domain. A coaxial transmission line couples signals, through an aperture in the xy plane, to
and from the analysis domain Ω∞. The boundary Γcoax is used to introduce wave energy Win,coax into
the coaxial cable and to measure the wave energy Wout,coax received from the antenna. The coaxial
cable has an inner core with diameter d, a metallic shield with diameter D, and is filled with a material
with dielectric constant εc and permeability µc. The boundary Γout represents an outer boundary to
the analysis domain, through which wave energies Win,∞ and Wout,∞, as illustrated in Figure 1, might
enter or leave the analysis domain, respectively.
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Figure 1. An illustration of the antenna design problem.
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The governing equations are the 3D Maxwell’s equations in the analysis domain,
∂

∂t
µH +∇×E = 0, (1a)

∂

∂t
εE + σE−∇×H = 0, (1b)

and the 1D transport equation in the coaxial cable,
∂

∂t
(V ± ZcI)± c

∂

∂z
(V ± ZcI) = 0, (2)

where µ, ε, and σ are the permeability, permittivity, and conductivity of the medium; E and H are the
electric and magnetic fields; V and I are the potential difference and the current inside the coaxial cable;
and c = 1/

√
µcεc. In expression (2), the term V ± ZcI represents two signals that propagate inside the

coaxial cable in the negative (−) and in the positive (+) z directions. The signal that propagates in the
negative z direction can be used to observe the outgoing energy in the coaxial cable using the integral

Wout,coax =
1

4Zc

∫ T

0
(V − ZcI)2 dt , (3)

where (0, T ) is the observation time interval. For signals with finite extent in time and for large
enough T , the system energy balance illustrated in Figure 1,

Win,coax + Win,∞ = WΩ + Wout,coax + Wout,∞, (4)

where WΩ denotes the ohmic losses in the antenna, can be derived from the system of governing equations
and associated boundary and initial conditions.

3. OPTIMIZATION PROBLEM

We design the antenna based on its receiving mode by setting Win,coax = 0 and by imposing a set
of incoming waves from the far-field with energy Win,∞. Expression (4) implies that maximizing the
energy received by the antenna is equivalent to minimizing the ohmic losses in the antenna WΩ plus the
reflected energy Wout,∞. We formulate the optimization problem

maximize
σ(x)∈[σmin,σmax]

Wout,coax(σ(x)), (5)

where σmin and σmax represent physical conductivities of a low-loss dielectric and a good conductor,
respectively. Note that unlike the binary (0/1) design problems [9–11, 21, 22], here the design
conductivities are allowed to attain any value between σmin and σmax during the design process. In
previous work [31], we observed that optimization problem (5) has very low sensitivity for changes in
physical conductivities lower than 10−4 S/m or greater than 105 S/m. We therefore use the following
mapping between the material indicator function 0 ≤ p(x) ≤ 1 and the physical conductivity

σ(x) = 10(9p(x)−4). (6)

The use of intermediate conductivity values introduces energy losses in the design domain.
Therefore, the solution of problem (5) will be sensitive to the energy loss WΩ. When starting with
intermediate conductivities, gradient-based optimization algorithms will quickly drive the solution
towards the lossless cases (that is, towards σmin or σmax), and generally the obtained designs will have
unacceptable performance. We refer to the Appendix for examples. To handle this problem, we use a
continuation approach [31], in which we replace p(x) in expression (6) with p̃(x) = KR ∗p(x), where KR

is an integral operator with support on a disk with radius R. In the topology optimization community,
the integral operator KR is called a filter and is typically used to obtain mesh-independent designs [25].
However, here the main reason to filter the design variables is to control the energy losses inside the
design domain. The use of a large filter radius imposes large regions of intermediate conductivities and
associated energy losses in the design domain. We start with a radius R0 and solve problem (5) for a
sequence of subproblems, where after partial convergence of a subproblem, we decrease the filter radius
by setting Rn = γRn−1, where γ < 1 is a constant filter decrease coefficient. The convergence of a
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subproblem is evaluated by measuring the change of the norm of the first order optimality conditions.
We record the norm of the first order optimality conditions after 6 iterations of starting a subproblem
solution, and the iterations continue until the this norm has decreased by 50% of the recorded value.
The algorithm terminates when the radius Rn decreases beyond a small value that we typically choose
to be half the smallest numerical grid size. In general, the final design will essentially contain two
conductivity values that correspond to σmin and σmax, respectively.

4. DISCRETIZATION

We numerically solve the system of governing Equations (1) and (2) by the FDTD method [40] on a
uniform grid. The electric field in Maxwell’s equations and the potential difference inside the cable are
discretized at full time indices, while the magnetic field and the current in the cable are discretized
at half time indices. A uniaxial perfectly matched layer (UPML) is used to simulate the open space
radiation condition [41].

In the design domain, we define vectors p, p̃, and σ to hold values of p, p̃, and σ, respectively, at
each Yee-edge. We formulate the following discrete version of optimization problem (5):

maximize
p∈A

W∆
out,coax(p). (7)

Here A = {p ∈ [0, 1]M}, in which M is the number of Yee-edges in the design domain, and we use the
discrete objective function,

W∆
out,coax(σ) =

1
Zm

N∑

n=0

(
V n+1 − ẐcI

n+ 1
2

z

)2

∆t, (8)

where V n+1, I
n+ 1

2
z , and Ẑc are the potential difference, the current, and the characteristic impedance

of the discrete coaxial cable model; Zm =
√

µc/εc; N is the total number of time steps required for the
simulation to reach steady state; and ∆t is the time step used in the FDTD method.

We use the globally convergent method of moving asymptotes (GCMMA) [42] to solve optimization
problem (7). The GCMMA is a gradient-based optimization method that is well suited for
the mathematical structure of material distribution problems [25, §1.2]. By using the adjoint-field
method [34–38] and the FDTD discretization of the governing Equations (1) and (2), we derive (in
the fully discrete case) the following expression for the gradient of the objective function (8):

∂W∆
out,coax

∂σi
= −∆3

N∑

n=1

EN−n
i

E
∗n− 1

2
i + E

∗n+ 1
2

i

2
∆t, (9)

where i is the index for an arbitrary Yee-edge inside the design domain; ∆ is the spatial discretization
step; Ei is the discrete electric field obtained from the FDTD solution to Equations (1) and (2); and E∗

i
is a discrete adjoint electric field obtained by solving an adjoint system. The adjoint system is equivalent
to an FDTD discretization of Equations (1) and (2). However, in the adjoint system the electric field
and the potential difference are discretized at half time indices, while the magnetic field and the current
are discretized at full time indices. Moreover, the adjoint system is excited only through the boundary
Γcoax, at the bottom of the coaxial cable, using the expression

V ∗n− 1
2 + ẐcI

∗n−1
z = V N−n+1 − ẐcI

N−n+ 1
2

z for n = 1, . . . , N, (10)

where V ∗n− 1
2 and I∗n−1

z are the discrete potential difference and the current in the coaxial cable for
the adjoint system, respectively. We note that expression (10) imposes the signal that propagates in
the cable’s positive z direction for the adjoint system to be equal to the time-reversed signal that was
propagated in the cable’s negative z direction for Equation (2).
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5. NUMERICAL RESULTS AND DISCUSSION

We consider the design of a microstrip antenna with the configuration shown in Figure 2. The antenna
has a finite ground plane with dimensions Lg = Wg = 105 mm; a radiating patch with dimensions
Lp = Wp = 75 mm, symmetrically located above the ground plane; and a 6 mm-thick substrate with a
dielectric constant 2.62 and loss tangent 0.001 at 2 GHz. A 50 Ohm coaxial cable is connected to the
patch area at a point shifted a distance (−Wp/4, 0.0) from the patch center. The objective is to design
the conductive parts of the microstrip antenna to maximize the energy received in the frequency band
1.35–1.65GHz.

Substrate      =2.62r

Ground plane

Patch

h=6 mmL p

W p

L g

Wg

x
yz

∋

Figure 2. The geometry of the microstrip antenna design problem. A patch area with Lp = Wp =
75mm resides on a 6 mm thick substrate with εr = 2.62. The inner probe of a 50 Ohm coaxial cable
is connected, through a ground plane with Lg = Wg = 105 mm, to the patch area at a point shifted
(−Wp/4, 0.0) from the center. The cable’s shield is connected to the ground plane.

Since the antenna is designed in its receiving mode, we expect the optimization results to be
sensitive to the number of wave sources and their polarizations. In preliminary numerical experiments,
we observed that an increase of the number of sources and the use of sources that radiate several field
polarizations allowed the algorithm to converge to designs with smaller sizes and better impedance
bandwidth (that is, |S11| < −10 dB over a wider bandwidth). Therefore, we choose wave sources
that generate circularly-polarized plane waves propagating towards the antenna from the sides that
correspond to the Cartesian coordinate axes, excluding the negative z direction (Figure 2).

We use a uniform FDTD grid with ∆ = 0.75 mm, ∆t equal 0.98 of the Courant limit, a 10∆ thick
UPML, and 10∆ free space separation between the UPML and the antenna. A modulated sinc pulse
is used to cover the operational frequency band. The total-field scattered-field formulation is used to
implement the plane wave excitation in the FDTD method [40], and the plane waves are synchronized
to arrive to the feeding point at the same time.

The FDTD code is implemented to run on Graphics Processing Units (GPUs), using the parallel
computing platform CUDA (https://developer.nvidia.com/what-cuda), and double-precision arithmetic
is used in all computations. The average simulation time for one FDTD simulation is 220 seconds,
and the memory required for gradient computations varies between 3–8.5 GB depending on the design
domain size. The conductive sheets are modelled in the FDTD grid using single layers of Yee-faces and
are expected to have a mesh-dependent effective thickness of about 0.2∆ [43], which is approximately
0.15mm.

5.1. Optimization Results

As a first test case, we consider the design of the radiating patch over a fixed square ground plane.
The patch area is discretized using 100 × 100 Yee-faces, which gives a design problem with 20,200
design variables (one conductivity component per Yee-edge). We choose pi = 0.4 for each i, as an
initial design. We use a filter with initial radius R0 = 15mm and filter decrease coefficient γ = 0.75.
Figure 3 shows the iteration history of the objective function, and also some snapshots of the filtered
design variables p̃ over the patch area, where the black color corresponds to σmax and the white color
to σmin. In the early stage of the design process, the large filter radius imposes thick gray regions
corresponding to intermediate conductivities inside the design domain. As the algorithm proceeds from
one subproblem to the next, the thickness of the gray regions decreases, and more details appear inside
the design domain. We note the sudden raises in the objective function values between consecutive
subproblems (Figure 3). A decrease of the filter radius reduces the amount of imposed losses and allows
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Figure 3. The progress in the normalized objective function and samples of the filtered design variables,
p̃, for the design of the radiating patch over a finite square ground plane.
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Figure 4. (a) The optimized conductivity distribution over the design domain (patch area) for a finite
square ground plane of area 105× 105mm2. The design domain is 75× 75 mm2 (100× 100 Yee-faces).
The coaxial cable, marked as a gray circle, is connected at (18.75mm, 37.5mm). (b) The reflection
coefficient and the radiation efficiency of the antenna.

the optimization algorithm to alter the design variables to maximize the received energy. Without the
filter and the systematic continuation approach, the optimization algorithm will generally converge to
a design consisting of scattered conducting material that has inferior performance, as demonstrated in
the appendix.

The optimization algorithm converged in 145 iterations to the final design shown to the left in
Figure 4. Typically, in each iteration the FDTD code is called 3–5 times, where 2 calls are used for
computing the objective function gradient and 1–3 calls are used in inner iterations of the GCMMA
algorithm to find suitable updates of the design variables. To evaluate the performance of the final
design, we use a threshold value σth = 10−3 S/m, where conductivities below σth are mapped to 0 S/m
and values greater than σth are mapped to 5.8 × 107 S/m. To the right in Figure 4, the reflection
coefficient and the radiation efficiency of the final design are computed with our FDTD code and cross-
verified using the CST Microwave Studio software, employing adaptive mesh refinement and modelling
the patch and the ground plane as 0.15 mm thick sheets with conductivity 5.8× 107 S/m. A reason for
the slight difference in the computed results could be the difference in geometry description between
the two methods. The final design has a reflection coefficient below −10 dB over the frequency band
1.42–1.62GHz, with a small exception around the frequency 1.52GHz, where the reflection coefficient
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hits the −10 dB line. The antenna has on average a radiation efficiency of 97.5% over the frequency
band 1.42–1.62 GHz.

Figure 5 shows the surface current amplitudes, computed with our FDTD code, over the antenna
at frequencies 1.4, 1.5, and 1.6 GHz. These results have been cross-verified with the CST package, but
for brevity we include only our FDTD code’s results. At 1.4 and 1.5 GHz, most of the surface current
on the patch area is concentrated along its four boundary edges (the first row in the figure), whereas at
1.6GHz the surface current is essentially concentrated along the edges parallel to the x axis. Further,

xy
xy

(a) F = 1.4 GHz (b) F = 1.5 GHz (c) F = 1.6 GHz

Figure 5. Surface currents over the radiating patch given in Figure 4 and a 105 × 105mm2 ground
plane at 1.4, 1.5, and 1.6GHz. The first row is the surface current seen from the positive z axis, and
the second row is the surface current seen from the negative z axis.
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Figure 6. Simulated radiation patterns at (a) 1.4, (b) 1.5, and (c) 1.6 GHz for the microstrip antenna
with the radiating patch given in Figure 4 and a 105× 105mm2 ground plane.
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the surface current below the ground plane (the second row) has relatively small values compared to the
current above the ground, and the maximum values occur at the ground plane edges. Figure 6 shows
the simulated radiation patterns at 1.4, 1.5, and 1.6 GHz. The current distribution on the patch at 1.4
and 1.5 GHz results in two orthogonal far-field components that have on average a difference of 5 dB
at the positive z axis, however, at 1.6GHz the difference is approximately 10 dB. Further, the finite
ground plane results in almost a 20 dB front-to-back ratio at the three frequencies. We emphasize that
the goal of the current work is to design the antenna to maximize any available received energy in the
frequency band 1.35–1.65 GHz, and we do not impose requirements on the far-field polarization nor the
radiation pattern.

As a second test case, we fix the patch to be the design given in Figure 4, and we use the optimization
algorithm to redesign the 105 × 105mm2 ground plane, which is discretized in the FDTD grid using

0 15 30 45 60 75 90 105
0

15

30

45

60

75

90

105

Width (mm)

L
en

gt
h 

(m
m

)

1 1.2 1.4 1.6 1.8 2

|S
   

| (
dB

)
11

Frequency (GHz)
1 1.2 1.4 1.6 1.8 2

90

92

94

96

98

100

R
ad

ia
tio

n 
ef

fi
ci

en
cy

 (
%

)

|S11| (FDTD)
|S11| (CST)

Efficiency (FDTD) 
Efficiency (CST)

-30

-25

-20

-15

-10

-5

0

5

(a) (b)

Figure 7. (a) The optimized conductivity distribution over the ground plane when the design given
in Figure 4 is used as the radiating patch. The design domain has 38,076 design variables. The coaxial
probe, marked as a gray circle, is connected at (33.75mm, 52.5 mm). (b) The reflection coefficient and
the radiation efficiency of the antenna.
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(a) F = 1.4 GHz (b) F = 1.5 GHz (c) F = 1.6 GHz

Figure 8. Surface currents over the radiating patch given in Figure 4 and the ground plane given in
Figure 7 at 1.4, 1.5, and 1.6 GHz. The first row is the surface current seen from the positive z axis, and
the second row is the surface current seen from the negative z axis.
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140 × 140 Yee-faces (39,480 Yee-edges). To guarantee a well-defined support for the coaxial cable
connection, an area of 19.5 × 19.5mm2 around the coaxial feed is excluded from the design and fixed
to be a conductor. The design problem has in total 38,076 design variables; that is, 39,480 on the
ground plane minus 1,404 of the fixed area around the coaxial cable. We use the same settings as
for the first design case, except that the initial value of the design variables is pi = 0.8 (to make the
initial conductivity over the ground plane closer to a conductor than to free space). The algorithm
converged in 133 iterations to the final design shown to the left in Figure 7. The reflection coefficient
and the radiation efficiency of the antenna are shown in the same figure to the right. The antenna has
a reflection coefficient below −10 dB over the frequency band 1.42–1.62 GHz, and the value at 1.52 GHz
decreased, compared to the previous case, to −13.8 dB. The surface currents over the antenna at 1.4,
1.5, and 1.6 GHz are shown in Figure 8. The surface current distribution over the patch is similar to
the one in Figure 5. However, below the ground plane, the surface current amplitudes are higher along
the ground plane edges compared to the case of the square ground plane. The front-to-back ratio of
the new antenna is reduced to about 15 dB at the three frequencies 1.4, 1.5 and 1.6 GHz, as shown in
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Figure 9. Simulated radiation patterns at (a) 1.4, (b) 1.5, and (c) 1.6 GHz for the microstrip antenna
with the radiating patch given in Figure 4 and the ground plane given in Figure 7.
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Figure 10. The optimized conductivity distribution over (a) the ground plane and (b) the patch area
when the radiating patch and the ground plane are simultaneously designed. The design problem has
in total 58,276 design variables. The location of the coaxial probe is marked by a gray circle.



98 Hassan, Wadbro, and Berggren

Figure 9, due to the smaller size of the ground plane.
As a final test case, we consider the simultaneous design of the radiating patch and the ground

plane. We use the same settings as for the previous two test cases concerning the filter, the initial values
of the design variables, and the fixed conductive area 19.5× 19.5mm2 in the ground plane around the
coaxial cable. The design problem has in total 58,276 design variables. The optimization algorithm
converged, in 125 iterations, to the final design shown in Figure 10. Figure 11 shows the reflection
coefficient and the radiation efficiency of the obtained design computed with our FDTD code and with
the CST package. The microstrip antenna has a reflection coefficient below −10 dB over the frequency
band 1.26–1.83 GHz; that is, the design has an impedance bandwidth of 36.8%. Figure 12 illustrates
the surface current distribution at 1.4, 1.5, and 1.6 GHz over the designed conductive parts. We note
the higher relative amplitudes of the surface current below the ground plane, especially at the lower
frequencies, which indicates the higher influence of the the ground plane in the antenna radiation.
Figure 13 shows the simulated radiation patterns at 1.4, 1.5, and 1.6GHz. The large values of the
surface current below the ground plane increase the radiation below the antenna, and the front-to-back
ratio is around 5 dB at the three frequencies. Moreover, the antenna has essentially dual-polarized
far-field patterns in the boresight direction.
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Figure 11. The reflection coefficient and the radiation efficiency of the designs given in Figure 10.
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Figure 12. Surface currents over the radiating patch and the ground plane given in Figure 10 at 1.4,
1.5, and 1.6 GHz. The first row is the surface current seen from the positive z axis, and the second row
is the surface current seen from the negative z axis.
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Figure 13. The simulated radiation patterns at (a) 1.4, (b) 1.5, and (c) 1.6GHz for the microstrip
antenna with the radiating patch and the ground plane given in Figure 10.

6. CONCLUSIONS

By relying on a gradient-based material distribution optimization algorithm in combination with
derivative calculations based on the adjoint-field method, we are able to optimize the metallic parts
of microstrip antennas in a computationally efficient way. The number of iterations in the algorithm
does not seem to grow much when the number of design variables are increased, in contrast to standard
approaches based on metaheuristics, which typically require a number of iterations that is two to three
orders of magnitude greater than the number of design variables. Thus, we are able to work with a dense
pixel-based representation of the geometry, which leads to non-intuitive antenna designs, while keeping
the number of design iterations well below 200, even when the number of design variables are as high
as almost 60,000. The current work focuses on designs that maximize the received energy regardless of
the wave source’s polarizations. Thus, we have no direct control over the transmitted far-field pattern.
Nevertheless, in the last test case, we achieved a dual-polarized far-field pattern of the antenna in the
boresight direction, although we did not explicitly enforce this condition in the optimization. Adding
explicit requirements, on the far-field patterns, in the optimization could be a suitable subject for future
work.
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APPENDIX A. FILTERING EFFECT

To demonstrate the effectiveness of the filter and the continuation approach in the design process, we
show two results obtained by the optimization algorithm without the use of the systematic continuation
approach. In the first example, Design I, we use the algorithm to design the radiating patch over the
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Figure A1. An illustration of the filtering effect on the design. (a) Design I, obtained with no filtering,
Design II, obtained by using a filter only for the first subproblem. (b) The reflection coefficient of
Design I and Design II.

square ground plane, using the same settings as those for the design in Figure 4, but without the use
of a filter (that is, with R0 = 0 mm). In the second example, Design II, the filter is removed after
the convergence of the first subproblem (that is, using R0 = 15 mm and γ = 0). Figure A1 shows
the resulting designs and their corresponding reflection coefficients computed by our FDTD code. The
design algorithm converged in 10 iterations to Design I, which consists of a group of isolated conductive
parts that has a reflection coefficient higher than −3 dB over the whole frequency band of interest.
For Design II, the algorithm converged in 30 iterations, and the reflection coefficient is below −10 dB
only over the two separated frequency bands 1.42–1.47GHz and 1.6–1.68 GHz. We conclude that the
systematic continuation approach is a crucial component in order for our method to produce antennas
with satisfactory performance.
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