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Transfer Operator Theory and Inter-Reciprocity of Non-Reciprocal
Multiport Antennas

Wolfgang Macher*

Abstract—The present article expounds a formalism for the representation of multi-port non-reciprocal
antenna structures in an arbitrary surrounding linear medium. In the most general approach the
antenna, the waveguides connected to it, as well as the surrounding medium may contain any
distribution of anisotropic magneto-electric media. Furthermore, an arbitrary external field is taken into
consideration which need not be of plane wave form. A reciprocally adjoint system is introduced to derive
relations which describe the antenna under such general conditions. Since the antenna may contain
media which prohibit the use of ordinary scattering, admittance or impedance matrices, an approach by
means of generalized scattering matrices, or by a generalized admittance and a generalized impedance
matrix, is applied. This leads to an n-port description of the whole waveguide-antenna-environment
where transfer operators render the interaction between the external field and the state of the ports.
These operators are the generalizations of effective length vectors. For its importance the case of
reciprocal reflection-symmetric waveguides is treated in detail, including a derivation of the consequences
of abstract network reciprocity and complex power relation for voltage-current representations. The
formalism is adequate for the description of radar and radio astronomy antennas, in particular when
wave polarization plays a crucial role and/or a magnetized plasma environment is present (which is
responsible for anisotropy and non-reciprocal conditions).

1. INTRODUCTION

Reciprocity principles for electromagnetic fields play a crucial role in antenna theory, mainly because
they provide a relation between transmission and reception properties of antennas. The first reciprocity
statements date from the famous work on the theory of sound by Lord Rayleigh [38], and application of
reciprocity in electromagnetics followed half a century later [3, 6, 7, 23]. Consequences for the relation
between transmitting and receiving properties of antennas were discussed by many authors. Among
the early articles were [9, 44]. In the framework of the reaction concept (which is a specific expression
of reciprocity) a series of articles ensued, which are mainly aimed at the investigation of antennas,
e.g., [10, 39, 41]. Later articles tended to generalize the reciprocity principle more and more, for instance,
by extending its validity to anisotropic media [20], in particular to gyrotropic media [16]. This kind of
generalization is also a major aim here.

In abstract terms, reciprocity theorems render a link between two independent states (with
independent source distributions) of a system and its so-called adjoint system. In the present
electromagnetic context such a system is any distribution of linear media which are represented by
suitable material tensors (permittivity, permeability etc.) and constitutive relations (giving D and B
as functions of E and H). The adjoint system is defined by suitable material tensors which are related
to the tensors of the original system in such a way that the reciprocity principle applies. The concrete
mathematical expressions are given in Section 3. The literature on reciprocity of electromagnetic
phenomena can crudely be divided in two classes. First, formal treatments based on the Maxwell
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equations infer consequences from certain given tensor properties. Second, the pre-conditions of
certain properties of the material tensors are studied by means of microscopic quantum mechanical
considerations. Macroscopic symmetry properties of matter (as described by the mentioned tensors)
are derived from fundamental properties like causality, time-reversal invariance and microscopic spatial
symmetries of the crystal structure (see e.g., [17, 29, 32, 33] and references therein).

The present article belongs to the former class, based on a given set of adjointness relations between
the material tensors of the original and the adjoint system. Further assumptions (e.g., on the symmetry
of these tensors) are not made, except for the premise of linearity of the constitutive relations. On these
pre-conditions Kerns [19] derived the following formula for the voltage V ◦ received by an antenna in an
external electromagnetic field (electric field strength E):

V ◦ =
1
Ĩ

∫
J̃ ·E dV (1)

The integral is to be taken over the whole antenna volume where the current density J̃ is induced
in transmission mode when the adjoint antenna system is driven with the input (feed) current Ĩ.
Equation (1) is a typical result as obtained by application of reciprocity theorems, relating the reception
to the transmission scenario. If the antenna is part of an electronic circuit, its terminals are usually not
open and there is a non-zero feed current I, with the applied voltage V being

V = ZI − V o (2)

where Z is the antenna impedance. The behaviour of the antenna as part of an electronic circuit,
including its reaction to external fields, is therefore fully described by its impedance Z and the vector
field J̃/Ĩ.

This article presents a generalization of the above theory in several aspects as an extension to multi-
port antennas, allowing for formal magnetic currents, and taking account of any linear media distribution
in and around the antenna. If several antennas are present, coupling between the antennas occurs. The
whole structure of all antennas is regarded as an antenna network with several waveguide connections
building an n-port. Any finite number of waveguides may be connected to the antenna. The whole
antenna structure, the waveguides connected to it, as well as the environment may contain anisotropic
inhomogeneous media. In particular, also negative resistances may occur (see [27] and further references
given there). Only little restrictions are made on the waveguides and the antenna, e.g., n-dimensionality
of the antenna network and mutual bidirectionality of waveguides, as explained below. With these
prerequisites, generalized admittance and impedance matrices, or generalized scattering matrices are
needed to represent the whole antenna network as described in Section 4. Transfer matrices are used to
represent the effect of incident electromagnetic waves. They were successfully applied to the description
of multi-monopole systems aboard spacecraft in vacuo [24], which are examples of a multi-port reciprocal
antenna system. The following developments render an extension to non-reciprocal antenna systems,
such as antennas aboard spacecraft flying through a magnetized plasma (Section 6.5). The consequences
of the reciprocity principle are revisited under the mentioned general conditions in Section 3, resulting
in an inter-reciprocity relation for the modal wave coefficients, including the effect of external fields.
After introduction of the generalized scattering, admittance and impedance matrices in Section 4, the
transfer operators and matrices are defined and analysed in Section 5. They facilitate the calculation
of transmission as well as reception properties. Section 6 discusses special cases of the theory which are
of most interest in practice.

The following conventions are applied throughout. The harmonic time dependence ejωt is assumed,
with ω being the angular frequency. As usual the factor ejωt is suppressed in all time-dependent
quantities, which therefore are complex amplitudes and can be regarded as Fourier or Laplace transforms
(in the latter case ω may assume complex values). 0n and 1n denote the n×n zero and identity matrix,
respectively. The superscript t is used to indicate the transposition of a matrix, e.g., Zt is the transpose
of the matrix Z. As already mentioned, all quantities associated with the adjoint system are marked by
a tilde, for instance ε̃(r) refers to the dielectric tensor field of the adjoint system. On several occasions
the electric and magnetic field strengths, E and H, are subsumed into a concise single 6-element vector

f =
(

E
H

)
(3)
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and, analogously, for the electromagnetic field in the adjoint system: f̃ t = (Ẽt, H̃t). The dot product
of two n-element vectors V and I is V · I =

∑n
m=1 VmIm. The same dot is used to denote matrix

multiplication. The left-multiplication of a matrix Z by a vector I is not written as a left-multiplication
by a transposed one-column matrix (It ·Z), but always as I ·Z, thus I ·Z ·I =

∑n
l=1

∑n
m=1 IlZlmIm. The

superscript asterisk denotes the complex conjugate of scalars and the conjugate (Hermitian) transpose
of matrices, so {S∗}mq = ({S}qm)∗.

2. ARRANGEMENT OF ANTENNA(S), WAVEGUIDES AND ELECTRONIC
DEVICES

The envisaged arrangement of an antenna, shielded electronics (usually generators or receivers) and
a number of connecting waveguides is outlined in Figure 1. The antenna system may contain several
antennas and an arbitrary number of parasitic bodies. Several generators and/or receivers or any kind
of electronics in the volumes G1 . . . GW interact with the antenna(s) via W waveguides. Since it is
immaterial if these regions are separated or connected, only the union RG = G1∪ . . .∪GW is regarded.
Though there may be several antennas and parasitic bodies, they are addressed as ‘the antenna’ in the
following, situated in the region RA, which may (but need not) enclose RG. The whole space (R3) is
divided into three parts: RG, RA, and the remaining external region Rext = R3 \RG \RA.

Each waveguide is divided into two segments, one lying in RG and the other in RA. Let the
boundary between RG and RA intersect the waveguides at right angles, thereby yielding the cross-
sections S1 . . . SW . In the w-th waveguide a cartesian coordinate system is defined, with the z-axis
parallel to the waveguide and the origin in the center of Sw. The waveguides’ z-axes are directed
towards the antenna, i.e., z > 0 in RA and z < 0 in RG.

The electromagnetic field in the antenna, in the waveguides as well as in the external region satisfy
the Maxwell equations

∇×E = −K− jωB (4)
∇×H = J + jωD (5)

A magnetic current density K is allowed for formal purposes, since it is often beneficial in the
construction of solutions of boundary value problems, in particular by application of the equivalence
principle [15, Section 3-5]. The main assumption on the media in these regions is that they satisfy the
constitutive relations

D = ε ·E + τ ·H (6)
B = ν ·E + µ ·H (7)

G1

G2

GW

RA
S2

Rext

Figure 1. Geometry of an antenna structure and W shielded electronic devices G1 . . . GW , with
waveguides connecting them. The devices (e.g., generators or receivers) and their waveguide connectors
are shown as dark gray regions, the whole antenna system and the main parts of the waveguides are
in the light gray region RA. The surfaces of G1 . . . GW and RA intersect the waveguides at the cross-
sections S1 . . . SW .
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These are the most general linear relations, which permit also the description of linear magnetoelectric
effects [13]. In general, the material tensors ε, µ, τ and ν depend on r, permitting not only anisotropic
but also inhomogeneous media.

The electromagnetic fields in the waveguides are expanded in terms of travelling waves (eσ
Tm(x, y),

hσ
Tm(x, y))e−γσ

mz. In general, the propagation constants γσ
m and the transverse vector fields eσ

Tm and
hσ

Tm depend on the waveguide number w. The superscript σ identifies the branch of the mode m, where
σ = ±1 stands for propagation in ±z direction. In the sequel the superscripts ±1 will be abbreviated
as ±. Let fT (x, y, z) be the 6-element vector containing the total transverse electric and magnetic field
strength in the waveguide, which is to be expanded in modes, and let fσ

m(x, y) be the corresponding
juxtaposed vectors of the σ-branch of mode m, i.e.,

fT =
(

ET

HT

)
, fσ

m =
(

eσ
Tm

hσ
Tm

)
(8)

If the cross-sections Sw are far enough from the waveguide ends, the majority of evanescent modes is
negligible and only a finite number of modes is to be considered for each waveguide. With nw being the
number of modes in waveguide w, the expansion of the transverse components of the electromagnetic
field in this waveguide reads [12, 30]

fT (x, y, z) =
nw∑

p=1

[
α+

m f+
m(x, y) e−γ+

mz + α−m f−m(x, y) e−γ−mz
]

(9)

Here the dependence of fT , γσ
m, fσ

m and the expansion coefficients ασ
m on the waveguide number w is

suppressed for brevity. Each mode is regarded as an antenna port, and the two branches σ = +1 and
σ = −1 represent the waves travelling towards and away from the antenna through the respective port.
The coefficients α+

m(w) of the incident waves of all ports (all modes m of all waveguides w) are collected
in the vector a+. Similarly, a− denotes the coefficient vector of all outgoing waves. Thus,

aσ =
(
ασ

1 (1) . . . ασ
n1

(1), ασ
1 (2) . . . ασ

n2
(2), . . . , ασ

1 (W ) . . . ασ
nW

(W )
)t (10)

The port notation enables us to treat the coupling of different modes via the antenna by the same
formalism, no matter if they belong to the same or different waveguides. Let n =

∑W
w=1 nw denote the

total number of ports. The 2n elements of the ‘port state vector’

s+− =
(
a+

a−

)
=

(
a+

1 . . . a+
n , a−1 . . . a−n

)t (11)

can be used to completely represent the state of the antenna ports.

3. INTER-RECIPROCITY

The excitation of the antenna is established, on the one hand, by the port state s+− and, on the other
hand, by a potential incident electromagnetic field (Ei, Hi) generated by current densities J and K in
the external region Rext. The aim of this section is to derive a reciprocity principle for the antenna
system expressed in terms of both, the modal coefficients a+ and a− (i.e., the state vector s+−) and
the incident field.

3.1. Expression in Terms of Fields and Currents

The whole antenna system including the waveguides and the external region (in the following called
the original system Σ) is compared with the reciprocally adjoint system Σ̃. The distribution of matter
in Σ̃ is characterized by the material tensors ε̃, τ̃ , ν̃, and µ̃, which depend, in general, on position.
An electromagnetic field maintained in Σ̃ satisfies the Maxwell Equations (4) and (5), as well as the
constitutive relations (6) and (7), with all quantities replaced by their respective adjoint ones, indicated
by a tilde: Ẽ, D̃, H̃, B̃, J̃, K̃, ε̃, τ̃ , µ̃ and ν̃. The material tensors of the adjoint system are related to
the tensors of the original system by

ε̃(r) = εt(r), (12)
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µ̃(r) = µt(r), (13)
ν̃(r) = −τ t(r), (14)
τ̃(r) = −νt(r). (15)

so that the reciprocity principle (see, e.g., [15, Section 3-8])
∫

v

(
Ẽ · J− H̃ ·K−E · J̃ + H · K̃

)
dv =

∮

∂v
n ·

(
E× H̃− Ẽ×H

)
da (16)

is satisfied. The volume integral in (16) can be taken over any volume v where the Maxwell equations,
the constitutive equations and (12)–(15) hold. The surface integral is over the boundary ∂v of the
volume v, with da indicating the differential area element and n the outward pointing unit normal.
Equation (16) relates the electromagnetic field (E,H) generated by the current densities J and K in Σ
to the electromagnetic field (Ẽ, H̃) generated by the current densities J̃ and K̃ in Σ̃. The sources and
fields in Σ can be chosen independently of Σ̃, but the media of the two systems must satisfy (12)–(15).
The notion inter-reciprocity is used by many authors to emphasize that two systems are involved which
are not generally the same [5, 36]. In the present context a system is named reciprocal if it agrees with
its adjoint system in an electromagnetic sense, that is ε and µ are symmetric and τ = −νt.

Here the reciprocity principle is applied to the whole region outside the devices G1 . . . GW , that is
v = R3 \ RG = RA ∪ Rext. The surface ∂v is composed of the boundaries ∂G1 . . . ∂GW of the devices
and the surface S∞ of a large sphere containing the whole scene, with its boundary infinitely receding
to the distance.

3.2. The Surface Integral

For the sake of clarity and short notation we introduce the bilinear skew-symmetric form

〈f , f ′〉S =
∫

S
n · (E×H′ −E′ ×H

)
da (17)

which acts on the restrictions of electromagnetic fields to the surface S. The notation f = (Et,Ht)t

and f ′ = (E′t,H′t)t is used in accordance with (3). Actually, only the tangential components
ET = −n× (n×E) and HT = −n× (n×H) play a role in the above integral, as the dot product with
n appears in the definition. To make this definition unique, the direction of n has to be fixed. In the
following we apply (17) to parts of ∂v as they appear in (16), so it is natural to assume that n points
outwards, i.e., away from v, in all these cases. With the respective forms for S = ∂RG and S = S∞,
the surface integral in (16) can be written

〈
f , f̃

〉
∂RG

+
〈
f , f̃

〉
S∞

=
W∑

w=1

〈
f , f̃

〉
∂Gw

+
〈
f , f̃

〉
S∞

(18)

The contribution 〈f , f̃〉S∞ vanishes in the limit r∞ → ∞, with r∞ being the radius of the spherical
surface S∞. A formal proof can be based on the condition of a slightly dissipative nature of the medium
outside an arbitrarily large region [11], if at least one of the fields is generated by local sources (which
applies in the following). Similarly, the surface integral over the shielding of the devices is negligible.
The reason is that the integrand vanishes on good conductors due to the skin effect, where E = −ζSn×H
with surface impedance ζS . So only the contributions of the integrals over the waveguide cross-sections
S1 . . . SW remain, 〈f , f̃〉∂Gw = 〈f , f̃〉Sw , with [27]

〈
f , f̃

〉
Sw

= −
∫

Sw

ẑ ·
(
ET × H̃T − ẼT ×HT

)
da (19)

Here ẑ is the unit vector of the z-axis in the w-th waveguide (parallel to waveguide axis at Sw), which
is directed towards the antenna. The minus sign in front of the integral appears because ẑ = −n (the
same definition of 〈f , f̃〉Sw was used in [27], but with the wrong sign in front of the integrals in (54) and
consequentially (95) of this article).
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The terminology for the electromagnetic fields in the waveguides of Σ applies, in an analogous way,
to the adjoint waveguides of Σ̃. So the Expressions (9)–(11) are formally the same but with tildes over
the adjoint quantities: f̃T , α̃σ

m, f̃σ
m, γ̃σ

m, ãσ and s̃+−. As mentioned above the only assumption on the
waveguides and their adjoint ones is — in addition to the linearity of the media according to (6), (7)
and (12)–(15) — that they are mutually bidirectional [30]. In consequence, the modes of the adjoint
waveguide w can be rearranged in such a way that [27, 30]

〈
fσ
m, f̃ τ

q

〉
Sw

= N (σ)
m δmq(1− δστ ) (20)

where N
(σ)
m (w) are normalization constants for mode m (branch σ) of waveguide w. It is shown in [27]

that this bi-orthogonalization of the modes can be utilized to express 〈f , f̃〉Sw in terms of the expansion
coefficients ασ

m and α̃σ
m, with the following sum over all waveguides

〈
f , f̃

〉
∂v

=
W∑

w=1

〈
f , f̃

〉
Sw

= a+ ·N+ · ã− + a− ·N− · ã+ (21)

Here the diagonal matrices N± contain the normalization constants N±
m(w) of the respective branch in

their diagonal, sorted in the order specified by (10).

3.3. The Volume Integral

Taking advantage of the fact that the currents of the original and the adjoint system appearing in
the reciprocity principle (16) can be chosen independently, the following assumptions are made. In Σ
external sources are allowed: part of the electromagnetic field, that is the incident field (Ei, Hi), is
generated by currents (J, K) in the external region Rext. Due to the relations (6) and (7) all currents in
the antenna and waveguides in RA are represented as polarization currents, so in RA no explicit current
sources have to be accounted for.

In contrast to Σ, a pure transmission scenario is considered for Σ̃, which means that there are no
explicit current sources outside the devices. Because of the linear constitutive relations for Σ̃, which
are analogous to (6) and (7), all conduction currents in the antenna and in the external region are part
of the polarization currents. Therefore J̃ = 0 and K̃ = 0 outside the devices (in v = RA ∪ Rext). The
volume integral in (16) becomes ∫

Rext

(
Ẽ · J− H̃ ·K

)
dv (22)

where the integration volume can be reduced to the external region Rext, actually to the support
of the current fields J and K (the smallest closed region containing the current sources), RJF =
supp(J) ∪ supp(K).

3.4. Second Application of Reciprocity Principle

The last two sections show that the application of the reciprocity principle (16) to the region
v = RA ∪ Rext leads to the equality of (21) and (22). In this subsection another application of (16)
is made (this time to the whole space v = R3), so that the volume integral (22) can be rearranged
expediently. For that purpose a ‘surrogate’ system Σ′ and the surrogate’s adjoint Σ̃′ are considered.
They are defined on the basis of the original system Σ and its adjoint Σ̃ by omitting the antenna,
waveguides and devices. Instead, the surrounding medium spreads into RA∪RG, with suitable material
tensors. The quantities associated with the surrogate configurations are marked by a prime, e.g., the
electric field strength E′ for Σ′, and Ẽ′ for Σ̃′. The region RA ∪ RG (which contains the devices,
waveguides and antenna in Σ) is filled with linear media in Σ′, described by the material tensor fields ε′,
τ ′, µ′ and ν ′. A similar substitution is made for the adjoint system, so that ε̃′ = ε′t, µ̃′ = µ′t, ν̃ ′ = −τ ′t,
and τ̃ ′ = −ν ′t hold in RA ∪ RG. Σ′ contains the same material as Σ in the external region (precisely
speaking the material tensor fields of Σ′ and Σ coincide in Rext). The same obtains for the adjoint
systems Σ̃′ and Σ̃.
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We consider the following currents and fields in the surrogate configurations: The currents in Σ′
are confined to the external region, where they agree with those in Σ, that is J′(r) = 0 and K′(r) = 0
for r ∈ RA ∪ RG; J′(r) = J(r) and K′(r) = K(r) for r ∈ Rext. The currents in Σ̃′ are confined to
RA ∪RG (assumed to be a closed set), with (J̃′, K̃′) determined in such a way that the field generated
in Rext coincides with that appearing in Σ̃ where the port state s̃ is maintained, i.e., Ẽ′(r) = Ẽ(r) and
H̃′(r) = H̃(r) for r ∈ Rext. There is an infinite number of current distributions which generate this
same external field. In the following we regard any currents (J̃′, K̃′) in Σ̃′ which satisfy this condition
as ‘surrogate currents’ associated to the port state s̃ of the adjoint system. The application of the
equivalence principle makes it even possible to confine the currents to the boundary of RG ∪ RA. If
we request a restriction of currents to this surface, in general, both an electric and a magnetic surface
current density, J̃′S and K̃′

S , are needed to generate the field in the exterior region [15, Sections 3–5].
However, another valid condition on the currents is that there are no formal magnetic currents at all,
K̃′ = 0. Such a solution exists, because the actual currents which generate the external field are, in
fact, of electric type. Of course, they are not generally confined to the boundary of RA ∪RG but extend
into its interior.

Applying the reciprocity principle (16) to the surrogate configurations, with v = R3, the surface
integral over ∂v = S∞ vanishes in the limit R∞ →∞, leaving∫

RA∪RG

(
E′ · J̃′ −H′ · K̃′

)
dv =

∫

Rext

(
Ẽ′ · J′ − H̃′ ·K′

)
dv (23)

The right side equals the integral (22), because in the integration volume the occurring fields and current
densities of the surrogate systems Σ′ and Σ̃′ agree with the respective ones of Σ and Σ̃ (Ẽ′ = Ẽ, H̃′ = H̃,
J′ = J and K′ = K in Rext).

Since in the left integral of (23) E′ and H′ signify the electromagnetic field incident to the region
of the antenna when the antenna has been removed from the scene (transition Σ → Σ′), the symbols
Ei and Hi are rather used from now on. Hence, the identity of (21), (22) and (23) yields

ã− ·N+ · a+ + ã+ ·N− · a− =
∫

Rext

(
Ẽ · J− H̃ ·K

)
dv =

∫

RA∪RG

(
J̃′ ·Ei − K̃′ ·Hi

)
dv (24)

This is an extension of the inter-reciprocity relation given in [27], which was obtained for n-ports
without independent sources (which means absent external fields in the present context). (24) provides
a reciprocity principle as well as a means to describe the interaction of external electromagnetic fields
with the antenna from a circuit-theoretical point of view, with the antenna regarded as an active n-port.
The currents in the external region (or the fields incident to the antenna) act as independent internal
sources of this n-port. The next section discusses this issue in more detail. In summary, (24) relates the
excitation state of the original antenna, which is established by the ports state s+− and the incident
external field (Ei, Hi), to any state of the adjoint antenna in transmission mode given by the port state
s̃+− = ((ã+)t, (ã−)t)t and the associated current densities (J̃′, K̃′). Here J̃′ and K̃′ comprise formal
electric and magnetic currents in RA ∪ RG which, in the absence of the devices-waveguides-antenna
structure (i.e., in Σ̃′), generate the same field throughout Rext that is radiated by the adjoint antenna
in Σ̃ when the state s̃+− is maintained at the ports. As mentioned above, the freedom in the choice of
these currents can be an aid to solving the boundary value problem associated with the transmission
scenario.

4. NETWORK FORMULATION

The focus of this section is on the mathematical representation of the antenna network for the
transmission case (J = 0 and K = 0 in (24)). As part of an electronic circuit the antenna acts
as a linear n-port without independent internal sources. The representation of n-ports by means of
generalized scattering matrices or generalized admittance and impedance matrices is described in [27].
In Sections 4.1 and 4.2 the most important definitions and relations which are needed in the following
are summarized. Since voltages and currents are defined in a more general way here, the implications
are discussed in Section 4.3.
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4.1. Modal Wave Coefficients

There are instances where the standard impedance, admittance and scattering matrices are not sufficient
to describe an n-port. Some of these matrices may be singular at certain frequencies or not even exist
(in rare cases there may be no hybrid matrix at all [1]). As a minimum precondition it is assumed
here that the antenna acts as an n-port of dimensionality n when there are no external fields. This
means that the space of possible ports state vectors s+− is of dimension n. In other words, the antenna
network can be represented by n linearly independent equations for the modal coefficients a+ and a−.
These equations are written by means of the so-called generalized scattering matrices:

Q+− · s+− = Q+ · a+ + Q+ · a+ = 0 (25)
Here Q+− = (Q+,Q−) is an n×2n matrix which is split in two n×n matrices Q+ and Q−. The matrix
Q+− is of rank n, so there are n linearly independent solutions s(1)

+− . . . s(n)
+−, which are juxtaposed (as

columns) to build the matrix
B+− =

(
s(1)
+−, . . . , s(n)

+−
)

(26)

which satisfies Q+− · B+− = 0. Since the columns of B+− are a basis of the space {s+−} of possible
states at the antenna ports, every possible excitation s+− of the ports (of a transmitting antenna) can
be expanded by s+− = B+− · x, where x is a vector of expansion coefficients.

By analogy to (25) and (26) we define scattering matrices Q̃+− = (Q̃+, Q̃−) and a basis matrix
B̃+− for the adjoint system, with Q̃+− · B̃+− = 0. In accordance with [27], the 2n× 2n matrices

Sn =
(
0n −1n

1n 0n

)
, N =

(
N+ 0n

0n −N−

)
(27)

are introduced, where 0n and 1n denote the n × n zero and identity matrix, respectively. In terms of
these matrices, the ‘ports state side’ of equation (24) reads

ã− ·N+ · a+ + ã+ ·N− · a− = −s+− ·N · Sn · s̃+− (28)
So s+− ·N · Sn · s̃+− = 0 describes the pure transmission case where external fields are absent from the
original and the adjoint system, which implies Bt

+− ·N · Sn · B̃+− = 0n.

4.2. General Port Variables

In many applications quantities other than the modal coefficients are used to describe the state of the
ports, for instance port voltages V = (V1 . . . Vn)t and currents I = (I1 . . . In)t. Let s denote any set
of parameters which represent the ports state uniquely, that is, there is a 2n× 2n regular matrix U+−
mapping the linear space of vectors s, denoted by {s}, onto the space {s+−},

s+− = U+− · s (29)
The columns of the matrix

B =
(U+−)−1 · B+− =

(
s(1), . . . , s(n)

)
(30)

build a basis of {s}. Similar definitions apply to the adjoint antenna, indicated by a tilde over the
respective quantities: s̃+− = Ũ+− · s̃, and B̃ = (Ũ+−)−1 · B̃+−. In terms of the new parameters the
network Equation (25) reads

Q · s = 0, Q = Q+− · U+− (31)

and analogously for the adjoint system. The reciprocity principle (24) adopts the form s · χ · s̃ = 0 for
absent external fields, where χ is given below in (33). So the basis matrices B and B̃ fulfil the relation

Bt · χ · B̃ = 0 (32)

χ = (U+−)t ·N · Sn · Ũ+− (33)
All results for the states s can be readily applied to the modal wave coefficients s+− by putting
U+− = Ũ+− = 12n, e.g., the χ-matrix becomes

χ+− = N · Sn (34)
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Because Q · B = 0 and Q̃ · B̃ = 0, a reciprocity relation for the Q-matrices can be inferred from (32),
i.e., (a proof is given in [27])

Q̃ · χ−1 ·Qt = 0 (35)

The consequences of the above equations for the description of receiving antennas, where external fields
impact on the antenna, are treated in Section 5.

4.3. Voltage and Current Representation

Voltages and currents are associated with each port and collected in the vectors V and I, respectively.
The complete ports state is denoted by sVI = (Vt, It)t and the matrix mapping the voltages and
currents on the modal wave coefficients by U+−

VI . Also other quantities associated with the voltage-
current representation are marked by the subscript VI, for instance χVI and BVI.

The most common relation between, on the one hand, port voltages and currents and, on the other
hand, wave coefficients, is of the form a± = ξ · (V± ζ · I)/2 where ξ and ζ are n× n diagonal matrices.
ζ contains the characteristic impedances of the waveguides in its diagonal, and ξii = (

√
ζii)−1 for all

diagonal elements i = 1 . . . n. Other relations are used as well, for instance ξ = ζ = 1n. Power waves
cannot be described by the above relation [21]. In order to cover the great variety of commonly used
definitions, the quite general relations

a± =
1
2

ξ± · (V ± ζ± · I) (36)

s+− = U+−
VI · sVI (37)

U+−
VI =

1
2

(
ξ+ ξ+ · ζ+

ξ− −ξ− · ζ−
)

=
1
2

(
ξ+ 0n

0n ξ−

)
·
(
1n ζ+

1n −ζ−

)
(38)

are applied. Here ζ± and ξ± are n × n matrices which, in general, may even be non-diagonal.
Analogous definitions hold for the adjoint system. These equations also comprise the relation between
voltages/currents and coefficients of power waves [21] (however, power wave coefficients are regarded as
the derived quantities, whereas in the present context the voltages and currents are derived from the
modal wave coefficients). The case ξ+ = ξ−, ζ+ = ζ−, ξ̃+ = ξ̃−, and ζ̃+ = ζ̃−, is investigated in detail
in [27]. There an explicit formula for the matrix χVI is given, which governs the inter-reciprocity of
voltage-current representations. To treat the more complex case (38) in a concise way the symbols

ζ =
1
2

(
ζ+ + ζ−

)
, ζ̃ =

1
2

(
ζ̃+ + ζ̃−

)
(39)

N± = (ξ±)t ·N± · ξ̃∓ (40)

are introduced. The determinant of the transform U+−
VI is calculated by means of the product rule.

Since the determinant of the last matrix in (38) equals (−1)n det(ζ+ + ζ−) = (−2)n det(ζ), we obtain

det(U+−
VI ) = det(ξ+) det(ξ−) det(ζ)/(−2)n (41)

In order that the transform renders a one-to-one correspondence of states, the determinant must not be
zero, which is equivalent to the regularity of the matrices ξ+, ξ− and ζ. On this condition, the inverse
of U+−

VI can be written

(U+−
VI )−1 =

(
ζ− · ζ−1 ζ+ · ζ−1

ζ−1 −ζ−1

)
·
(

ξ+ 0n

0n ξ−

)−1

(42)

The same considerations apply to the respective adjoint matrices. After these preparations we can
use (33) to calculate χVI and its inverse

χVI = (U+−
VI )t ·N · Sn · Ũ+−

VI = −1
4

(
1n ζ+

1n −ζ−

)t

·
(

0n N+
N− 0n

)
·
(
1n ζ̃+

1n −ζ̃−

)

=
1
4

( −N+ −N− N+ · ζ̃− −N− · ζ̃+

−(ζ+)t ·N+ + (ζ−)t ·N− (ζ+)t ·N+ · ζ̃− + (ζ−)t ·N− · ζ̃+

)
(43)
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(χVI)−1 = −
(

ζ̃− · ζ̃−1
ζ̃+ · ζ̃−1

ζ̃
−1 −ζ̃

−1

)
·
(

0n N−1
−

N−1
+ 0n

)
·
(

ζ− · ζ−1 ζ+ · ζ−1

ζ−1 −ζ−1

)t

= −
(

ζ̃+ · N̄−1
+ · (ζ−)t + ζ̃− · N̄−1

− · (ζ+)t ζ̃+ · N̄−1
+ − ζ̃− · N̄−1

−
−N̄−1

+ · (ζ−)t + N̄−1
− · (ζ+)t −N̄−1

+ − N̄−1
−

)
(44)

with N̄± = ζt ·N± · ζ̃ = ζt · (ξ±)t ·N± · ξ̃∓ · ζ̃.
It is shown in [27] that the inter-reciprocity (35) is equivalent to the abstract network inter-

reciprocity (as commonly assumed in network theory)

Ṽ · I− Ĩ ·V = 0 (45)
if and only if χVI is a multiple of Sn. The multiplication factor is written −λ/2 for later convenience
and concurrence with [27], i.e.,

χVI = −λ

2
Sn (46)

with a scalar λ 6= 0. To find the conditions under which this equivalence holds, Sn and (43) are
substituted into (46). The 2n× 2n equations split into four n× n matrix equations

0n = N+ + N− (47)

2λ1n = N+ · ζ̃− −N− · ζ̃+ (48)

2λ1n = (ζ+)t ·N+ − (ζ−)t ·N− (49)

0n = (ζ+)t ·N+ · ζ̃− + (ζ−)t ·N− · ζ̃+ (50)
With the replacement N− = −N+ and (39) taken into account, (48)–(50) become

N+ = λζ̃
−1

(51)

N+ = λ(ζt)−1 (52)

(ζ+)t ·N+ · ζ̃ = ζt ·N+ · ζ̃+ (53)

The first two equations show that ζ̃ = ζt. Further, they can be used to transform the third equation
into ζ̃+ = (ζ+)t, and so also ζ̃− = (ζ−)t. Thus, (46) implies

ζ̃± = (ζ±)t (54)
±N± = λ (ζt)−1 (55)

We can also go the way of conclusions back from these results to (46), so it is revealed that (45) is valid
if and only if (54) and (55) hold. For later use we write the last equation also in terms of N± and N̄±:

N̄± = ±λζt, N± = ±2λ
[
ξ± · (ζ+ + ζ−) · (ξ̃∓)t

]−1
(56)

where the derivation of the second equation makes use of N± = Nt±. In the particular case ξ+ = ξ−=:ξ
and ζ+ = ζ− =: ζ we obtain that (45) is valid if and only if

ζ̃ = ζt (57)

±N± = λ [ξ · ζ · ξ̃t]−1 (58)
These equations are equivalent to (92)–(94) in [27].

Although it was not a precondition of the above derivations, the matrices ξ±, ξ̃±, ζ± and ζ̃± are
usually of diagonal form. In this case each element of the vectors V and I is characteristic of a single
port, defined on the basis of the travelling wave coefficients of the same port without dependence on
the other ports. The diagonals of ζ± and ζ̃± contain the characteristic impedances associated with the
respective waveguide modes. (54) states that the characteristic impedance associated with a mode of
an adjoint waveguide has to be the same as that for the associated mode of the original waveguide.
Once the characteristic impedances are defined, (55) can be satisfied by suitable normalization of the
waveguide modes (represented by the elements of the diagonal matrices N±).
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5. TRANSFER OPERATORS AND TRANSFER MATRICES

For a transmitting antenna the reciprocity relation (24) is bilinear with regard to the ports states,
i.e., linear with regard to s as well as linear with regard to s̃. External currents/fields introduce an
inhomogeneity in (24) which can be described expediently by transfer operators or matrices. It is shown
how they have to be linked to the network description of the antenna by Q-matrices.

5.1. Transfer Operators and Antenna Network Equations

The integral over the volume RA ∪ RG appearing in (24) constitutes a linear functional which associates
a complex number with each external electromagnetic field f i = ((Ei)t, (Hi)t)t, i.e., each field generated
by sources in Rext. Let T̃f [s̃] denote this functional and T̃f [s̃]f i its value when applied to the field f i.
Here the tilde over the functional emphasizes that it is established by currents in the adjoint system.
The symbol [s̃] indicates that the currents (and so the functional) are fully determined by the ports
state s̃ at the adjoint antenna. Further, let T̃E and T̃H stand for the functional part acting on the electric
and magnetic field strength, respectively. That is,

T̃f [s̃]f i = T̃E[s̃]Ei + T̃H[s̃]Hi (59)

T̃E[s̃]Ei =
∫

RA∪RG

J̃′ ·Ei dv (60)

T̃H[s̃]Hi = −
∫

RA∪RG

K̃′ ·Hi dv (61)

These functionals are called transfer operators since they relate the external conditions (fields generated
by sources outside the antenna-device region RA ∪ RG) to the internal state at the antenna ports.
Applying (28), (29) and (33) we have ã− ·N+ · a+ + ã+ ·N− · a− = −s · χ · s̃. Hence, with the notation
for transfer operators and ports states, (24) can be written in the short form

s · χ · s̃ + T̃f [s̃]f i = 0 (62)

In an analogous way the transfer operators T̃f [B̃], T̃E[B̃] and T̃H[B̃] are defined which map the vector
space of external fields to an n dimensional vector space as follows:

T̃f

[
B̃

]
f i = T̃E

[
B̃

]
Ei + T̃H

[
B̃

]
Hi (63)

T̃E

[
B̃

]
Ei =

∫

RA∪RG

J̃ ′t ·Ei dv (64)

T̃H

[
B̃

]
Hi = −

∫

RA∪RG

K̃′t ·Hi dv (65)

where the current matrices

J̃ ′ =
(
J̃′(1), . . . , J̃′(n)

)
, K̃′ =

(
K̃′(1), . . . , K̃′(n)

)
(66)

contain the surrogate current densities J̃′(m) and K̃′(m), m = 1 . . . n, as columns. They generate in Rext

of Σ̃′ the fields which are radiated by the adjoint system in Σ̃ when the respective ports states s̃(m) are
maintained (no external field is present). In fact, J̃ ′ and K̃′ need not agree with the actual currents
generated in the real adjoint system but generate the same fields in Rext. Taking into consideration

T̃f

[
B̃

]
f i =

(
T̃f

[
s̃(1)

]
f i, . . . , T̃f

[
s̃(n)

]
f i

)t
(67)

the application of (62) to each s̃(m) and arrangement of the results in a column vector yields

Q · s + T̃f

[
B̃

]
f i = 0 (68)

with
Q = B̃t · χt (69)
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The obtained antenna network Equation (68) describes the port states of the antenna including the
effect of external fields. From a circuitry point of view the fields can be regarded as independent sources
internal to the antenna n-port. The n rows of B̃t are linearly independent and χ is regular, so the n×2n
matrix B̃t · χt is of rank n and provides a network matrix Q which fully represents the transmitting
antenna as an n-port. Vice versa, if a network matrix Q of rank n represents the antenna at transmission
by satisfying Q · s = 0 for all possible ports states, we can find a basis matrix B̃ for the adjoint antenna
system by means of B̃ = χ−1 ·Qt.

5.2. Application to the Adjoint System

Since the adjoint of the adjoint is equal to the original system, the identification ˜̃B = B and ˜̃Q = Q is
possible. So we can interchange the roles of the original and the adjoint system in the above discussion.
In analogy to (66) current matrices J ′ =

(
J′(1), . . . ,J′(n)

)
and K′ =

(
K′(1), . . . ,K′(n)

)
are defined

which contain the surrogate currents of Σ′ which are associated to the ports states s(1) . . . s(n) of Σ
(i.e., (J′(m),K′(m)) radiate into Rext of Σ′ the same field as the original antenna in Σ when driven
with s(m)). Let Tf [B], TE[B] and TH[B] signify the transfer operators for the original system, i.e. the
operators defined in analogy with (63)–(65) on the basis of J ′ and K′. Applying the above discussion
with interchanged roles of original and adjoint system thus implies

Q̃ · s̃ + Tf [B] f̃ i = 0 (70)

where f̃ i is the electromagnetic field incident to the adjoint antenna (generated by sources in Rext), and

Q̃ = Bt · χ̃t (71)

χ̃ =
(
Ũ+−

)t
· Ñ · Sn · U+− (72)

To investigate the relation between χ and χ̃ we have to take into account that N+ and N− are diagonal
matrices and Ñ± = −N∓ [27, equ. (63)], so

Ñ · Sn =
(
Ñ+ 0n

0n −Ñ−

)
·
(
0n −1n

1n 0n

)
=

(
0n −Ñ+

−Ñ− 0n

)
=

(
0n N−
N+ 0n

)
= −(N · Sn)t (73)

After substitution of this result into (72), the comparison with the transposition of (33) proves

χ̃ = −χt (74)

For the interpretation of (70) we have to note that the adjoint antenna is impacted by an external
field, whereas the original system is to be considered in pure transmission mode, with its ports states
composing the n-dimensional vector space spanned by the columns of the matrix B. Since interpretations
of (68) and (70) run in parallel, the following discussions focus on the former.

5.3. Discussion of Solutions

The solution of (68) for a given external field f i depends on the electronic devices connected to the
antenna. For instance, receivers connected via the waveguides act as loads to the antenna n-port. Let
s0 be any particular solution of (68), e.g., when a certain admissible set of loads is connected. Here
‘admissible’ means that the loads impose conditions which are not in contradiction with the network
Equation (68), allowing its solution. Any other admissible conditioning imposed by the devices leads to
a solution s which can be decomposed into the particular solution s0 and a supplement ∆s solving the
linear equations system Q ·∆s = 0. Since ∆s can be written as a linear combination of basis vectors in
the matrix B, the general solution of (68) has the form

s = s0 + B · x (75)

Q · s0 = −T̃f

[
B̃

]
f i (76)

with an n-element coefficient vector x. In order to determine x, further n equations are needed which
are fixed by the connected devices (and waveguides).
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The network equation system (68) is determined by, on the one hand, the homogeneous part
established by the matrix Q of the original system, and on the other hand, by the inhomogeneity
T̃f [B̃]f i which depends on the external field. The latter is a function of the basis matrix B̃ associated
with the adjoint system. However, this fact does not mean that B̃ is independent of the original system.
Quite the contrary is true: B̃ and Q as appearing in (68) must fulfil (69). This means that, after having
determined an appropriate matrix Q representing the antenna n-port at transmission, the adjoint basis
matrix has to be calculated by B̃ = χ−1·Qt, which defines the possible ports states of the adjoint antenna
at transmission. From the ports states given by the columns of B̃ we can calculate the corresponding
surrogate current densities J̃ ′ and K̃′ in RA ∪ RG of Σ̃′, which determine T̃f [B̃]. This is actually the
procedure how an antenna can be studied in practice, for instance by computer simulations.

It is of high practical importance that all quantities used to represent the antenna system by (68)
are obtained for transmission conditions (Q for the original, T̃f [B] for the adjoint system). Nevertheless,
(68) is a general formula allowing the description of the antenna’s response to external fields as well as
any kind of operation of the antenna as part of an electronic circuit (no matter if the antenna is used
for reception or transmission or for both purposes). This kind of reception-transmission relation is a
typical consequence of the application of (inter-)reciprocity principles.

5.4. Transfer Matrices for Incident Plane Waves

Here an external electromagnetic field is considered which takes the form of a plane wave with wave
vector k and electric and magnetic field strength amplitudes E0 and H0. Thus,

f i(r) = f0 e−jk·r =
(

E0

H0

)
e−jk·r (77)

In this case the transfer operator T̃f [B̃] maps the vector field f i(r) to the following n-element vector

T̃f [B̃]f i =
∫

RA∪RG

(
J̃ ′t,−K̃′t

)
· f0 e−jk·r dv (78)

The constant vector f0 can be drawn out of the integral. The remaining integral depends only on the
wave vector k of the incident wave, but not on its wave amplitude f0. It is therefore an n × 6 matrix,
which can be split in two n × 3 matrices, one acting on E0, the other on H0. These so-called transfer
matrices are defined by

T̃f =
(
T̃E, T̃H

)
(79)

T̃E(k) =
∫

RA∪RG

J̃ ′t ejk·r dv (80)

T̃H(k) = −
∫

RA∪RG

K̃′t ejk·r dv (81)

Hence (78) can be written

T̃f [B̃]f i = T̃f (−k) · f0 = T̃E(−k) ·E0 + T̃H(−k) ·H0 (82)

In general, transfer matrices depend on k, that is on the direction of incidence and on frequency. The
directional dependence is an effect of the appearance of k in the exponents, whereas the frequency
dependence is caused by both the exponents and the current densities. If T̃f does not vanish in the limit
ω → 0, it converges to a direction-independent matrix. This is the case for antennas which behave as
capacitors in the quasi-static range (for example dipoles).

In case there is only one port, the transfer matrices shrink to one row which is often treated
as a vector [26], the so-called effective length vector h (the relation to the effective length vector hS

introduced by Sinclair [42] is given in Section 5.5). In general, each row of a transfer matrix can be
regarded as an effective length vector associated with the respective port.
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In Section 3.4 it was pointed out that the surrogate currents (J̃ ′, K̃′) associated to a given ports
state s̃ are not uniquely determined. On the same ground there is a variety of valid transfer matrices T̃f

that can be obtained by (79)–(81). This ambiguity is also realized when applying (68) to determine the
transfer matrices from the antenna’s response to incident plane waves. For instance, in a homogeneous
and isotropic medium, there are generally two independent wave polarizations for each direction of
incidence (E0 and H0 orthogonal to k). For a given direction of incidence and a given frequency (68)
provides two independent equations for each effective length vector (for each row of T̃f). Hence, the
antenna’s response to plane waves do not establish the transfer matrices uniquely unless additional
conditions are provided for their rows. The vanishing of T̃H is the most often used condition, which
is feasible because K̃′ = 0 is a valid choice for the surrogate currents at transmission (as explained in
Section 3.4). However, T̃H = 0 is not yet sufficient to make the transfer matrix T̃E unique. There
are two important examples for additional conditions on T̃E. First, the rows of T̃E may be postulated
to be orthogonal to the direction of incidence. The effective length vector defined by Sinclair satisfies
this condition [42]. Second, the condition of direction-independence of the effective length vectors is
applicable to capacitive antennas in the quasi-static frequency range [24]. Each of these two additional
conditions uniquely determines a matrix T̃E, which yields a valid description Q · s = −T̃E(−k) · E of
the antenna.

An example for an experimental method to determine T̃E for the quasi-static limit (ω → 0) is
the so-called rheometry [24, 40]. This technique employs an electrolytic tank, in which a homogeneous
electric field of some kHz is maintained. The whole antenna system (or a downscaled model of it) is
immersed in the electrolyte. The voltages induced at the antenna ports are observed as a function of
the antenna orientation, from which the effective length vectors can be inferred. The technique avoids
the influence of parasitic objects around the measurement setup, which would play a significant role
without the electrolyte. Further, the electrolyte decreases the antenna impedance significantly, which
is of particular importance for the quasi-static frequency range where capacitive antennas possess very
high impedances. Rheometry is not applicable to higher frequencies above the quasi-static range, where
the condition of direction-independence of the transfer matrix is not applicable. Therefore similar
experiments are typically performed in anechoic chambers to minimize radiation coupling with parasitic
bodies and the ground. Since the transfer matrix is direction dependent for such frequencies, one has
to repeat the measurement for each direction of wave incidence and each value of the wave number
k (which may vary with polarization in anisotropic media). Computer simulation can be performed
in close analogy [25]. The determination of the antenna’s response to incident waves is achieved by
solution of the underlying boundary value problem (electric and magnetic field integral equations) and
has to be done for each direction of incidence and each of two independent polarizations of the wave.

5.5. Relation to Far Field Transmitted in Σ̃

The adjoint transfer matrices do not only govern the reception properties of the original antenna system,
but also the structure of the far field transmitted by the adjoint antenna. The very definition of transfer
matrices is restricted to plane waves but, in principle, does not need any other assumption about the
external medium (provided that plane waves can propagate). However, the following expressions for
the far field transmitted by the adjoint antenna requires the homogeneity and isotropy of the external
medium. Thus, in this subsection let ε = ε̃ and µ = µ̃ be scalar constants and τ = τ̃ = ν = ν̃ = 0
throughout Rext. Nonetheless the media in the waveguides and in the antenna may be anisotropic and
inhomogeneous. If there are anisotropic media around the antenna, the antenna region RA is extended
suitably so as to contain these media. The formal surrogate current densities J̃ ′ and K̃′ appearing in
the definitions of transfer matrices are confined to the region RA ∪RG, which, in Σ̃′, contains the same
medium as Rext. Of course, this does not apply to the real adjoint system Σ̃, where the region RA∪RG

contains the adjoint waveguides and the adjoint antenna (generally composed of media different from
the medium in Rext).

Let an arbitrary ports state s̃ of the transmitting adjoint system be expanded into the basis states
B̃, so s̃ = B̃ · x̃ with the vector x̃ containing the expansion coefficients. This state leads to the surrogate
current densities J̃′ = J̃ ′ · x̃ and K̃′ = K̃′ · x̃. The fields radiated into Rext are expressed by electric and
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magnetic vector potentials (Ã and F̃) [15, Section 3-2]

Ã(r) = x̃ · µ

4π

∫
J̃ ′t(r′)

e−jkR

R
dv′, Ẽ(r) =

1
jωεµ

∇× (∇× Ã)− 1
ε
∇× F̃ (83)

F̃(r) = x̃ · ε

4π

∫
K̃′t(r′)e

−jkR

R
dv′, H̃(r) =

1
jωεµ

∇× (∇× F̃) +
1
µ
∇× Ã (84)

where k = ω
√

εµ, R = |r− r′|, and r′ is the radius vector to the source points in RA ∪RG, over which
the integration is to be performed. The lowest order asymptotic expansion for r → ∞ (the far field)
reads [18, Chapter 9]

Ã(r) = x̃ · µ e−jkr

4πr

∫
J̃ ′t(r′)ejkr̂·r′ dv′, Ẽ(r) = jω

[
r̂× (r̂× Ã) +

√
µ

ε
r̂× F̃

]
(85)

F̃(r) = x̃ · ε e−jkr

4πr

∫
K̃′t(r′)ejkr̂·r′ dv′, H̃(r) = jω

[
r̂× (r̂× F̃)−

√
ε

µ
r̂× Ã

]
(86)

with r = |r| and r̂ = r/r. For the derivation of Ẽ and H̃ the asymptotic relation ∇ × Ã ∼ −jk × Ã
and analogous ones for the other curl operations are utilized. A comparison with (80) and (81) proves
that, under the given conditions, the far zone fields can be expressed in terms of the transfer matrices,
in particular

Ã(r) =
µ e−jkr

4πr
x̃ · T̃E(kr̂), F̃(r) = −ε e−jkr

4πr
x̃ · T̃H(kr̂) (87)

These equations facilitate the determination of transfer matrices via the transmission properties of
antennas, for instance by means of computer programs: First, one calculates the currents induced in the
antenna (or in the surrogate system) when the ports are in the state s̃(m). This amounts to the solution
of a boundary value problem. From the resulting current distribution (often formal surface current
densities J̃′(m)

S and K̃′(m)
S defined on the boundary of RA ∪ RG) the far field radiated by the antenna

is calculated, giving the vector potentials Ã(m) and F̃(m). Since x̃q = δqm in this case, each vector
potential is proportional to the m-th row of the respective transfer matrix. Thus, the matrix elements
are {T̃E}mq = Ã

(m)
q 4πr exp(jkr)/µ and {T̃H}mq = F̃

(m)
q 4πr exp(jkr)/ε. Note that, at a give frequency,

the last step (calculation of transfer matrix rows via far zone vector potentials) has to be repeated for
each direction r̂, whereas the solution of the boundary value problem needs only be performed once
for each ports state. Since the solution of the boundary value problem is most time consuming, this
approach reduces the computation time significantly in comparison with the determination of the adjoint
transfer matrices via the response of the original antenna to incident waves as discussed in Section 5.4.

It was mentioned in Section 5.4 that each row of a transfer matrix is considered as an effective
length vector h̃ associated with the respective port. This vector is extensively used in radio astronomy
(pertinent principles are described in [22, 28], specific applications to antenna analysis in [24, 26, 40] and
in-flight calibration in [34, 35, 45]). In this context T̃H = 0 is usually assumed, describing the surrogate
system by electric currents alone. In consequence, there is only one effective length vector per port. In
accordance with (85) Sinclair introduced the effective length vector h̃S on the basis of the transmitted
E-field [37, 42]. So h̃S does not agree with the definition by means of the respective row h̃ of the transfer
matrix T̃E. The two different definitions are related by

h̃S = −r̂×
(
r̂× h̃

)
(88)

which proves h̃S to be the projection of h̃ on the wave plane. As discussed above the freedom of choice
stems from the indeterminacy of the component in the direction of wave incidence.
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6. SPECIAL CASES

6.1. Scattering Parameter Representation

According to the derivations in Section 3, the ports state representation by modal wave coefficients s+−
is most fundamental. It leads to an antenna description by scattering parameters.

Q+− · s+− + T̃f

[
B̃+−

]
f̃ i = 0 (89)

By means of (34) and (69) the adjoint basis matrix is obtained as a function of the generalized scattering
matrices Q±:

B̃+− = χ−1
+− ·Qt

+− = −Sn ·N−1 ·
(
Qt

+
Qt−

)
= −

(
N−1
− ·Qt−

N−1
+ ·Qt

+

)
(90)

The case where Q− is regular is of particular importance, because all abstractly passive antenna networks
are of this kind (even more the concretely passive ones — meaning that no part of the antenna network
generates energy [4, Section 2.34]). In this case the antenna n-port can be represented by a scattering
matrix S and the identifications Q− = 1n and Q+ = −S are valid. Similarly the adjoint antenna can
be characterized by a scattering matrix S̃ and the identifications Q̃− = 1n and Q̃+ = −S̃ obtain. With
these specifications the antenna network equation can be written

a− = S · a+ − T̃f [B̃+]f i (91)

where the adjoint basis matrix is denoted by B̃+ to distinguish this special form from the general (89).
B̃+ is calculated by using the inter-reciprocity rule for scattering matrices [27, Equation (99)], which
can be put in the form

S̃ ·N−1
− = −N−1

+ · St (92)

Substitution of (92) and N± = −Ñ∓ in (90) gives an expression of B̃+ in terms of the scattering matrix
S or its adjoint S̃,

B̃+ = −
(

N−1
−

−N−1
+ · St

)
=

(
1n

S̃

)
· Ñ−1

+ (93)

In the above derivations we have utilized the fact that N± and Ñ± are diagonal matrices. For the same
reason (93) can be interpreted in connection with (91) as follows. When terminating each antenna port
by a matched load (so that a+ = 0) an external field f i induces waves of strength a− = −T̃f [B̃+]f i

travelling in the waveguides from the antenna to the receivers (loads). The transfer operator T̃f [B̃+] can
be split into transfer operators T̃f [s̃

(m)
+− ] for each port m = 1 . . . n in accordance with (67). Since T̃f [s̃

(m)
+− ]

maps f i on the wave coefficient a−m, it represents the sensitivity of the wave emergent from the m-th port
to the external field. On the basis of (59)–(61) the operator T̃f [s̃

(m)
+− ] is defined by the current densities

(J̃′(m), K̃′(m)) induced in the surrogate adjoint system when the state s̃(m)
+− is maintained at the ports.

According to (93) s̃(m)
+− signifies the state where a travelling wave of strength ã

+(m)
m = 1/{Ñ+}mm is

sent to the adjoint antenna via port m, and the other ports are terminated by matched loads (so that
no waves travel towards the antenna there, ã

+(m)
q = 0 for q 6= m). When the canonical normalization

N+ = Ñ+ = λ′1n with a scalar λ′ 6= 0 is applied (i.e., the travelling wave normalization constants
are the same for all modes), the waves incident to the driven ports must be of the same ‘strength’,
ã

+(m)
m = 1/λ′. Only in this case the scattering matrices satisfy the simple reciprocity relation S̃ = St.

6.2. Arbitrary Pairs (c, d) of Ports State Variables

Before the inter-reciprocity relations for voltages and currents are discussed a general change of the
ports state variables in accordance with Section 4.2 is considered. The variables are divided in two sets
of n parameters each, which are represented by the vectors c and d and juxtaposed in the new ports
state vector scd = (ct,dt)t. A regular 2n × 2n matrix U+−

cd maps scd on s+−. Similar definitions hold
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for the adjoint antenna. So we have the following relations between the new representation and the
travelling wave description

scd =
(

c
d

)
= (U+−

cd )−1 · s+− (94)

Qcd = (Qc,Qd) = Q+− · U+−
cd (95)

χcd =
(U+−

cd

)t ·N · Sn · Ũ+−
cd (96)

By putting a tilde over the quantities appearing in (94) and (95) the analogous relations for the adjoint
antenna are obtained. The inter-reciprocity principle (68) reads

Qcd · scd + T̃f

[
B̃cd

]
f i = 0 (97)

where
B̃cd = χ−1

cd ·Qt
cd (98)

contains the ports state basis vectors of the adjoint system which define the transfer operator T̃f [B̃cd]
via (63)–(65) as explained there. Substitution of (95) and (96) in (98) yields an expression of B̃cd in
terms of Ũ+−

cd and the travelling wave quantities:

B̃cd = −(Ũ+−
cd )−1 · Sn ·N−1(Q+−)t (99)

For the discussion of special cases an expedient subdivision of χ−1
cd in n× n block matrices is used,

χ−1
cd =

(
χ′11 χ′12
χ′21 χ′22

)
(100)

which enables us to write B̃cd as two stacked n× n matrices:

B̃cd =
(

χ′11 ·Qt
c + χ′12 ·Qt

d
χ′21 ·Qt

c + χ′22 ·Qt
d

)
(101)

This expression can be simplified essentially when Qc or Qd is regular. In this case the n × n matrix
Qc

−1 ·Qd is representative of the antenna n-port (at transmission).
First, let us consider the case where the elements of d can be prescribed independently. Because

of the n-dimensionality of the space of possible ports states for the antenna at transmission, this means
that c is uniquely determined by d. In other words there is an n × n matrix Hd which is associated
with the parameter pair (c, d) and describes the antenna by

c = Hd · d− T̃f

[
B̃d

]
f i (102)

The calligraphy font is used for the matrix symbol (H) in order to avoid confusion with magnetic field
vectors (H). The existence of Hd means that the choices Qc = 1n and Qd = −Hd are valid. To refer
to this special representation, B̃d is used instead of B̃cd to signify the corresponding basis matrix of
adjoint ports states. Substitution into (35) yields

Q̃c ·
(
χ′11 − χ′12 · Ht

d

)
+ Q̃d ·

(
χ′21 − χ′22 · Ht

d

)
= 0 (103)

This equation is analysed on the basis of a Lemma which is proven in [27]:
Let Q and Q′ be n×2n matrices of rank n, each of which being composed of two n×n matrices as

follows: Q = (Q1,Q2) and Q′ = (Q′
1,Q

′
2). Then the matrix Q1 is regular if and only if Q′

2 is regular
(and similarly for Q2 and Q′

1).
Application of this Lemma to (103) shows that Q̃c is regular if and only if χ′21−χ′22 ·Ht

d is regular.
Only on this condition does the adjoint antenna permit a representation by an n× n matrix H̃d which
defines the possible ports states at transmission via c̃ = H̃d · d̃. We assume that the above condition
is satisfied, which requires a suitable definition of Ũ+−

cd . It amounts to the validity of the identification
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Q̃c = 1n and Q̃d = −H̃d. In consequence, (103) becomes an inter-reciprocity relation for the matrix
Hd and its adjoint counterpart H̃d:

χ′11 − χ′12 · Ht
d = H̃d · (χ′21 − χ′22 · Ht

d) (104)

Taking this equation into account, (101) can be rearranged to

B̃d =
(
H̃d

1n

)
· (χ′21 − χ′22 · Ht

d

)
(105)

This result is of particular importance for the voltage-current representation as explained in Section 6.3.
In a similar way the case where Qd and Q̃d are regular can be treated. The matrices Hc and H̃c

are introduced such that d = Hc ·c and d̃ = H̃c · c̃ describe the original and the adjoint antenna system
at transmission. The full representation of the original antenna system in an external field f i is rendered
by

d = Hc · c− T̃f

[
B̃c

]
f i (106)

where the basis matrix B̃c of adjoint ports states defining the transfer operator T̃f [B̃c] is given by

B̃c =
(

1n

H̃c

)
· (χ′12 − χ′11 · Ht

c

)
(107)

The simplest application of this formula is to the travelling wave amplitudes: c = a+, d = a−, Hc = S
and H̃c = S̃. By inversion of (34) one obtains χ′21 = −N−1

+ , χ′12 = −N−1
− , χ′11 = χ′22 = 0n, and

χ′12 − χ′11 · Ht
c = Ñ−1

+ . So, in fact, (106) and (107) turn into (91) and (93).

6.3. Voltage-current Representation

With voltages and currents related to the travelling wave coefficients as specified in (36), Equations (97)
and (101) can be applied with c = V and d = I. If the abstract inter-reciprocity (45) holds, we obtain

QVI · sVI + T̃f [B̃VI]f i = 0 (108)

with

B̃VI =
2
λ

(−Qt
I

Qt
V

)
(109)

where χ′11 = χ′22 = 0n and χ′21 = −χ′12 = (2/λ)1n has been used in accordance with (46).
Next let us assume that the currents can be prescribed independently in the original as well as

the adjoint system, which amounts to the existence of the respective impedance matrices Z and Z̃.
So (102)–(105) apply with Hd = Z and H̃d = Z̃. So the representation of the antenna system by means
of its impedance matrix becomes

V = Z · I− T̃f [B̃I]f i (110)

B̃I =
2
λ

(
Z̃
1n

)
(111)

The transfer operator T̃f [B̃I] is established via (63)–(65) on the basis of the current densities induced
in the antenna system by driving the current 2/λ through one port with the other ports left open (no
currents through the non-driven ports). The form of Equation (110) provides evidence of T̃f [B̃I] being
an open port transfer operator: it maps the external electromagnetic field f i on the vector V◦ the m-th
element of which is the voltage drop (sign opposite to applied voltage) at port m when all ports are
open. The initial Equations (1) and (2) are special expressions of (111) and (110) for a 1-port antenna
operated via a conventional waveguide or transmission line, where standard voltage/current definitions
imply λ = 2 (on the condition (45) and the requirement that the complex power delivered to the antenna
is I∗ ·V/2; a proof is provided in Section 6.4).

In a similar way the admittance representation can be derived when the port voltages can be
prescribed arbitrarily in the original and adjoint antenna. Let Y and Ỹ be the respective admittance
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matrices. Hence, the Formulas (106) and (107) obtain with Hc = Y and H̃c = Ỹ. The admittance
matrix representation of the antenna system reads

I = Y ·V − T̃f

[
B̃V

]
f i (112)

B̃V = − 2
λ

(
1n

Ỹ

)
(113)

The transfer operator T̃f [B̃V] is determined via (63)–(65) on the basis of the current densities induced
by applying the voltage −2/λ at one port, with the other ports short-circuited (zero voltage at the other
ports). Putting V = 0 in (112) we see that T̃f [B̃V] is the transfer operator which maps any external
field on the currents driven through the short-circuited ports (as seen from the antenna according to
the minus sign in (112)).

Next let us drop the assumption of abstract inter-reciprocity (45), i.e., the general inter-
reciprocity (35) prevails, with χ = χVI from (44). So we have to cope with more complex expressions for
B̃I and B̃V, which can be calculated by using the corresponding submatrices of (44) in (105) and (107).
In this way one proves that the factors 2/λ and −2/λ in (111) and (113) have to be replaced with the
following terms, respectively:

χ′21−χ′22 · Ht
d =

(
ζt ·N+ · ζ̃

)−1
· [ζ− − Z

]t −
(
ζt ·N− · ζ̃

)−1
· [ζ+ + Z

]t (114)

χ′12−χ′11 · Ht
c = − ζ̃+ ·

(
ζt ·N+ · ζ̃

)−1
· [1n −Y · ζ−]t + ζ̃− ·

(
ζt ·N− · ζ̃

)−1
· [1n + Y · ζ+

]t (115)

6.4. Reciprocal Waveguides with Reflection Symmetry

As an example of great practical importance we consider reciprocal waveguides with reflection symmetry.
It is to be emphasized that this is no restriction on the antenna or environment (which may contain
inhomogeneous anisotropic media). So reciprocally adjoint quantities can be identified with the
respective original quantities if they refer to the waveguides, and the transverse field components of
the two branches ±1 of a waveguide mode m can be chosen in such a way that e+

Tm = e−Tm and
h+

Tm = −h−Tm [12, Chapter 5]. Under these preconditions (19) and (20) result in

2 ẑ ·
∫

Sw

eσ
Tm × hτ

Tq da = 〈f τ
q , fσ

m〉+ 〈f τ
q , f−σ

m 〉 = N (τ)
m δmq = −N (−τ)

m δmq (116)

This formula is used to calculate the average complex power P + jQ transferred to the antenna through
the waveguides w = 1 . . . W , with P being the real (average) power transferred to the antenna and
Q the corresponding reactive power. For that purpose we further assume that the field vectors e±Tm

and h±Tm are real. This freedom of choice is guaranteed, for instance, when the guide walls are perfect
conductors [18]. On the basis of the expansion (9) P + jQ is calculated (W is the number of waveguides
and nw the number of modes in the waveguide w; the dependence of the quantities on the waveguide
number w is suppressed)

P + jQ =
W∑

w=1

1
2

ẑ ·
∫

Sw

ET ×H∗
T da =

1
2

W∑

w=1

ẑ ·
nw∑

m,q=1

±1∑
σ,τ

ασ
mατ∗

q

∫

Sw

eσ
Tm × hτ ∗

Tq da

=
1
4

W∑

w=1

nw∑

m=1

[∣∣α+
m|2−

∣∣ α−m|2 − α+
mα−∗m + α+∗

m α−m
]
N+

m =
1
4

(a+ − a−)∗ ·N+ ·(a+ + a−) (117)

The term −α+
mα−∗m + α+∗

m α−m in the square brackets is purely imaginary and so determines Q and does
not contribute to the total average power P transferred to the antenna (as N+

m is real). Thus,

P =
1
4

W∑

w=1

nw∑

m=1

[|α+
m|2 − |α−m|2

]
N+

m =
1
4

(
a+∗ ·N+ · a+ − a−∗ ·N+ · a−

)
(118)

Q =
1
4j

W∑

w=1

nw∑

m=1

[
α+∗

m α−m − α+
mα−∗m

]
N+

m =
1
4j

(
a+∗·N+·a− − a−∗·N+·a+

)
=
=(a+∗ ·N+ ·a−)

2
(119)
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With the canonical normalization N+ = 21n we obtain the familiar power expressions [5, 16, 31]

P =
1
2

(|a+|2 − |a−|2) , Q = = (
a+∗ · a−)

(120)

It is only valid if all waveguide modes are normalized in the same way (i.e., all N+
m = −N−

m are equal).
The relations (36) between travelling wave coefficients and voltages/currents are quite general. In

order that V and I have the properties of voltages and currents (e.g., actual voltages and currents of a
coaxial cable) they have not only to adopt the right dimensions but also render the power relation

P + jQ =
1
2

I∗ ·V (121)

The conditions under which this relation is valid are obtained by substituting (36) in (117), producing
1
16

[
(ξ+ − ξ−) ·V + (ξ+ · ζ+ + ξ− · ζ−) · I]∗ ·N+ ·

[
(ξ+ + ξ−) ·V + (ξ+ · ζ+ − ξ− · ζ−) · I]

=
1
16

(
V
I

)∗
·
(

Ξ11 Ξ12

Ξ21 Ξ22

)
·
(
V
I

)
(122)

with the n× n matrices
Ξ11 = (ξ+ − ξ−)∗ ·N+ · (ξ+ + ξ−) (123)
Ξ12 = (ξ+ − ξ−)∗ ·N+ · (ξ+ · ζ+ − ξ− · ζ−) (124)
Ξ21 = (ξ+ · ζ+ + ξ− · ζ−)∗ ·N+ · (ξ+ + ξ−) (125)
Ξ22 = (ξ+ · ζ+ + ξ− · ζ−)∗ ·N+ · (ξ+ · ζ+ − ξ− · ζ−) (126)

The power expressions (121) and (122) are equal if and only if Ξ11 = Ξ22 = Ξ12 = 0n and Ξ21 = 81n.
These matrix equations are rewritten expediently in the form

Ξ11 ± Ξ∗11 = 0n, Ξ22 ± Ξ∗22 = 0n, Ξ21 ± Ξ∗12 = 81n (127)
The equations obtained on the basis of the respective upper signs are a result of the identification of the
real power (118) with the real part of (121), i.e., with (V∗ · I + I∗ ·V)/4. The corresponding lower-sign
equations are the identification of the reactive power (119) with the imaginary part of (121), i.e., with
(I∗ ·V −V∗ · I)/4j. Thus, the real power identity leads to

0 = ξ+∗ ·N+ · ξ+ − ξ−∗ ·N+ · ξ− (128)
0 = (ξ+ · ζ+)∗ ·N+ · ξ+ · ζ+ − (ξ− · ζ−)∗ ·N+ · ξ− · ζ− (129)

41n = ξ+∗ ·N+ · ξ+ · ζ+ + ξ−∗ ·N+ · ξ− · ζ− (130)
and the reactive power identity to

0 = ξ+∗ ·N+ · ξ− − ξ−∗ ·N+ · ξ+ (131)
0 = (ξ+ · ζ+)∗ ·N+ · ξ− · ζ− − (ξ− · ζ−)∗ ·N+ · ξ+ · ζ+ (132)

41n = ξ+∗ ·N+ · ξ− · ζ− + ξ−∗ ·N+ · ξ+ · ζ+ (133)
First the Equations (128)–(130) are analysed. By virtue of (128) the matrices ξ−∗·N+·ξ− and ξ+∗·N+·ξ+

are equal. So (130) implies ξ+∗ ·N+ · ξ+ = 2ζ−1, which also shows that ζ = ζ∗. With these results we
can rearrange (129) into ζ+∗· ζ−1· ζ+ = ζ−∗· ζ−1· ζ− and further into ζ− = ζ+∗. This means that ζ+ and
ζ− are hermitian adjoints of each other. Since the path of derivation can be reversed, the requirement
P = <(I∗ ·V)/2 appears to be equivalent to

ζ± = ζ∓∗ (134)
ξ±∗ ·N+ · ξ± = 2ζ−1 (135)

From the first equation follows that ζ is a hermitian matrix, i.e., ζ = ζ∗.
In a similar way it is shown by means of (131)–(133) that the requirement Q = =(I∗ · V)/2 is

identical with the equations
ζ± = ζ±∗ (136)

ξ±∗ ·N+ · ξ∓ = 2ζ−1 (137)
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The first equation states that ζ+ and ζ− (and so also ζ) are hermitian matrices.
Finally, if we claim the validity of (121), in other words that we can represent both the real as well

as the reactive power on the basis of voltage and current values in the usual way, all Equations (134)–
(137) must hold. They imply ζ+ = ζ− = ζ and ξ+ = ξ−. Since the superscript signs of ξ± and ζ± can
be omitted in this case, (135) and (137) read

N+ = 2 (ξ · ζ · ξ∗)−1 (138)

So far we have not assumed that the inter-reciprocity principle is expressible in the form (45) as is
usually done in abstract network theory. If we add this condition, the Equations (54) and (56) must be
taken into account, which are simplified in the present case (with ζ+ = ζ− and ξ+ = ξ−, and because
of the reciprocal nature of the waveguides):

ζ = ζt (139)

±N± = λ
[
ξ · ζ · ξt

]−1 (140)

The Equations (136) and (139) reveal ζ to be a real symmetric matrix. Eventually, (138) and (140)
imply λξ∗ = 2ξt, i.e.,

|λ| = 2, arg λ = 2arg ξik + 2πm (m ∈ Z) (141)

It requires all non-zero elements of ξ to have the same argument (modulo pi), for instance λ = 2 and
=ξ = 0n.

Exactly this situation (λ = 2) occurs most frequently in practice where ζ and ξ are diagonal
matrices, with ζmm > 0 (m = 1, . . . , n) being characteristic mode impedances and ξmm = 1/

√
ζmm

(which entails N+ = 21n and so (120)). Because of the practical importance of this special case, the
respective antenna equations and the corresponding inter-reciprocity properties are summarized:

Q+ · a+ + Q− · a− + T̃f

[
B̃+−

]
f i = 0, B̃+− =

1
2

(
Qt−
−Qt

+,

)
, Q̃+ ·Qt

− = Q̃− ·Qt
+ (142)

a− = S · a+ − T̃f

[
B̃+

]
f i, B̃+ =

1
2

(
1n

S̃

)
, S̃ = St (143)

QV ·V + QI · I + T̃f

[
B̃VI

]
f i = 0, B̃VI =

(−Qt
I

Qt
V

)
, Q̃V ·Qt

I = Q̃I ·Qt
V (144)

V = Z · I− T̃f

[
B̃I

]
f i, B̃I =

(
Z̃
1n

)
, Z̃ = Zt (145)

I = Y ·V − T̃f

[
B̃V

]
f i, B̃V = −

(
1n

Ỹ

)
, Ỹ = Yt (146)

The relations (143), (145) and (146) are valid if the respective scattering, impedance and admittance
matrices exist.

6.5. On the Application to Radio Astronomy Antennas aboard Spacecraft

As an example some consequences of the theory are discussed for antenna systems which consist of
several monopoles mounted on a carrier. Such antennas have been used extensively as part of radio
astronomy instruments aboard spacecraft [28], in particular when goniopolarimetry (direction finding
and polarization analysis of radio waves) is among the main objectives [8, 22, 34]. Typical examples are
the Cassini/RPWS [14, 40, 45] and STEREO/WAVES experiments [2, 8, 35]; the given references contain
detailed information on the installed antennas. We consider the whole configuration (n monopoles and
the spacecraft) as an antenna system with n ports, each monopole defining one terminal of a port,
the other terminal of the port being given by the spacecraft ground. The coaxial cables connecting
the antennas to the on-board receivers or pre-amplifiers contain no non-reciprocal materials, so the
Formulas (142)–(146) apply. Due to the high conductivity of the monopoles and the spacecraft surface
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(many parts covered by gold foils), the whole antenna system can be regarded as reciprocal. However, if
the spacecraft moves through a magnetized plasma (e.g., in regions of a planetary magnetosphere where
the plasma is sufficiently dense) the environment is non-reciprocal and we have to consider the adjoint
antenna system when determining the reception properties via any of the Equations (142)–(146).

Usually antennas are represented by effective length vectors in this context, which agree with the
rows of the respective transfer matrix (explained in Section 5.4). As described after (82) the surrogate
currents determining the transmission properties and the transfer operators of the adjoint antenna
system can be chosen to be purely of electric type, which is taken for granted in the following: T̃H = 0n.
Let h̃◦m be the open port effective length vector (of the electric kind) associated with the m-th monopole
of the adjoint system, i.e., T̃E[B̃I] = (h̃◦1, . . . , h̃

◦
n)t. Hence, (145) shows that−h̃◦p·E0 is the voltage induced

at port p when the electromagnetic plane wave (77) is incident to the antenna system with all open
ports. If the antennas are connected to receivers or any other load which can be represented by a load
impedance matrix ZL, the port voltages change to

Vp =
n∑

m=1

ZpmIm − h̃◦p(−k) ·E0 = −
n∑

m=1

ZL,pmIm with I = (Z + ZL)−1 · T̃E

[
B̃I

]
(−k) ·E0 (147)

It proves that we can define a loaded port reception transfer matrix T̃E[ZL] which maps the incident
plane wave amplitude to the voltage drop values appearing at the ports of the ‘ZL-loaded’ antenna:

V = −T̃E[ZL](−k) ·E0 with T̃E[ZL] = ZL · (Z + ZL)−1 · T̃E

[
B̃I

]
(148)

In analogy to the open port case, we define the effective length vectors for the loaded antenna as the rows
of T̃E[ZL], so they map the incident electric field amplitude on the voltage received at the respective
port,

Vp = −h̃p [ZL] (−k) ·E0 where
{
h̃p[ZL]

}
m

=
{
T̃E [ZL]

}
pm

(149)

In order to describe the behaviour of the irradiated antenna as part of an electronic circuit, one has to
determine Z for the antenna system and T̃E[B̃I] = (h̃◦1, . . . , h̃◦n)t for the adjoint counterpart. In practice,
this can be accomplished by measurements with a scale model or by computer simulations. All other
mentioned quantities can be calculated by means of the above formulas. If the external medium is a
magnetized cold plasma we have the material tensors µ = µ̃ = µ013, τ = τ̃ = ν = ν̃ = 03, and the
permittivity tensor ε[B0] depends on the static magnetic field B0, with ε[−B0] = (ε[B0])t. Hence, the
permittivity tensor of the adjoint magnetized plasma is obtained from the original by inverting the
orientation of the static magnetic field. This fact can be utilized in the computation of the open port
effective length vectors of the adjoint system. In virtue of (145), h̃◦m is determined by driving unit current
through the m-th port (towards monopole m, with spacecraft ground being charged oppositely) and
keeping the other monopoles insulated from the spacecraft ground (no currents through ports m′ 6= m).
After having calculated a corresponding surrogate current density Jo

m
′(r) which radiates the same fields

as the adjoint antenna under these driving conditions, the sought h̃◦m(k) is calculated by applying (80):

h̃◦m(k) =
∫

J̃◦m
′(r) ejk·r dv (150)

Here the integration volume contains the whole spacecraft (including receivers) and all monopoles.
The above procedure does not take plasma sheath effects around the antenna and spacecraft into

account, which are often approximated by suitable artificial capacitances and resistances (see e.g., [2]
and further references therein). For isotropic environment and quasi-static frequencies (147)–(150)
are simplified to the analogous k-independent formulas given in [24]. The anisotropy introduces an
additional complication: At a given frequency there are two kinds of waves which may propagate in the
same direction. They have, in general, different polarizations and phase velocities ω/|k|. From (150)
we therefore obtain two effective length vectors h̃oF

m and h̃oL
m as functions of frequency ω and direction

of incidence k̂, for the waves with fast and slow (superscript F and S) phase velocity, respectively.
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7. CONCLUSION

The transfer operator (transfer matrix) formalism can be regarded as a comprehensive extension of
the effective length vector description of antennas. Together with generalized scattering matrices, or
generalized admittance and impedance matrices, it facilitates the n-port representation of non-reciprocal
multi-port antennas in a non-homogeneous anisotropic environment, taking into account the impact of
arbitrary external electromagnetic fields. Since the focus is on the characterization of the antenna as an
n-port, with reception properties being accounted for by corresponding transmission properties of the
adjoint system, no reference to the total field occurring in and around the receiving antenna is required.
Hence, this approach avoids the scattering problem in 3d-space, i.e., the determination of the field
change and the currents induced in the antenna when inserted in the external field. It is shown that the
formalism can be kept so general that only the following preconditions need be fulfilled: the waveguides
and their adjoint ones are mutually bidirectional, the antenna and the environment are composed of
linear media, and the antenna system acts as an n-port of dimensionality n at transmission. Further
advantages of this generality are as follows.

1. In comparison with the standard scattering, impedance and admittance matrices, their
generalized versions cover a greater class of antenna structures. They allow the inclusion of circuit
elements like negative resistances which may preclude the use of the respective standard matrices
(sometimes only at certain frequencies [27]).

2. The use of a transfer operator for the whole system instead of one effective length vector for each
individual antenna, emphasises a one-entity perspective: the antenna(s), the transmission lines and the
environment are treated as part of one system. It is beneficial in the study of radiation coupling effects
and cross-talk between the ports under the influence of incident electromagnetic waves [25]. The effect
of the termination of the ports by loads (base capacitances at antenna feeds, receiver input impedances)
has been investigated in this way for radio astronomy antennas aboard spacecraft [24].

3. Since the polarization of received waves is accounted for in the theory, it is an optimum
prerequisite for the study of polarization effects in radar and radio astronomy instruments. In particular,
the mathematical treatment of multi-antenna detectors on spacecraft for the observation of Stokes
parameters of planetary or solar radio emissions profit.

4. The consideration of non-reciprocal configurations makes the inclusion of anisotropic media
in the antenna, waveguides and environment possible. It is of special importance for magnetized
plasma environments, which often occurs with antennas aboard spacecraft. The presence of a magnetic
field in an ambient plasma (e.g., in planetary magnetospheres) is responsible for the anisotropy of
the permittivity tensor. So a surrounding magnetized plasma is a non-reciprocal environment. The
presented formalism provides the prerequisites for future applications to antennas in plasmas (it does
not account for sheath effects, which require different means [2, 43]).

5. The time-consuming part in the computation of antenna reception properties by means of transfer
matrices is the calculation of currents induced in the adjoint system at transmission. Hence, many
different operation scenarios (variation of loads and/or external excitations by incident waves) can be
studied without significant increase of computation time.

Since conventional waveguides are reflection-symmetric and reciprocal, the consequences for these
specific guides have been examined in detail. It has been shown that the governing equations can be
simplified considerably if voltages and currents are defined in such a way that the abstract network
reciprocity Ĩ ·V = Ṽ · I maintains and the complex power exchanged via the ports is given by I∗ ·V/2,
which are common demands on voltage and current variables.
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