
Progress In Electromagnetics Research M, Vol. 37, 51–62, 2014

Scattering by a Tilted Strip Buried in a Lossy Half-Space
at Oblique Incidence

Mario Lucido*

Abstract—The analysis of the scattering by a tilted perfectly conducting strip buried in a lossy half-
space at oblique incidence is formulated as an electric field integral equation (EFIE) in the spectral
domain and discretized by means of Galerkin’s method with Chebyshev polynomials basis functions
weighted with the edge behaviour of the surface current density on the strip. In this way, a convergence
of exponential type is achieved. Moreover, a new analytical technique is introduced to rapidly evaluate
the slowly converging integrals of the scattering matrix coefficients consisting of algebraic manipulations
and a suitable integration procedure in the complex plane.

1. INTRODUCTION

In research areas such as geophysical exploration, remote sensing and target identification, the study
of the scattering by buried objects has represented an important issue for several years and even more
recently (see [1–3] and the reference therein for an overview).

Indubitably, the most effective technique to analyze the propagation, radiation and scattering
by finite objects in layered non-shielded structures consists in formulating the problem as an integral
equation in the spatial or the spectral domain, that enables to express the fields as functions of unknowns
defined on finite regions, discretized by means of the variational method of moments.

It is well-known that the potential/field Green’s functions of a layered medium are expressed
in closed form only in the spectral domain and the spatial domain counterparts are represented by
slowly converging integrals of Sommerfeld type. Therefore, the efficient evaluation of such kind of
integrals is a precondition for rapidly converging spatial domain formulations. Approximate expressions
of the spectral domain Green’s functions are proposed in [4–11] in order to analytically perform the
corresponding Sommerfeld integrals. Despite the remarkable efficiency, the accuracy of such expressions
is still object of investigation [5, 12, 13]. On the other hand, appropriate acceleration/extrapolation
techniques, change of the integration path and/or suitable quadrature formulas are proposed to speed
up the numerical computation of the Sommerfeld integrals [13–19]. Unfortunately, the operation cannot
be carried out once because the integrands depend on the frequency and the distance between the source
and the field points.

Spectral domain formulations have been largely employed for their simplicity and flexibility to
study the propagation, the radiation and the scattering by objects in a layered medium [20–22].
Moreover, when dealing with canonical shape perfectly conducting/dielectric objects with edges in
a homogeneous or a layered medium, fast convergence is achieved by means of Galerkin’s method
with analytically Fourier transformable expansion basis factorizing the behaviour of the fields at the
edges [23–44]. Unfortunately, the computation time rapidly increases with the accuracy required for the
solution because the elements of the coefficients’ matrix are infinite integrals of oscillating functions.
Different approaches have been developed in the past and even more recently to overcome this problem.
The most popular acceleration technique consists in extracting the asymptotic behaviour from the
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kernels/integrands of the slowly converging integrals and expressing the integrals of the extracted part
in closed form [23–27, 29, 32–38, 41]. In the analysis of the propagation in multilayered striplines [39, 42]
and the scattering by a rectangular plate in a homogeneous medium [43], the matrix coefficients are
rapidly evaluated by using appropriate integration procedures in the complex plane. In order to speed up
the analysis of the propagation and the scattering by strips and slots in a layered medium, in [28, 30, 31]
the singularity is extracted from the spectral domain Green’s function and the corresponding integrals
recast in the spatial domain and written in computationally efficient forms. In the analysis of the
propagation in single and coupled microstrip lines [40] and of the complex resonances of a rectangular
patch in a layered medium [44], a suitable half-space contribution is pulled out of the spectral domain
Green’s function to obtain exponentially decaying integrands and the slowly converging integrals of the
extracted contributions are expressed as combinations of rapidly converging integrals.

The aim of this paper is the accurate and efficient analysis of the scattering by a tilted perfectly
conducting strip buried in a lossy half-space. Galerkin’s method with Chebyshev polynomials basis
functions weighted with the edge behaviour of the surface current density on the strip applied to
an EFIE formulation in the spectral domain allows to obtain convergence of exponential type. The
generic scattering matrix coefficient is represented as the superposition of two contributions: a rapidly
converging scattered contribution due to the inhomogeneity of the medium, and a primary or free
space contribution that is rewritten as a combination of proper integrals by means of a new analytical
technique consisting of algebraic manipulations and a suitable integration procedure in the complex
plane.

In Section 2 the formulation of the problem and the discretization of the integral equations are
presented. The new analytical technique to rapidly evaluate the scattering matrix is illustrated in
Section 3. Section 4 is devoted to show the accuracy and the efficiency of the presented technique and
the conclusions are summarized in Section 5.

2. FORMULATION AND SOLUTION OF THE PROBLEM

In Figure 1 two adjoining half-spaces, of dielectric permittivity εl = ε0εrl, magnetic permeability
µl = µ0µrl and wavenumber kl = ω

√
εlµl = 2π/λ

√
εrlµrl with l ∈ {1, 2}, where ε0 and µ0 are the

dielectric permittivity and the magnetic permeability of the vacuum, ω is the angular frequency and λ
is the wavelength in the vacuum, are depicted. A coordinate system (x, y, z) is introduced with the
origin on the discontinuity surface and the z axis orthogonal to it. A perfectly conducting strip of
dimension 2a, rotation angle ϕ, strip axis parallel to the y axis and centred at the point x = 0, z = −d,
is completely immersed in the half-space 2. Moreover, a local coordinate system (x0, y, z0) with the
origin at the centre of the strip and the z0 axis orthogonal to it is introduced.

A plane wave of electric field Einc(r) = E0e
−jk·r, where r = xx̂ + yŷ + zẑ and k =

−k1(sinϑ0 cosϕ0x̂ + sin ϑ0 sinϕ0ŷ + cosϑ0ẑ), travelling through the half-space 1 impinges on the
discontinuity surface, then, a damped transmitted wave arises in the half-space 2 (Etr(r) = E′

0e
−jk′·r

where k′ and E′
0 can be immediately obtained from k and E0 by means of Snell’s law and Fresnel’s

equations) inducing a current density J(r) in the scatterer.

Figure 1. Geometry of the problem.
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The vector potential generated by the sources in the half-space 2 is [45, 46]

A (r) =

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞
G

A

(
r, r′

)
J

(
r′

)
dr′, (1)

where

G
A

(
r, r′

)
=

µ2

4π





e−jk2|r−r′|

|r − r′| I + j
1
2π

+∞∫

−∞

+∞∫

−∞
G̃ (u, v) e−j[g−(u,v)·r−g′+(u,v)·r′]dudv



 , (2a)

G̃xx (u, v) = G̃yy (u, v) = −Dµ (u, v)/R2 (u, v), (2b)

G̃xy (u, v) = G̃yx (u, v) = 0, (2c)

G̃xz(u, v)
/

u = G̃yz(u, v)
/

v=−G̃zx(u, v)
/

u=−G̃zy(u, v)
/

v=−[Dµ(u, v)+Dε(u, v)]
/(

u2+v2
)
,(2d)

G̃zz (u, v) = −Dε (u, v)/R2 (u, v) + R2 (u, v) [Dµ (u, v) + Dε (u, v)]
/(

u2 + v2
)
, (2e)

Dη (u, v) = [η1R2 (u, v)− η2R1 (u, v)]/[η1R2 (u, v) + η2R1 (u, v)], (2f)

Rl (u, v) =
√

k2
l − u2 − v2, (2g)

g± (u, v) = ux̂ + vŷ ±R2 (u, v) ẑ (2h)

with η ∈ {ε, µ} and l ∈ {1, 2}.
Since

J (r) = [Jx0 (x0 (x, z)) x̂0 + Jy (x0 (x, z)) ŷ] e−jkyyδ (z0 (x, z)) , (3)

the vector potential can be expressed as follows

A (r0)=j
µ2

2
e−jkyy



−

+∞∫

−∞

e−j[ux0+R2(u)|z0|]

R2 (u)
J̃ (u) du +

+∞∫

−∞
G̃ (u) J̃

(
f+

x0
(u)

)
e−j[f−(u)·r0+2R2(u)d]du



 (4)

where the functional dependences on r and ky are omitted for the sake of simplicity of notation,
r0 = x0x̂0 + yŷ + z0ẑ0, J̃(·) = J̃x0(·)x̂0 + J̃y(·)ŷ is the Fourier transform with respect to the x0 axis of
the surface current density,

f± (u) = f±x0
(u) x̂0 + f±z0

(u) ẑ0 = ux̂±R2 (u) ẑ, (5)

and the relation [47]
+∞∫

−∞

+∞∫

−∞

e−jk2

√
(x0−x′0)

2
+(y0−y′0)

2
+z2

0

√
(x0 − x′0)

2 + (y0 − y′0)
2 + z2

0

e−j(ux′0+vy′0)dx′0dy′0 = −2πj
e−j[ux0+vy0+R2(u,v)|z0|]

R2 (u, v)
(6)

has been used.
By means of the well-known relation between the vector potential and the electric field, the

component of the scattered electric field along the s ∈ {x0, y} axis can be readily expressed as

Esc
s (r0) =

e−jkyy

2ωε2





+∞∫

−∞

G̃
(P )
sx0 (u) J̃x0 (u) + G̃

(P )
sy (u) J̃y (u)

ej[ux0+R2(u)|z0|] du

+

+∞∫

−∞

[
G̃(S)

sx0
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+ G̃(S)

sy (u) J̃y

(
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x0
(u)

)]
e−jf−(u)·r0du



 (7)
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where

G̃
(P )

(u) =
1

R2 (u)

[
u2 − k2

2 uky

uky k2
y − k2

2

]
, (8a)

G̃
(S)
st (u) =

U+
s (u) U−

t (u) Dε (u)− Vs (u) Vt (u) Dµ (u)
R2 (u)

(
u2 + k2

y

)
ej2R2(u)d

, (8b)

U± (u) = R2 (u) (ux̂ + kyŷ)± (
u2 + k2

y

)
ẑ, (8c)

V (u) = k2 (kyx̂− uŷ) , (8d)

superscript P denotes the primary or free space contribution while superscript S denotes the scattered
contribution due to the inhomogeneity of the medium.

By imposing the tangential component of the electric field to be vanishing on the strip, an EFIE is
obtained

ẑ0 × Esc (x0, y, z0 = 0) = −ẑ0 ×Etr (x0, y, z0 = 0) for |x0| ≤ a. (9)

Generally, no closed form solutions are available, thus, it is necessary to resort to numerical methods.
As will be shown in the following, convergence of exponential type can be achieved by expanding the
longitudinal and transverse components of the surface current density in series of orthonormal functions
consisting of Chebyshev polynomials of first and second kind, respectively, weighted with the edge
behaviour of the unknowns, in a Galerkin scheme. Therefore, the Fourier transforms of the current
components can be expressed as [48]

J̃t (u) =
+∞∑

n=0

jtnξtn

Jn+pt (au)
(au)pt

(10)

with t ∈ {x0, y}, where px0 = 1 and py = 0, jtn is the nth expansion coefficient of the current component
along the t axis, Jν(·) is the Bessel function of first kind and order ν,

ξx0n = jn (n + 1)
√

a

2π
, (11a)

ξyn = jn
√

a

2π (1 + δn,0)
, (11b)

are normalization quantities, and δn,m is the Kronecker delta.
Therefore, the obtained system of integral equations is reduced to the matrix equation[

Mx0x0 Mx0y

Myx0 Myy

] [
jx0

jy

]
=

[
bx0

by

]
(12)

whose coefficients are improper single integrals that can be reviewed as the superposition of a primary
contribution and a scattered contribution, i.e.,

Mstn,m = (−1)ps+pt Mtsm,n = ξtnξsm

(
M

(P )
stn,m

+ M
(S)
stn,m

)
, (13a)

M
(P )
stn,m

=

+∞∫

−∞
G̃

(P )
st (u)

Jn+pt (au)
(au)pt

Jm+ps (−au)
(−au)ps

du, (13b)

M
(S)
stn,m

=

+∞∫

−∞
G̃

(S)
st (u)

Jn+pt

(
af+

x0
(u)

)
[
af+

x0 (u)
]pt

Jm+ps

(−af−x0
(u)

)
[−af−x0 (u)

]ps
du, (13c)

and where the constant terms are

bsm = −2ωε2E
′
0 · ŝξsm

Jm+ps (−ak′ · x̂0)
(−ak′ · x̂0)

ps
ejk′·ẑd, (14)

with n, m nonnegative integers and s, t ∈ {x0, y}.
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3. A NEW ANALYTICAL TECHNIQUE TO EFFICIENTLY EVALUATE THE
SCATTERING MATRIX

Starting from the asymptotic behaviour of the Bessel function of first kind [48]

Jν (w)
|w|→+∞∼

√
2

πw
cos

(
w − ν

π

2
− π

4

)
for − π < arg (w) < π, (15)

it is concluded that the integrands of the integrals in (13b) and (13c) are oscillating functions. Despite
that, the integral in (13c) is fast convergent for a strip completely immersed in the half-space 2 since the
corresponding integrand has an asymptotic decay of the kind exp(−2uα)/u2, where α = d−a|ẑ · x̂0| > 0
is the distance between the edge of the strip closest to the discontinuity surface and the discontinuity
surface itself. By comparison, the integrand of the integral in (13b) has a slow asymptotic decay of the
kind 1/u2. However, such an integral will be expressed in the following as a combination of rapidly
converging integrals.

As a first task, by means of the properties [48]

2νJν (w) = w [Jν−1 (w) + Jν+1 (w)] , (16a)
Jν

(
wejqπ

)
= ejqνπJν (w)with q integer, (16b)

it is simple to rewrite (13b) as follows

M (P )
x0x0n,m

= −In+1,m+1

a2
− k2

2 (In,m + In,m+2 + In+2,m + In+2,m+2)
4 (n + 1) (m + 1)

, (17a)

M (P )
x0yn,m

= −M (P )
yx0m,n

= −kyIn,m+1/a, (17b)

M (P )
yyn,m

=
(
k2

y − k2
2

)
In,m, (17c)

where

In,m = [(−1)m + (−1)n]

+∞∫

0

Jn (au) Jm (au)
du

R2 (u)
, (18)

then In,m = 0 for n + m odd and In,m = Im,n that allow to consider only the cases for n + m even with
n ≥ m.

Now, the functions f
(l)
n,m(w) = Jn(aw)H(l)

m (aw)/R2(w) with l ∈ {1, 2}, where H
(l)
ν (·) = Jν(·) +

j(−1)l−1Yν(·) is the Hankel function of l-th kind and order ν and Yν(·) is the Bessel function of second
kind and order ν, are analytical in the regions of the complex plane w = u+jv delimited by the contours
Cl sketched in Figure 2 (where the solid line and the dashed line denote respectively the square-root

principal sheet and secondary sheet of the corresponding Riemann surface, and k̄2 =
√

k2
2 − k2

y). Hence,

Figure 2. Integration contours in the complex plane.
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by means of Cauchy’s integral theorem it is possible to write

lim
R→+∞
r0,r1→0

∫

Cl

f (l)
n,m (w) dw = 0. (19)

Remembering (15) and observing that [48]

Jν (w)
w→0∼ (w/2)ν/Γ (ν + 1) for ν 6= −q with q integer, (20a)

jπ (−1)l H(l)
ν (w)

w→0∼
{

2 lnw for ν = 0
− (2/w)ν Γ (ν) for <{ν} > 0 , (20b)

H(l)
ν (w)

|w|→+∞∼
√

2
πw

e(−1)l−1j(w−νπ/2−π/4) for − π < arg (w) < π, (20c)

it can be concluded that the integrands in (19) have at most a logarithmic singularity in w = 0 being
n ≥ m, while they decay asymptotically as 1/w2 for 0 ≤ arg(w) < π and −π < arg(w) ≤ 0 respectively.
Therefore, by means of Jordan’s lemma, it is simple to rewrite (19), for l = 1 and l = 2 respectively, as
follows

+∞∫

0

f (1)
n,m (u) du = j

+∞∫

0

f (1)
n,m (jv) dv, (21a)

k̄<2∫

0

f (2)
n,m (u) du−

+∞∫

k̄<2

f (2)
n,m (u) du = j

+∞∫

0

f (1)
n,m (jv) dv + 2j

−k̄=2∫

0

f (2)
n,m

(
k̄<2 − jv

)
dv, (21b)

the superscripts denoting the real (<) and the imaginary (=) part of a complex number, where the (16b)
and the relation [48]

H(2)
ν

(
we−jπ

)
= −ejνπH(1)

ν (w) (22)

have been used.
The integral in (18) can be simply obtained by taking the half-difference between (21a) and (21b).

Hence, (18) can be rewritten as follows

In,m = [(−1)m + (−1)n]




k̄<2∫

0

f (2)
n,m (u) du− j

−k̄=2∫

0

f (2)
n,m

(
k̄<2 − jv

)
dv


 . (23)

To conclude, the improper integral of an oscillating and slowly decaying function in (13b) has been
written as a combination of proper integrals.

4. NUMERICAL RESULTS

The presented technique is very efficient in terms of computation time. Indeed, more than 200 integrals
per second are evaluated by using an adaptive Gaussian quadrature routine on a laptop equipped with
an Intel Core 2 Duo CPU T9600 2.8GHz, 3GB RAM, running Windows XP.

Moreover, the number of integrals to be numerically evaluated is drastically reduced due to the
symmetries detailed above. Indeed, despite the overall number of matrix coefficients is 4N2 where N is
the number of expansion functions used for each component of the surface current density, the number
of integrals in (13c) and (18) that have to be computed is respectively N(2N + 1) and N+(N− + 2)/4
where N± = N + 2± mod(N, 2) and mod(·, ·) is the modulus operation.

In order to show the fast convergence of the method, the following normalized truncation error is
introduced

err (N) = ‖jN+1 − jN‖/‖jN‖ (24)
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where ‖ · ‖ is the usual Euclidean norm and jN the vector of the expansion coefficients evaluated by
using N expansion functions for each component of the surface current density. In Figure 3(a), the
normalized truncation error for εr1 = µr1 = µr2 = 1, εr2 = 4 − j0.5, 2a = λ/2, λ, 2λ, d = λ,
ϕ = 30 deg., when an obliquely incident plane wave with E0 = (3

√
2x̂ + 4

√
2ŷ − 7

√
3ẑ)/

√
197V/m

impinges on the discontinuity surface with θ0 = 60deg. and φ0 = 45deg., is shown. It is clear as the
convergence is of exponential type and the number of expansion functions needed to achieve a given
accuracy increases more slowly than the dimension of the strip. Similarly, in Figure 3b the normalized
truncation error for 2a = λ, ϕ = 0, 30, 60, 90 deg. and the same media, buried height and incident plane
wave of the previous example is showed. It is clear as the convergence is again of exponential type and
substantially independent of the orientation of the strip. For the last example, in Figures 4(a) and 4(b)
the components of the surface current density normalized with respect to the tangential component of

(a) (b)

Figure 3. Normalized truncation error for (a) strips of different dimensions and ϕ = 30deg., and
(b) strips of different orientations and 2a = λ. εr1 = µr1 = µr2 = 1, εr2 = 4− j0.5, d = λ, θ0 = 60 deg.,
φ0 = 45deg., E0 = (3

√
2x̂ + 4

√
2ŷ − 7

√
3ẑ)/

√
197 V/m.

(a) (b)

Figure 4. Normalized components of the surface current density on strips of different orientations.
2a = λ, εr1 = µr1 = µr2 = 1, εr2 = 4 − j0.5, d = λ, θ0 = 60deg., φ0 = 45deg., E0 =
(3
√

2x̂ + 4
√

2ŷ − 7
√

3ẑ)/
√

197 V/m.
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Figure 5. Normalized truncation error for strips of different orientations. 2a = λ, εr1 = µr1 = µr2 = 1,
εr2 = 20− j3, d = λ, θ0 = 60 deg., φ0 = 45 deg., E0 = (3

√
2x̂ + 4

√
2ŷ − 7

√
3ẑ)/

√
197V/m.

(a) (b)

Figure 6. Normalized components of the surface current density on strips of different orientations.
2a = λ, εr1 = µr1 = µr2 = 1, εr2 = 20 − j3, d = λ, θ0 = 60 deg., φ0 = 45deg., E0 =
(3
√

2x̂ + 4
√

2ŷ − 7
√

3ẑ)/
√

197 V/m.

the incident magnetic field evaluated at the centre of the strip, obtained by using 10 expansion functions
for each current component in order to achieve a normalized truncation error less than 10−2 (henceforth
this assumption will be implicitly done) with a computation time of about 1 second, are shown.

In both the previous examples, the dielectric constant of medium 2 is reasonable for a sandy soil
with a low soil moisture at X-band microwave frequencies. However, for moderate soil moisture larger
dielectric constants must be considered. Just for an example, in Figure 5 the normalized truncation
error for 2a = λ, ϕ = 0, 30, 60, 90 deg., εr2 = 20 − j3, µr2 = 1 and the same medium 1, buried
height and incident plane wave of the previous examples is shown. Once again, the convergence is of
exponential type. Compared to the previous example, it is clear that the number of expansion functions
needed to achieve a given accuracy increases more slowly than the wavelength in medium 2. For the
sake of completeness, in Figures 6(a) and 6(b) the normalized components of the surface current density,
obtained by using 19 expansion functions for each current component with a computation time of about
5 seconds, are shown.

To conclude, the correctness of the presented method is verified by comparison with the results
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obtained in [49, 50] by means of integral equation formulations discretized with the point-matching
method with pulse basis functions.

In Figures 7(a) and 7(b), the normalized surface current density for a strip parallel to the interface
(ϕ = 0 deg.), εr1 = µr1 = µr2 = 1, εr2 = 4, 2a = λ/2, d = 0.1λ, when a TM and a TE plane wave
with respect to the y axis impinges on the discontinuity surface with θ0 = 0, 30 deg. and φ0 = 0 deg.,
is reconstructed, by using only 5 expansion functions for each current component with a computation
time of 0.25 seconds, and compared with very good agreement with the results presented in [49, 50],
respectively.

A very good agreement with the results reported in [49, 50] can be observed even when inclined strips
are involved. In Figure 8, the normalized surface current density for the same media and strip dimension
of the previous examples, d = 0.3λ, ϕ = 30, 45 deg., when a TM plane wave normally impinges on the

(a) (b)

Figure 7. Normalized surface current density for (a) TM incidence and (b) TE incidence. εr1 = µr1 =
µr2 = 1, εr2 = 4, 2a = λ/2, d = 0.1λ, ϕ = 0 deg., φ0 = 0 deg. Lines: this method; symbols: data from
(a) [49] and (b) [50].

Figure 8. Normalized surface current density for
TM incidence. εr1 = µr1 = µr2 = 1, εr2 = 4,
2a = λ/2, d = 0.3λ, θ0 = 0 deg., φ0 = 0 deg.
Lines: this method; symbols: data from [49].

Figure 9. Normalized surface current density for
TE incidence. εr1 = µr1 = µr2 = 1, εr2 = 4,
2a = λ/2, d = 0.35λ, ϕ = 90deg., φ0 = 0 deg.
Lines: this method; symbols: data from [50].
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discontinuity surface, is accurately reconstructed by using only 6 expansion functions for each current
component with a computation time of 0.5 seconds. Similarly, in Figure 9 the normalized surface current
density for a strip perpendicular to the interface (ϕ = 90deg.), the same media and strip dimension of
the previous examples, d = 0.35λ, when a TE plane wave impinges on the discontinuity surface with
θ0 = 45, 60 deg. and φ0 = 0 deg., is accurately reconstructed by using only 6 expansion functions for
each current component with a computation time of 0.5 seconds.

5. CONCLUSION

In this paper an accurate and efficient analysis of the scattering by a tilted perfectly conducting
strip buried in a lossy half-space at oblique incidence has been presented. Future perspectives are
the generalization of the method to the analysis of the scattering by polygonal cross-section perfectly
conducting and dielectric cylinders buried in a lossy half-space.
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