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A Hybrid SAR Autofocus Technique by Two Methods of
Sub-Aperture Estimation and Iterative Golden Section Search

Boyeon Koh*, Sanghyouk Choi, and Joohwan Chun

Abstract—In a real airborne synthetic aperture radar (SAR), its major phase errors are usually
composed of two categories, such as slow-time varying phase errors (less than several cycles of change
in phase during synthetic aperture time) and fast-time varying phase errors (otherwise, including wide
band random) according to the motion of aircraft. If the fast errors are no more negligible compared
to the slow errors, they should be estimated and then compensated accurately to obtain a well focused
image. However, it is not proper to estimate all phase errors at the same time like conventional autofocus
techniques because the estimation of the fast-time varying phase errors are seriously affected by blurring
in image due to the slow-time varying phase errors. In this paper, we presents an accurate hybrid
phase estimation technique using two independent estimation stages of sub-aperture and an iterative
golden section search method, which has advantages over several existing methods, because of its better
estimation accuracy and less sensitive to the quality of extracted range bins as well as requiring less
computation time. The performance of our method is illustrated by simulations of point targets and an
experiment with real SAR data.

1. INTRODUCTION

Autofocus techniques for synthetic aperture radar (SAR) have been a major concern, and many attempts
have been made to improve their performance for real SAR applications. Autofocus techniques are
generally categorized into two types according to the estimation method: parametric or non-parametric.
In parametric methods [1, 2] phase errors are approximated by an appropriate model with specific
parameters, whereas non-parametric method [3–5] do not require a phase error model, thus allowing
us to estimate a wide variety of phase errors. Non-parametric methods such as the phase gradient
algorithm (PGA) [3, 4], the eigenvector method (EVM) [6], the weighted least square (WLS) [7], and the
successive parameter adjustment (SPA) [8] are widely used owing to their good performance compared
to the computation time required. However, the performance of non-parametric methods, which require
range bins for estimation, seriously depends on the quality of the extracted range bins from an unfocused
image. Studies have been conducted on the selection of good range bins and on an iterative selection
method during estimations [9, 10] to overcome the above constraint. Furthermore, if the fast-varying
phase errors such as wideband random (WBR) phase errors are serious and should be removed for a
well-focused image as often experienced in low-altitude airborne SAR, a gradient-based non-parametric
method such as PGA is not proper to use for an accurate estimation because the calculations of gradient
are severely affected by the WBR phase errors. The SPA method modeling unknown phase errors using
orthogonal polynomial (Legendre) shows a good performance in case of the polynomial type of phase
errors. However, it is not proper to apply in case of the WBR phase errors because it is insufficient to
approximate the phase errors with finite polynomials. A non-gradient-based method [11] was proposed to
cope with the WBR phase errors for inverse SAR (ISAR) applications; however, it requires a considerable
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amount of computation time for the case of SAR, which requires a much longer synthetic aperture time
(SAT) than ISAR.

In this paper, we propose a hybrid estimation technique to provide an accurate estimation for both
the slow-time varying (STV) errors and the WBR phase errors. It is assumed that the extracted range
bin contains a dominant point like scatterer (target) with some strong clutters, similar to a real SAR
environment. The proposed method consists of two estimation stages, the first for the estimation of STV
phase errors and the second for the estimation of all errors, including any residual errors remaining after
the first stage. A sub-aperture estimation method is utilized for the first stage, and then we adopt an
iterative golden section search (IGSS) method for the second stage to ensure an efficient computation
time while maintaining an accurate estimation. Simulations and an experiment with real SAR data
illustrate the performance of our method.

2. FIRST STAGE: ESTIMATION OF THE STV PHASE ERRORS

2.1. Model of a Single Range Bin for Phase Estimation

The single range bin extracted from an unfocused image can be modeled as

g(t) =

(
a0e

jω0t +
C∑
c=1

ace
jωct

)
ejϕ(t), a0 > ac. (1)

Here, t indicates the azimuth time; C denotes the number of non-negligible clutters (NNCs) which
cannot be neglected in comparison to the dominant target. Additionally, a0 and ac, and ωc and ωc are
respectively the amplitudes and angular frequencies of the target and NNCs. The overall phase error
is denoted as ϕ(t), and it is simply assumed to have two types of errors, defined as ϕL(t) for the STV
phase error and ϕR(t) for the WBR phase error (see Figure 1, for example). The purpose of the first
stage of our method is to estimate ϕL(t) in (1) and compensated it prior to proceeding to the second
stage for an accurate estimation.

2.2. Estimation of the ϕL(t) by Sub-Aperture Method

As in other sub-aperture methods [12], the SAT is divided into N non-overlapping segments
(u1, . . . , uN ), as shown in Figure 1. The nth segment phase error ϕL,n(t) is modeled as

ϕL,n(t) = ejφn(t,βn), φn(t,βn) =
Q∑
q=0

βn,qt
q. (2)

Here, Q indicates the polynomial order of the model, and βn is the parameter to be estimated. We
define z(t) = ej∠g(t) by (1) with zk being the sample of z(t = tk). All zk values are assumed to have an
equal length of M , and each segment thus has M datum pairs (ti, zi) with the expression of ẑi = (x̂i, ŷi)
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Figure 1. An example of two types of phase error and segment configuration for sub-aperture
estimations.
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as the estimation of zi = (xi, yi). The goal is to optimize the βn parameters of the φn(t,βn) model such
that the sum of the squares of the error E(β) is minimized (the subscript ‘n’ is omitted hereafter for
simplicity):

E(β) =
M∑
i=1

|zi − ẑi|2 =
M∑
i=1

∣∣∣zi − ejφ(ti,β)
∣∣∣ =

M∑
i=1

{
[xi − cos (φ (ti,β))]2 + [yi − sin (φ (ti,β))]2

}
. (3)

The normal equation is obtained by a linearization of ẑi around the pre-estimated βl−1 via a Taylor
series expansion of the first order, as follows:
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= ŷi

(
ti,β

l−1
)

+
Q∑
s=0

hisΔβs

(4)

where gis =
∂x̂i
∂βs

, his =
∂ŷi
∂βs

, Δβs = βls − βl−1
s .

Taking the gradient of (3) with respect to βq, (q = 0, 1, 2 ) and using the relationships in (4) results
in

∂E (β)
∂βq

=
M∑
i=1

[
∂E (β)
∂x̂i
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∂βq

]

= 2
M∑
i=1

[(
xi − x̂i −

Q∑
s=0

gisΔβs

)
giq +

(
yi − ŷi −
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Then normal equation is obtained as
M∑
i=1

Q∑
s=0

(gisgiq + hishiq)Δβs =
M∑
i=1

(Δxigiq + Δyihiq) . (5)

In vector notation, (5) becomes (here, T indicates transpose)(
GTG + HTH

)
Δβ = GTΔx + HTΔy.

In this paper, the normal equation is solved by the LMA (Levenberg-Marquardt Algorithm) with
the damping parameter λ [13] as[

GTG + HTH + λ · diag
(
GTG + HTH

)]
Δβ = GTΔx + HTΔy. (6)

2.3. Good Initial Guess of βn

Like other iterative methods, a good initial guess of β0 leads to a better optimal solution. When a
quadratic model is used, a good β0 can be determined by an efficient search strategy based on the
following characteristics:
1) β2 only dominates the entropy of the image; thus, β0

2 is determined by a search for a value of β2 that
minimizes the entropy function defined below

H[β2] =
M−1∑
k=0

|G(k, β2)| ln [|G(k, β2)|] ,

G(k, β2) =
M−1∑
m=0

zme
−j 2πkm

M e−jβ2m2
, β0

2 = arg min
β2

{H [β2]}
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2) β1 causes a shift in the image domain according to the value of β1; thus, β0
1 is determined by measuring

the amount of shift in |G(k;β0
2 )|.

3) β0
0 is finally determined by a search for a value of β0 that minimizes the error cost function with the

previously determined initial estimates of β0
2 and β0

1 , as defined below

E(β0;β0
1 , β

0
2) =

M∑
i=1

|zi − ẑi|2

β0
0 = arg min

β0

{
E
(
β0;β0

1 , β
0
2

)}
.

In our experiment, βn was sufficiently obtained by solving (6) within dozens of iterations with feasible
values of β0.

3. SECOND ESTIMATION STAGE FOR THE WBR PHASE ERRORS

After the compensation of ϕL(t), the second stage for an accurate estimation of the WBR phase errors
is performed to create a full focused image. Unlike ϕL(t), ϕR(t) requires an exhaustive search time to
find a global optimum estimation; therefore, near-optimal estimation techniques are usually employed.
Entropy minimization techniques have been proposed for ISAR applications [11, 14]. The SSA [11] is one
of effective methods to estimate the WBR phase errors in accurate. However, it requires a considerable
amount of computation time when applied to real SAR applications. Therefore, we adopt an iterative
golden section search (IGSS) method which requires much less computation time over the SSA. The IGSS
method is based on the concept of a golden section search [15] with entropy minimization in the image
domain, as with the SSA. The utilization of golden section search for the estimation of phase errors was
firstly proposed in [8], which finds optimum coefficients of Legendre polynomials. This paper utilizes
the golden section search for direct estimation of all phase errors at every azimuth positions in order to
compensate the WBR phase errors in accurate. One factor to consider is that the entropy function in
the IGSS method must satisfy the unimodal condition within the search section. Fortunately, when the
entire search section is divided into sub-sections, this condition can be satisfied in each sub-section. The
final solution will then be obtained by the selection of the best result between two sub-sections with
minimum entropy. In our experiment, the condition is satisfied by dividing the entire search section
L : [−π, π] into two the sub-sections of L− : [−π, 0] and L+ : [0, π], after which a better optimal solution
is attainable through GSS iterations. For a clear explanation of our method, definitions of the variables
and functions are necessary. After compensation of STV phase error ϕL(t), we define g̃(t), g̃n, and ψn
as follows:

g̃(t) = g(t)e−jϕL(t)

g̃n = g̃(t = tn)
ψn = ϕR(t = tn), n = 0 ∼ NT − 1.

(7)

Here, NT indicates the number of samples of g̃n, and ψn is the WBR phase error at t = tn. The
function of the GSS method is defined as [ψ̂p, hp] = GDN(L,H(ψ̂, ψp,Δ)), where L indicates the search
section, ψ̂p and hp are the search result and matching minimum entropy at t = tp, ψ̂ is the vector array
of ψ̂ = [ψ̂0 . . . ψ̂NT −1], and Δ is the tolerance parameter of the GSS method. Additionally, the entropy
function H(ψ̂, ψp) used in our method is defined below similar to the cost function used in [11, 16]

H
(
ψ̂, ψp

)
≡

NT −1∑
k=0

∣∣∣F̃ (k; ψ̂, ψp)∣∣∣ ln [∣∣∣F̃ (k; ψ̂, ψp)∣∣∣]

F̃
(
k; ψ̂, ψp

)
≡

NT −1∑
n=0

f̃ne
−j 2πkn

NT

(8)

where f̃n = g̃n · e−jψ̂n (n �= p) , f̃p = g̃p · ejψp (n = p) .



Progress In Electromagnetics Research M, Vol. 38, 2014 67

With all of the above definitions, an overall processing flow diagram of the IGSS method is depicted in
Figure 2. Here, l and p are the indices of iteration and Niter denotes the maximum iteration number,
and ε is the threshold for termination. The parameters Δ and ε do not need to be fixed but instead can
vary with the iterations like Δ(l) and ε(l) to obtain a better solution.

Figure 2. Processing flow diagram of the IGSS method.
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Figure 3. Two extracted range bins and phase errors. (a) Uncorrupted original range bin for target
#1. (b) Uncorrupted original range bin for target #2. (c) STV phase error ϕL(t). (d) WBR phase
error ϕR(t).
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Figure 4. The estimation result of ϕL(t) by the first stage.
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4. SIMULATION AND REAL DATA PROCESSING

4.1. Simulations with Point Targets with NNCs

Simulations with point targets were performed to illustrate the performance of the proposed method.
We assumed that two extracted range bins contained some NNCs and that the phase error ϕ(t) consisted
of both STV and WBR phase errors, as shown in Figure 3.

The result of the first stage is given in Figure 4, which shows that a good approximation of
ϕL(t) is achieved by the sub-aperture estimation. The final results of the proposed method and other
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Figure 5. Simulation results. (a) Blurred image by ϕ(t). (b) Images after compensation of ϕL(t).
(c) Final compensated images after IGSS. (d) Final compensated images by PGA. (e) Final compensated
images by EVM. (f) Final compensated images by WLS. (g) Final compensated images by SSA. (h) Final
compensated images by SPA.
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conventional methods are presented in Figure 5. The defocused two images by ϕ(t) are given in
Figure 5(a). After compensation of the STV phase errors, focused (but not fully) images are obtained,
as shown in Figure 5(b). The final images after second stage with the IGSS method are presented
in Figure 5(c), which completely restores the original range bins without any degradation or spurious
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Figure 6. The computation time of the IGSS and SSA.
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Figure 7. Processing results with a real SAR image. (a) Original image before autofocus, CNT = 6.6.
(b) Processed by the PGA, CNT = 6.9. (c) Processed by the SPA, CNT = 14.3. (d) Processed by the
SSA, CNT = 46.2. (e) Processed by the proposed method, CNT = 85.5.
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targets. In contrast, all other conventional methods which are sensitive to the quality of the extracted
range bins show some loss in the amplitude (radar cross section) of each NNCs. Also, many spurious
targets appear, as shown in Figure 5(d) for the PGA, 5(e) for the EVM, Figure 5(f) for the WLS,
and Figure 5(h) for the SPM. The autofocus techniques such as the PGA and the SPM show that lots
of residual phase errors still remain in the processed images as the WBR phase errors are difficult to
be estimated using these techniques. To investigate the effectiveness of the first stage in the proposed
method, Direct estimation of both ϕL(t) and ϕR(t) via the SSA was performed. The Figure 5(g)
illustrates that the blurring effect of ϕL(t) leads to an inaccurate estimation of the total phase error
of ϕ(t) and that it should be compensated before the second stage. The computation efficiency of the
IGSS was also tested and compared to that of the SSA. The test was performed on a PC equipped with
an Intel(R) Xeon X5460 processor, and we measured each processing time for the IGSS and SSA to
estimate the WBR phase errors, which were intentionally added to an uncorrupted range bin. Figure 6
shows that the IGSS requires much less computation time than the SSA and that more efficiency is
achieved as the length of the range bin increases.

4.2. Experiment with a Real SAR Data

The processing result with a real SAR siginal data is given in Figure 7. The resolution is 1 m, and the
scene size is 2 km × 2 km in terms of the range and azimuth. The operation altitude was 10, 000 feet,
and the weather condition of that day was not good for image acquisition, thus the phase errors of
STV and WBR were serious caused by the turbulence of air. The blurring image by the phase errors
is shown in Figure 7(a). The processing results of the PGA and the SPA are given in Figures 7(b)
and 7(c), which illustrate that the PGA and the SPA enable us to estimate the STV phase errors but
that they cannot sufficiently estimate the WBR phase errors, as many random phase errors remain in
the processed images. However, the SPA is better than the PGA because some of the WBR phase errors
can be approximated with high order Legendre polynomials. The result processing with the SSA is also
presented in Figures 7(d), which illustrates that only the SSA method without the first compensation of
ϕL(t) is not sufficient to provide an accurate estimation of all phase errors ϕ(t), as discussed in the section
on point target simulations. The performance of the proposed method is presented in Figure 7(e), which
demonstrates that an accurate estimation of both STV and WBR phase errors is achieved such that
well focused image is restored without serious degradation. In order to check the performance of each
method objectively, an image quality parameter of contrast (CNT = variance/mean) was calculated,
and the best value of contrast is obtained by the the proposed method as shown in Figure 7(e).

5. CONCLUSIONS

From the simulations and real SAR image processing assessments, we conclude that the proposed method
can provide better performance than several existing autofocus methods in terms of the estimation
accuracy and computation time. We illustrate that our method can effectively be applied to the case
of low-altitude airborne SAR operations where the WBR phase errors are not trivial.
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