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An Integral Equation Formulation for TM Scattering by a
Conducting Cylinder Coated with an Inhomogeneous

Dielectric/Magnetic Material

Ahmed A. Sakr1, Ezzeldin A. Soliman2, and Alaa K. Abdelmageed1, *

Abstract—A volume-surface integral equation (VSIE) formulation is developed for determining the
electromagnetic TM scattering by a two-dimensional conducting cylinder coated with an inhomogeneous
dielectric/magnetic material. The electric field integral equations (EFIEs) are utilized to derive the
VSIE. The surface EFIE is applied to the conducting surface, while the volume EFIE is applied to
the coating region. By employing the surface and equivalence principles, the problem is reduced into
a set of coupled integral equations in terms of equivalent electric and magnetic currents radiating into
unbounded space. The moment method is used to solve the integral equations. Numerical results for the
bistatic radar cross section for different structures are presented. The well-known exact series-solution
for a conducting circular cylinder coated with multilayers of homogeneous materials is used along with
the available published data to validate the results. The influence of using coatings with double-positive
(DPS) and/or double-negative (DNG) materials on the radar cross section is investigated.

1. INTRODUCTION

The topic of electromagnetic scattering has gained wide and growing consideration. This consideration
is of practical importance in radars, antennas and measurements. Extensive research has been exerted in
this field. One motivation behind the research is to meet the new emerging applications, and the other
is to explore new methods for handling the scattering problems more efficiently. Extensive research
has been conducted on the problem of coated conducting cylinders due to its importance in many
applications. One of them is the protection of objects from the radar illumination where the coating
can be used to acquire maximum radar scattering cross-section reduction. In antenna design, the coating
can be used to reduce the aperture blockage caused by some mechanical structures which are placed in
the vicinity of the antenna system.

The problem of electromagnetic scattering by a coated conducting two-dimensional cylinder has
only an exact solution for a limited class of geometries provided that the coating material has
homogeneous and isotropic properties. For these geometries (circular, elliptical), the scattered field
can be expressed in terms of a set of eigenfunctions using the separation of variables method [1]. The
problem of a dielectric coated conducting circular cylinder was first studied by Tang [2] where an exact
series solution is developed by utilizing cylindrical eigenfunctions expansion. Richmond derived a series-
solution for a coated conducting elliptic cylinder using Mathieu functions [3]. This approach has been
exploited to study several other structures [4–7]. The method can be extended to handle a conducting
cylinder with a multilayer coating [8–11].

When the coated cylinder has an arbitrary cross-section or when the coating material has
inhomogeneous properties, the problem has to be attacked numerically. Several numerical techniques
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have been proposed to study this problem. In cases where the coating region is homogeneous or piecewise
homogeneous, the surface integral equation (SIE) formulation is an efficient and suitable candidate [12].
Diversity of the SIE formulations have been adopted in the literature [13]. These formulations comprise
the PMCHW formulation [14–16], the Müller formulation [17], and the single-source surface integral
equation (SSIE) formulation [18–21]. The SIE formulations have been applied to investigate the problem
of a dielectric coated conducting cylinder [22–26]. For the PMCHW and Müller formulations, the
surfaces of the conductor and the dielectric are replaced by equivalent electric and magnetic surface
current sources using the surface equivalence principle. These sources are radiating in unbounded space.
By imposing the boundary conditions on the cylindrical surfaces, a set of coupled integral equations is
obtained. These integral equations are formulated in terms of the unknown surface currents. To find
these currents, the integral equations are solved using the method of moment (MoM) [27]. Once these
currents are determined, the scattered fields and related parameters such as the radar cross section
(RCS) are readily determined. For the SSIE formulation, only a single unknown source is utilized.
This source could be an electric or magnetic surface current placed at the material boundaries. Thus,
the PMCHW and Müller formulations utilize two unknown current sources at each material boundary,
while the SSIE utilizes one unknown surface current source. Although the SSIE has an advantage of
reducing the number of unknowns, it may result in increasing the computational complexity compared
with the other two forms [21].

One disadvantage of the SIE is that it is only valid for coating materials having homogeneous
properties. It can consider piecewise homogeneous coating materials [21]. Even for piecewise
homogeneous materials, the efficiency of the SIE decreases as the number of the layers increases, since
boundary conditions have to be imposed on the interfaces between coating layers. To overcome this
deficiency, the surface-volume integral equation (SVIE) formulation has been applied to treat conducting
objects coated with inhomogeneous materials [28–30]. In this approach, the surface and volume
equivalence principles are employed where the original problem is replaced by a surface electric current
at the conducting surface, and polarization currents in the volume of the coating. The unknown currents
radiate into unbounded space. The surface integral equation is enforced at the conducting object, while
the volume integral equation is applied to the volume of the coating. A set of coupled integral equations
is obtained. These integrals are formulated in terms of the unknown surface and volume currents. To
find these currents, the MoM is invoked. In the quest of reducing the number of unknowns and in
resemblance with the SSIE, the VSIE has another variant for modeling the inhomogeneity. Instead of
modeling the problem using the equivalent electric and magnetic current sources as unknown quantities,
alternatively either the electric field or magnetic field can be used as a single unknown quantity [31–34].
This method will be denoted here as SVSIE.

A hybrid finite-element method has been applied to study conducting cylinders coated with
inhomogeneous dielectric and/or magnetic materials [35]. In [36], the coupled finite boundary element
method was used to combine the advantages of both the finite element method and the boundary element
method. Other techniques such as the multifilament current model [37] and the on-surface radiation
condition [38] have been proposed to treat the coated conducting cylinders. Several high frequency
techniques have been devised for a dielectric coated conducting cylinders [39–44].

Most of the published works are concerned with either dielectric or magnetic coating materials.
Works that address inhomogeneous dielectric/magnetic coating materials are limited [32, 35]. In [32]
the SVSIE is utilized, and in [35] the hybrid finite element method is adopted. The results presented
in these works are given for conducting cylinders coated with only one layer having homogeneous
properties. The application of these methods to multilayer coatings has not been well-addressed. Hence,
the efficiency of these works are not clearly manifested for handling dielectric/magnetic coatings having
inhomogeneous properties. In this work, the VSIE is used to study the TM-scattering by a two-
dimensional conducting cylinder coated with an inhomogeneous material. The profile of the relative
permittivity and permeability is arbitrary. The coating may also be constructed of several layers. Each
layer may have a nonunity relative permittivity and permeability. The interaction of electromagnetic
waves with conducting objects coated with metamaterials has attracted recently the attention of many
researchers [6, 45, 46]. This has tempted us to study the influence of using coating layers of metamaterials
on the RCS. As outlined earlier, the surface equivalence principle is used to replace the conducting
surface by a surface electric current. Also, the volume equivalence principle is used to replace the
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coating region by polarization volume currents. Imposing the boundary conditions on the surface of
the conducting cylinder, a surface EFIE is developed. Within the coating region, the volume EFIE is
applied. The obtained integral equations are expressed in terms of the unknown equivalent currents.
As the VSIE method is employed for modeling the scattering problem using the EFIEs, the developed
formulation is given the acronym VSIE-EFIE. The unknown currents are obtained by solving the integral
equations of this formulation using the MoM. The paper is organized as follows. In the next section,
the formulation of the problem is presented. In Section 3, numerical results for the RCS for different
structures are given. The impact of two types of coating materials on the results of the RCS are
studied, namely the DPS and DNG materials. For the DPS materials, both the relative permittivity
and relative permeability are positive, while for the DNG materials, both the relative permittivity and
relative permeability are negative. Finally, some concluding remarks are given in Section 4.

2. FORMULATION

In this section, a set of coupled integral equations based on the VSIE-EFIE formulation is developed for
the problem of electromagnetic scattering by a two-dimensional coated conducting cylinder. The TM
wave scattering is considered. The geometry of the problem under consideration is depicted in Fig. 1.
The figure shows a cross-sectional view of a coated perfectly electric conducting (PEC) cylinder along
with the relevant coordinate system. The cylinder is assumed to be infinitely long in the z-direction. The
conducting surface is bounded by contour C. The domain of the coating region is denoted by Ω. The
coating material is assumed to be linear and isotropic with permittivity ε = εoεr(x, y) and permeability
µ = µoµr(x, y) where εo and µo are the free-space permittivity and permeability, respectively. The
cylinder is embedded in free-space with a wavenumber ko = ω

√
εoµo = 2π/λo, where λo is the wavelength

in free-space. The time dependence ejωt is assumed and suppressed throughout.
The cylinder is illuminated by an incident field (Ei,Hi) which is polarized along the axis of the

cylinder

Ei = azE
i
z(x, y) (1)

Hi = axH i
x(x, y) + ayH

i
y(x, y) (2)

The total field (E,H) is the sum of the incident field and the scattered field (Es,Hs). Using the surface
and volume equivalence principles [34], the conducting surface is replaced with a surface electric current
Jc, and the volume of the coating is replaced by volume polarization electric current Jp and magnetic
current Mp. These currents are radiating in unbounded free space. The scattered field Es and the total
field E are polarized in the z-direction as the incident field. Therefore,

Ez = Ei
z + Es

z (3)

Figure 1. Cross-sectional view of a coated PEC cylinder illuminated by an incident wave.
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On the contour C of the conducting surface, the boundary conditions necessitate that the total
tangential electric field should vanish. Hence,

Ei
z(x, y) = −Es

z(x, y), on C (4)

The polarization currents are related to the total fields (E,H) through the relations [1]

Jp(x, y) = az jωεo[εr(x, y)− 1]Ez(x, y), on Ω (5)
Mp(x, y) = Mpxax + Mpyay = jωµo[µr(x, y)− 1]H(x, y), on Ω (6)

For a TM wave incidence, both Jc and Jp are along the z-direction, while Mp has two transverse
components, namely Mpx, Mpy. In view of (3), Equation (5) can be equivalently written in the form

Ei
z(x, y) =

Jp(x, y)
jωεo(εr − 1)

−Es
z(x, y), on Ω (7)

In (6), the polarization magnetic current is represented in terms of the total magnetic field, alternatively
it can be expressed in terms of the total electric field as

Mp = −µr − 1
µr

∇×E = −µr − 1
µr

∇× (
Ei + Es

)
(8)

or
∇×Ei = − µr

µr − 1
Mp −∇×Es, on Ω (9)

Equation (9) can be split into the following two equations in the x- and y-directions

∂Ei
z

∂y
= − µr

µr − 1
Mpx − ∂Es

z

∂y
, on Ω (10)

−∂Ei
z

∂x
= − µr

µr − 1
Mpy +

∂Es
z

∂x
, on Ω (11)

The scattered field is induced due to Jc, Jp, Mpx and Mpy. It can be expressed as [34]

Es
z = −jkoηAz − ∂Fy

∂x
+

∂Fx

∂y
(12)

where η is the intrinsic impedance of free space. A and F are the magnetic and electric vector potentials,
respectively. They are given as

A(ρ) =
∫

J
(
ρ′

)
Go

(
ρ | ρ′) dΓ′ (13)

F(ρ) =
∫

M
(
ρ′

)
Go

(
ρ | ρ′) dΓ′ (14)

where
Go

(
ρ | ρ′) = − j

4
H2

o

(
ko | ρ− ρ′ |) (15)

ρ and ρ′ are the position vectors of the field and source points, respectively. Go is the two-dimensional
Green’s function, and H2

o is the zeroth-order Hankel function of the second kind. In (13) if J = Jc, the
integration is performed on the contour C of the conducting surface and dΓ′ = d`′. On the other hand,
if J = Jp in (13) or M = Mp in (14), the integration is performed on the coating region domain Ω and
dΓ′ = dS′. Substituting (13)–(15) in (12) produces

Es
z (x, y) =− koη

4

∫

C

Jc

(
x′, y′

)
H2

0 (koR) d`′ − koη

4

∫∫

Ω

Jp

(
x′, y′

)
H2

0 (koR) dx′dy′

− j

4
∂

∂y

∫∫

Ω

Mpx

(
x′, y′

)
H2

0 (koR) dx′dy′ +
j

4
∂

∂x

∫∫

Ω

Mpy

(
x′, y′

)
H2

0 (koR) dx′dy′ (16)
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where
R =

√
(x− x′)2 + (y − y′)2 (17)

(x, y) and (x′, y′) are the coordinates of the field and source points, respectively. Equations (4), (7), (10)
and (11) constitute the required relations needed to determine the four unknowns Jc, Jp, Mpx and Mpy.
On substituting for Es

z , as given by (16), in these equations yields

Ei
z =

koη

4

∫

C

Jc H2
0 (koR) d`′ +

koη

4

∫∫

Ω

Jp H2
o (koR ) dx′dy′

+
j

4
∂

∂y

∫∫

Ω

Mpx H2
o (koR) dx′dy′ − j

4
∂

∂x

∫∫

Ω

Mpy H2
o (koR) dx′dy′, on C (18)

Ei
z =

ηJp

jko (εr − 1)
+

koη

4

∫

C

Jc H2
o (koR) d`′ +

koη

4

∫∫

Ω

Jp H2
o (koR) dx′dy′

+
j

4
∂

∂y

∫∫

Ω

Mpx H2
o (koR) dx′dy′ − j

4
∂

∂x

∫∫

Ω

Mpy H2
o (koR) dx′dy′, on Ω (19)

∂

∂y
Ei

z = − µr

µr − 1
Mpx +

koη

4
∂

∂y

∫

C

Jc H2
o (koR) d`′ +

koη

4
∂

∂y

∫∫

Ω

Jp H2
o (koR) dx′dy′

+
j

4
∂2

∂y2

∫∫

Ω

Mpx H2
o (koR) dx′dy′ − j

4
∂2

∂y∂x

∫∫

Ω

Mpy H2
o (koR) dx′dy′, on Ω (20)

∂

∂x
Ei

z =
µr

µr − 1
Mpy +

koη

4
∂

∂x

∫

C

Jc H2
o (koR) d`′ +

koη

4
∂

∂x

∫∫

Ω

Jp H2
o (koR) dx′dy′

+
j

4
∂2

∂y∂x

∫∫

Ω

Mpx H2
o (koR) dx′dy′ − j

4
∂2

∂x2

∫∫

Ω

Mpy H2
o (koR) dx′dy′, on Ω (21)

Equations (18)–(21) represent the VSIE-EFIE formulation for TM-scattering by a two-dimensional
PEC cylinder coated with an inhomogeneous dielectric/magnetic material. All the integral equations
are derived using the EFIEs. The first of these equations is a surface EFIE applied to the surface
of the conductor, while the other three equations are volume EFIEs applied to the volume of the
coating. In order to solve these equations, we follow the typical MoM procedure. The contour of
the conducting surface is discretized into a set of Nc line segments, while the coating region Ω is
subdivided into Np nearly square cells. The surface current and volume polarization currents are
approximated using subsectional pulse basis functions on their respective domains with amplitudes yet
to be determined. On enforcing the resulting equations at the centers of these segments/cells using
point matching, Equations (18)–(21) are converted into a set of (Nc + 3Np) linear equations. The
matrix equation can be written as




A(1) A(2) A(3) A(4)

B(1) B(2) B(3) B(4)

C(1) C(2) C(3) C(4)

D(1) D(2) D(3) D(4)







Jc

Jp

Mx

My


 =




E(1)

E(2)

E(3)

E(4)


 (22)

where A(1) is a matrix of dimensions Nc ×Nc, {B(i), C(i), D(i) for i = 2 : 4} are matrices of dimensions
Np × Np, {A(i) for i = 2 : 4} are matrices of dimensions Nc × Np, and {B(1), C(1), D(1)} are matrices
of dimensions Np ×Nc. E(1), E(2) are vectors of the incident field evaluated at the centers of the line
segments and cells, respectively. E(3), E(4) are vectors of ∂Ei

z
∂y and ∂Ei

z
∂x , respectively, evaluated at the
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centers of the cells. E(1) is a column vector of length Nc, while E(2), E(3), E(4) are column vectors of
length Np. Solving the matrix equation renders the vectors Jc, Jp, Mx and My which represent the
amplitudes of the currents Jc, Jp, Mpx and Mpy. To demonstrate the interaction of the conducting
object and the coating material due to the excitation as monitored by the moment matrix, the matrix
Equation (22) can be partitioned as illustrated by dashed lines into the following form

[
Zcc Zcd

Zdc Zdd

] [ Ic

Ip

]
=

[ E1

E2

]
(23)

where the correspondence of the matrices and vectors in (23) with those in (22) is clear. Zcc, Zcd, Zdc

and Zdd are submatrix blocks. Zcc is the moment matrix contribution of the conducting surface, and
Zdd is the moment matrix contribution of the coating material. Zcd and Zdc represent the interaction
between the conducting surface and the coating material.

The integrals involved in these equations can be evaluated using a suitable numerical quadrature
procedure. However, when the integration is performed over a cell domain, we follow here the same
approach adopted by Richmond [47]. In this approach, the integrals are evaluated analytically if the
cell shapes are approximated by circles having the same area. The details will not be repeated here and
may be found elsewhere [47, 48].

The solution of the matrix Equation (22) yields the unknown currents. Once these currents are
obtained, the RCS can be easily computed. It is defined as

RCS(φ) = lim
ρ→∞ 2πρ

∣∣∣∣
Es

z(φ)
Ei

z

∣∣∣∣
2

(24)

3. NUMERICAL RESULTS

To demonstrate the accuracy of the MoM-based VSIE-EFIE formulation, results are shown in Figs. 3–
14. For Figs. 3–12, the incident field is a TMz-polarized plane wave propagating in the x-direction. The
results in Figs. 3–11 are presented for a circular PEC cylinder coated with multilayers of homogeneous
materials. The structure of this multilayered coated cylinder is given in Fig. 2. The PEC cylinder may
be coated with only one layer, two layers or generally N layers. The radius of the PEC cylinder is
Ro, and the outer radius of the ith-layer is Ri where i runs from 1 (the innermost layer) to N (the
outermost layer). Each layer is characterized by a permittivity εi = εoεri, a permeability µi = µoµri

and wavenumber ki = ko
√

µriεri, where εri and µri are the relative permittivity and permeability,
respectively. The exact series-solution for a circular PEC cylinder with a multilayer coating [11] is
incorporated in the figures to solidify the accuracy of the results. Figs. 3–5 show the bistatic RCS for
a one-layer coating. In Fig. 3, Ro = λo, R1 = 1.5λo, εr = 2, µr = 2. The results show complete

Figure 2. Structure of a PEC circular cylinder coated with multilayers of homogeneous materials.
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Figure 3. Bistatic RCS for a circular PEC
cylinder with a one-layer coating, Ro = λo, R1 =
1.5λo, εr = 2, µr = 2.

Figure 4. Bistatic RCS for a circular PEC
cylinder with a one-layer DPS coating, Ro =
0.5λo, R1 = 0.6λo, εr = 4, µr = 2.

Figure 5. Bistatic RCS for a circular PEC
cylinder with a one-layer DNG coating, Ro =
0.5λo, R1 = 0.6λo, εr = −4, µr = −2.

Figure 6. Bistatic RCS for a circular
PEC cylinder with a two-layer coating, Ro =
0.5λo, R1 = 0.6λo, R2 = 0.7λo, εr1 = 4, µr1 =
2, εr2 = 2, µr2 = 4.

agreement with the series solution. To study the impact of DPS and DNG materials, results are
presented in Figs. 4 and 5 for a one-layer coating having either a DPS or DNG material. For both
figures, Ro = 0.5λo, R1 = 0.6λo. In Fig. 4, εr = 4, µr = 2, and in Fig. 5, εr = −4, µr = −2. The
results show a complete agreement with the exact solution. Observing these results, one can note that
the DNG coating has a lower backscattering and a higher forward scattering. To inspect this point
deeply, the values of both the backscattering Bsc and forward scattering Fsc for different structures are
listed in Table 1. Examining the table, it is obvious that the values of Bsc or Fsc are fluctuating as the
coating thickness increases for certain |εr| and |µr|. Therefore, the coating type (DNG or DPS) which
has a lower value of Bsc or Fsc for certain |εr| and |µr| depends on the thickness of the coating material.

Results for a two-layer coating are shown in Figs. 6–10. In Figs. 6 and 7, conventional (DPS)
materials are used for both layers. In Fig. 6, Ro = 0.5λo, R1 = 0.6λo, R2 = 0.7λo, εr1 = 4, µr1 =
2, εr2 = 2, µr2 = 4, while in Fig. 7, Ro = 0.7λo, R1 = 0.8λo, R2 = 0.9λo, εr1 = 6, µr1 = 3, εr2 =
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Figure 7. Bistatic RCS for a circular
PEC cylinder with a two-layer coating, Ro =
0.7λo, R1 = 0.8λo, R2 = 0.9λo, εr1 = 6, µr1 =
3, εr2 = 3, µr2 = 6.

Figure 8. Bistatic RCS for a circular PEC
cylinder with a two-layer coating, Ro = λo, R1 =
1.1λo, R2 = 1.2λo. DPS-DNG coating: εr1 =
4, µr1 = 2, εr2 = −4, µr1 = −2. DNG-DPS
coating: εr1 = −4, µr1 = −2, εr2 = 4, µr1 = 2.

Figure 9. Bistatic RCS for a circular PEC
cylinder with a two-layer coating, Ro = λo, R1 =
1.3λo, R2 = 1.6λo. DPS-DNG coating: εr1 =
4, µr1 = 2, εr2 = −4, µr2 = −2. DNG-DPS
coating: εr1 = −4, µr1 = −2, εr2 = 4, µr2 = 2.

Figure 10. Bistatic RCS for a circular PEC
cylinder with a two-layer coating, Ro = λo, R1 =
1.5λo, R2 = 2.0λo. DPS-DNG coating: εr1 =
4, µr1 = 2, εr2 = −4, µr2 = −2. DNG-DPS
coating: εr1 = −4, µr1 = −2, εr2 = 4, µr2 = 2.

3, µr2 = 6. A comparison of the VSIE-EFIE results to the exact series solution shows a complete
agreement. Fig. 8 shows the results of both DNG-DPS and DPS-DNG coatings. Both structures have
Ro = 1.0λo, R1 = 1.1λo, R2 = 1.2λo. For DPS-DNG coating, εr1 = 4, µr1 = 2, εr2 = −4, µr2 = −2,
while for DNG-DPS coating, εr1 = −4, µr1 = −2, εr2 = 4, µr2 = 2. As is evident, the results of the
DNG-DPS and the DPS-DNG structures have an excellent agreement with the exact series solution. It
is also observed that both the DNG-DPS and DPS-DNG structures have exactly the same RCS pattern.
We examined this point extensively for different two-layer coatings assuming that the thickness of the
layers is the same and both the DNG and DPS layers have the same |εr| and |µr|. For the cases studied,
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Figure 11. Bistatic RCS for a circular PEC
cylinder with a three-layer coating, Ro =
0.5λo, R1 = 0.6λo, R2 = 0.7λo, R3 =
0.8λo, εr1 = 2, µr1 = 2, εr2 = 3, µr2 = 3, εr3 =
4, µr3 = 4.

Figure 12. Bistatic RCS of a circular PEC
cylinder coated with an inhomogeneous dielectric.
f = 9 GHz, Ro = 2.0 cm, R1 = 2.33 cm, εr(ρ) =
11− 5(ρ−Ro)/(R1 −Ro), µr = 1.

Figure 13. Backscattering RCS of an ogival
PEC cylinder coated with one layer. εr = 2.4 −
j1.0, µr = 1.2− j1.0.

Figure 14. Backscattering RCS of a square
PEC cylinder coated with two dielectric layers.
εr1 = 4.0− j0.4, εr2 = 2.0− j0.2, µr1 = µr2 = 1.

we have found that the DNG-DPS and the DPS-DNG coatings have the same RCS for thin coating
layers in the order of 0.1λo. When the thickness of the layers begins to increase, a deviation starts.
Figs. 9 and 10 show the RCS for a layer thickness equal to 0.3λo and 0.5λo, respectively. In Fig. 9,
Ro = 1.0λo, R1 = 1.3λo, R2 = 1.6λo, while in Fig. 10, Ro = 1.0λo, R1 = 1.5λo, R2 = 2.0λo. For both
figures, the DPS layer has εr = 4, µr = 2 and the DNG layer has εr = −4, µr = −2. The figures show
a complete agreement between the VSIE-EFIE and the exact solution. Fig. 9 reveals a discrepancy
between the two patterns for a layer thickness equal to 0.3λo although they still have a similar behavior
near the backscattering direction. This discrepancy becomes clearly conspicuous in Fig. 10 for layer
thickness equal to 0.5λo. It also seems that the DNG-DPS coating in this example has the effect of
damping the oscillations of the RCS pattern in the forward scattering direction while the DPS-DNG
experiences this oscillatory behavior.
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Table 1. Backscattering Bsc (dB) and forward-scattering Fsc (dB) for one-layer coated PEC circular
cylinder.

Ro R1 |εr| |µr| DPS DNG
Bsc Fsc Bsc Fsc

0.5λo 0.6λo 4 2 9.71 1.94 7.64 2.54
0.5λo 0.8λo 4 2 12.16 4.65 12.17 2.74
0.5λo 1.0λo 4 2 12.36 3.17 15.47 3.83
0.5λo 0.6λo 2 4 8.69 1.96 7.61 2.39
0.5λo 0.8λo 2 4 11.00 3.59 11.17 4.54
0.5λo 1.0λo 2 4 11.69 3.83 14.92 9.37
0.7λo 0.8λo 4 2 12.07 3.08 10.43 3.79
0.7λo 1.0λo 4 2 14.60 5.17 13.25 5.12
0.7λo 1.2λo 4 2 15.39 5.87 17.17 6.73
0.7λo 0.8λo 6 3 14.42 4.26 12.89 3.82
0.7λo 1.0λo 6 3 11.71 4.41 16.68 5.43
0.7λo 1.2λo 6 3 16.65 4.95 16.42 6.67
0.7λo 0.8λo 2 2 10.54 3.42 15.95 6.34
0.7λo 1.0λo 2 2 15.98 5.14 14.83 6.64
0.7λo 1.2λo 2 2 15.92 4.85 17.03 10.54

Shown in Fig. 11 are the results of a three-layer coating with Ro = 0.5λo, R1 = 0.6λo, R2 =
0.7λo, R3 = 0.8λo, εr1 = 2, µr1 = 2, εr2 = 3, µr2 = 3, εr3 = 4, µr3 = 4. The results have a good
agreement with the series solution.

To assert further the validity of our method, we applied it to three different structures as shown
in Figs. 12–14. Fig. 12 shows the bistatic RCS of a PEC cylinder coated with inhomogeneous dielectric
whose permittivity is given as: εr(ρ) = 11 − 5(ρ − Ro)/(R1 − Ro) with Ro ≤ ρ ≤ R1, Ro = 2.0 cm,
R1 = 2.33 cm, and frequency f = 9 GHz. The results demonstrate a good agreement with those obtained
from [49] using the scattering matrix method (SMM). The last two figures concern the application of the
VSIE-EFIE to coated cylinders of arbitrary cross-section. The coating materials are lossy. Fig. 13 shows
the backscattering RCS from ogival PEC cylinder coated with one layer of εr = 2.4−j1.0, µr = 1.2−j1.0.
The results obtained using the SVSIE [32] are incorporated for comparison where a good agreement is
realized. Fig. 14 shows the backscattering RCS from square PEC cylinder coated with double layers of
lossy dielectrics of εr1 = 4 − j0.4, εr2 = 2 − j0.2 and µr1 = µr2 = 1. The results obtained using the
SIE [23] are incorporated for comparison where a good agreement is achieved.

4. CONCLUSION

A VSIE-EFIE formulation is presented for studying the electromagnetic scattering by a two-dimensional
PEC cylinder coated with an inhomogeneous dielectric/magnetic material. The case of a TM incident
wave is considered. With using the surface and volume equivalence principles, the problem has been
formulated in terms of equivalent surface and volume polarization currents. A set of coupled integral
equation is derived in terms of these currents. The MoM has been used to solve these integral equations.
A comparison with the eigenfunction solution for a circular PEC cylinder with a multilayer homogeneous
coating has proved to have an excellent agreement. The method has also been applied to cylinders of
arbitrary cross-section with lossy coating materials. The results are compared to the available published
data where a good agreement is achieved. The impact of using DPS and DNG coating materials for a
circular cylinder on the computed RCS has been investigated. Using one-layer coating of either DNG or
DPS, we have found that the values of Bsc and Fsc are fluctuating with the increase of coating thickness.
So, specifying which of the coating types (DNG or DPS) has a lower value of Bsc or Fsc for certain
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|εr| and |µr| depends on the thickness of the coating material. For two-layer coatings, we have found
that the DPS-DNG and DNG-DPS coatings have very similar RCS patterns for equal and thin layers
in the order of 0.1λo. As the layer thickness begins to increase, a deviation occurs and the two patterns
become distinct for thick layers. However, we have noticed that the two patterns have a nearly similar
behavior in the neighborhood of the backscattering direction up to a layer thickness equal to 0.3λo.

APPENDIX A. SCATTERING BY PEC CIRCULAR CYLINDER COATED WITH
MULTILAYERS OF HOMOGENEOUS MATERIALS

The closed series-solution for electromagnetic scattering by a circular PEC cylinder coated with
multilayers of homogeneous materials is given in this appendix. The details of the derivation can be
found in [11]. The structure of this cylinder is depicted in Fig. 2. It is illuminated by a TM -polarized
incident wave propagating in the x-direction Ei = az Eoe

−jkox. The incident field can be expanded in
terms of cylindrical functions as follows

Ei = az Eo

∞∑
n=−∞

j−nJn(koρ)ejnφ (A1)

where Jn is the Bessel function of order n. The scattered field can be expressed as

Es
z = Eo

∞∑
n=−∞

anH2
n(koρ)ejnφ (A2)

while the total field in the ith-layer is given by

E(i)
z = Eo

∞∑
n=−∞

[
C(i)

n H1
n(kiρ) + D(i)

n H1
n(kiρ)

]
ejnφ (A3)

where H1
n and H2

n are the nth-order Hankel functions of the first and second kind, respectively. an, C
(i)
n

and D
(i)
n are unknown quantities to be determined. Applying the boundary conditions at ρ = Ri for

1 ≤ i ≤ N yields

an = −j−n Jn(koRN )−R
(N)
E J ′n(koRN )

H2
n(koRN )−R

(N)
E H2′

n (koRN )
(A4)

R
(i)
E =

√
εi+1µi

µi+1εi

H1
n(kiRi) +

D
(i)
n

C
(i)
n

H2
n(kiRi)

H1′
n (kiRi) +

D
(i)
n

C
(i)
n

H2′
n (kiRi)

, 1 ≤ i ≤ N (A5)

D
(i+1)
n

C
(i+1)
n

= −H1
n(ki+1Ri)−R

(i)
E H1′

n (ki+1Ri)

H2
n(ki+1Ri)−R

(i)
E H2′

n (ki+1Ri)
, 1 ≤ i ≤ N − 1 (A6)

Since the tangential electric field vanishes at the conducting surface ρ = Ro, we obtain

D
(1)
n

C
(1)
n

= −H1
n(k1Ro)

H2
n(k1Ro)

(A7)

Starting with (A7), R
(N)
E can be computed using a recursive procedure to calculate R

(i)
E for i = 1 to

i = N , and D
(i+1)
n

C
(i+1)
n

for i = 1 to i = N − 1. Once R
(N)
E is computed, an in (A4) and hence the scattered

field in (A2) can be calculated.
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