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Abstract—The existing robust narrowband beamformers based on probability-constrained optimiza-
tion have an excellent performance as compared to several state-of-the-art robust beamforming algo-
rithms. However, they always assume that the steering vector errors are small enough. Without this
assumption, we extend the probability-constrained approach to a wideband beamformer. In addition,
a novel robust wideband beamformer with frequency invariance constraints is proposed by introducing
the response variation (RV) element. Our problems can be reformulated in a convex form as the it-
erative second order cone programming (SOCP) problem and solved effectively using well-established
interior point method. Compared with existing robust wideband beamformers, a more efficient control
over the beamformer’s response against the steering vector errors is achieved with an improved output
signal-to-interference-plus-noise ratio (SINR).

1. INTRODUCTION

In the past, beamforming was studied extensively for desired signal enhancement and interference
signals suppression [1–4]. Given the exact look direction, many traditional wideband beamformers can
work effectively and achieve a satisfactory output signal-to-interference-plus-noise ratio (SINR) [5, 6].
One of the most well-known beamformers is the linearly constrained minimum variance (LCMV)
beamformer [7, 8], which minimizes its output power while preserving a unity gain at the look direction
or subject to some more complicated constraints. However, in practice, the look direction error exists
inevitably. As a result, the output performance may be disappointing since the wideband beamformers
will tend to null out the desired signal as an interference signal.

Many robust beamformers have been proposed to deal with look direction errors [9, 10]. One of
the most well-known methods is diagonal loading method (DL) [11]. The crucial problem of DL is how
to obtain the reasonable DL factor. Another choice is the derivative constraint method which imposes
additional derivative constraints on the beamformer to obtain a wider main beam [12]. In [13, 14], a class
of popular robust beamformers is proposed based on worst-case performance optimization (RB-WC).
There are two problems with this approach. One is its relatively high computational complexity due to
its constraints imposed on a large number of sampled frequency points, the other one is that there is no
mechanism to control the response consistency to the mismatched desired signal. Therefore, a potentially
intolerable distortion to the desired signal may happen. To address those problems, a robust wideband
beamformer (RB-FI-WC) was proposed in [15], where a good frequency response consistency in the
range of interesting angle is achieved by a response variation RV constraint [16]. The approaches based
on worst-case performance optimization aim at optimizing the SINR assuming that the array operates
under the worst conditions irrespective of the probability of such worst-case scenario. A potential
problem with this approach is that it may be overly conservative in practical applications, especially
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taking into account that the worst-case mismatch may actually seldom occur. To improve robustness of
the beamformer, a less conservative robust approach based on the probability-constrained optimization
is proposed which guarantees the robustness against the signal steering vector mismatch with a selected
probability [17–19]. The robust narrowband beamformers based on probability-constrained optimization
have an excellent performance as compared to several state-of-the-art robust beamforming algorithms.
However, they all need assume that the steering vector errors are small enough.

In this paper, we extend the probability-constrained approach to a wideband beamformer without
the small steering vector errors assumption, called RB-PC. In order to alleviate the high computational
complexity of the RB-PC and address its frequency response inconsistency problem, we apply the RV
element to the array response to ensure a good response consistency in the robust angle region, and
then impose the probability-constrained on the reference frequency point in the look direction, which is
named as RB-FI-PC. The simulations illustrate the effectiveness of the proposed algorithm. The rest
of this paper is organized as follows. In Section 2 the conventional adaptive wideband beamforming
algorithm is reviewed. The RB-PC and RB-PC method are proposed in Section 3. Simulation results
and performance comparisons are given in Section 4. Conclusions are drawn in Section 5.

2. REVIEW OF ADAPTIVE WIDEBAND BEAMFORMING

A wideband array processor based on uniform linear array is shown in Fig. 1, where J is the number
of taps associated with each of the M sensor channels. Let the array sensors be uniformly spaced with
the inter-element spacing d less than or equal to c/(2fh), where c is the wave propagation speed and
fh is the maximum frequency of the desired signal. Its response with respect to frequency fi and look
direction θ can be written as

H(fi, θ) = wHS(fi, θ) (1)

where fi ∈ B = [fl, fh] is the chosen discrete frequency in the frequency range of interest B, fl the
minimum frequency, and w a MJ × 1 coefficient vector defined as

w = [w0,0, . . . , wM−1,0, . . . , wM−1,J−1]T (2)

the MJ × 1 steering vector S(fi, θ) is given by

S(fi, θ) = [1, . . . , e−j2πfi(M−1)d sin θ/c, . . . , e−j2πfi(J−1)Ts , . . . , e−j2πfi((M−1)d sin θ/c+(J−1)Ts)]T (3)

where Ts is the sampling period.
The wideband LCMV problem [7] can be formulated as

min
w

wHRw subject to CHw = f (4)

where R is the autocorrelation matrix of the observed array data X, C a constraint matrix, and f the
response vector.

Let us assume that the desired signal steering vector is known exactly. Then the solution of the
wideband beamformer is

wopt = R̂
−1
xx C

(
CHR̂

−1
xx C

)−1
f (5)

where R̂xx is the sample correlation matrix given by

R̂xx =
1
L

L−1∑
n=0

X(n)XH(n) (6)

with L being the number of samples available and

X(n) = [x0(n), . . . , xM−1(n), . . . , x0(n − J + 1), . . . , xM−1(n − J + 1)]T (7)
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3. PROPOSED ROBUST WIDEBAND BEAMFORMER

In practical situations, the signal steering vector may be known imprecisely, that is, the actual steering
vector may differ from the presumed one. An essential shortcoming of the beamformer (7) is that it is
not robust against such a steering vector mismatch and can severely suppress the desired signal. The
actual steering vector of the desired signal from direction θ0 has been explicitly modeled as

Ŝ(fi, θ0) = e(fi)+S(fi, θ0), ‖e(fi)‖ ≤ ε (8)

where S(fi, θs) is the assumed steering vector of the look direction θs, e(fi) an error vector, ‖•‖ the
Euclidian norm, and ε a small positive value.

Using the Cauchy-Schwarts inequality, it follows that∣∣∣wH Ŝ(fi, θ0)
∣∣∣ = ∣∣wH(S(fi, θs) + e(f))

∣∣ ≥ ∣∣∣∣wHS(fi, θs)
∣∣− ∣∣wHe(fi)

∣∣∣∣ (9)

3.1. The Conventional Probability-Constrained Optimization Method

The existing probability-constrained optimization methods all assume that the steering vector errors
are small enough to satisfy ∣∣wHS(fi, θs)

∣∣ > ∣∣wHe(fi)
∣∣ (10)

From the triangle inequality (9) it follows that∣∣wH(S(fi, θs) + e(f))
∣∣ ≥ ∣∣wHS(fi, θs)

∣∣− ∣∣wHe(fi)
∣∣ (11)

Following [17–19], the probability-constrained robust wideband beamformer can be written as⎧⎨
⎩

min
w

wHR̂xxw

s.t.Pr
{∣∣∣wH Ŝ(fi, θ0)

∣∣∣ ≥ 1
}
≥ p fi ∈ [fl, fh]

(12)

where p is a certain preselected probability value, and Pr{•} stands for the probability operator. Then
the constraint in (12) can be approximated as

Pr
{∣∣wHe(fi)

∣∣ ≤ ∣∣wHS(fi, θs)
∣∣− 1

} ≥ p fi ∈ [fl, fh] (13)

Let e(fi) be drawn from a complex circularly symmetric Gaussian distribution with zero mean
and covariance matrix Ce. Thus wH(S(fi, θs) + e(f)) has the complex Gaussian distribution with
wHS(fi, θs) mean and covariance matrix ‖C1/2

e w‖2. Since wH(e(f)) is circular zero mean complex
Gaussian, its real and imaginary parts are real independent identically distributed Gaussian.

Using the Rayleigh-distributed, the Eq. (13) can be written as

Pr
{∣∣wHe(fi)

∣∣ ≤ ∣∣wHS(fi, θs)
∣∣− 1

}
= 1 − exp

⎛
⎜⎝
(∣∣wHS(fi, θs)

∣∣− 1
)2∥∥∥C1/2

e w
∥∥∥2

⎞
⎟⎠ ≥ p (14)

Based on the distortion-less response constraint
∣∣wHS(fi, θs)

∣∣ ≥ 1, we can obtain√
wHCew ≤ 1√− ln(1 − p)

(∣∣wHS(fi, θs)
∣∣− 1

)
(15)

Observing that the cost function in (12) is unchanged when w undergoes an arbitrary phase rotation,
we can select w such that

Re
{
wHS(fi, θs)

} ≥ 0, Im
{
wHS(fi, θs)

}
= 0 (16)

By Eqs. (15) and (16), the corresponding problem of the probability-constrained is formulated as follows⎧⎨
⎩

min
w

wHR̂xxw

s.t.
√

wHCew ≤ 1√
− ln(1−p)

(
wHS(fi, θs) − 1

)
fi ∈ [fl, fh]

(17)
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Figure 1. A general wideband beamforming structure.

3.2. Proposed RB-PC

Without the small steering vector errors assumption in (10), we propose a novel robust wideband
beamformer based on probabilistic-constraint optimization which is called RB-PC.

Let us rewrite the constraint Pr
{∣∣∣wH Ŝ(fi, θ0)

∣∣∣ ≥ 1
}
≥ p in (12) and (13) as

Pr
{∣∣wHS(fi, θs)

∣∣− ∣∣wHe(fi)
∣∣ ≥ 1

}
+ Pr

{∣∣wHS(fi, θs)
∣∣− ∣∣wHe(fi)

∣∣ ≤ −1
} ≥ p (18)

Using Eq. (14), we can obtain

Pr
{∣∣wHS(fi, θs)

∣∣− ∣∣wHe(fi)
∣∣ ≥ 1

}
= Pr

{∣∣wHe(fi)
∣∣ ≤ ∣∣wHS(fi, θs)

∣∣− 1
}

= 1 − exp

(
−
(∣∣wHS(fi, θs)

∣∣− 1
)2

wHCew

)
(19)

Pr
{∣∣wHS(fi, θs)

∣∣− ∣∣wHe(fi)
∣∣ ≤ −1

}
= 1 − Pr

{∣∣wHe(fi)
∣∣ < ∣∣wHS(fi, θs)

∣∣+ 1
}

= exp

(
−
(∣∣wHS(fi, θs)

∣∣+ 1
)2

wHCew

)
(20)

Re
{
wHS(fi, θs)

} ≥ 0, Im
{
wHS(fi, θs)

}
= 0 (21)

Using (19)–(21), the problem of the proposed RB-PC can be approximated as

min
w

wHR̂xxw

s.t. Im
{
wHS(fi, θ0)

}
= 0

1 − exp
(
−(wHS(fi,θ0)−1)2

wHCew

)
+ exp

(
−(wHS(fi,θ0)+1)2

wHCew

)
≥ p fi ∈ [fl, fh]

(22)

Let us define a variable t as

t = p − exp

(
−
(
wHS(fi, θs) + 1

)2
wHCew

)
(23)
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Then the cost function in (22) can be written as

exp

(
−
(
wHS(fi, θs) − 1

)2
wHCew

)
≤ 1 − t (24)

Therefore, the problem of RB-PC can be written as

min
w

wHR̂xxw

s.t. Im
{
wHS(fi, θs)

}
= 0√

wHCew ≤ 1√
− ln(1−t)

(
wHS(fi, θs) − 1

)
fi ∈ [fl, fh]

(25)

The RB-PC method imposes a group of constraints on the chosen discrete frequency to prevent the
mismatched desired signal from being suppressed by the beamformer. However, the inconsistency of
the frequency response of the wideband beamformer may cause severe distortion to the mismatched
desired signal. Moreover, too many constraints can decrease the number of degrees of freedom. As a
result, the performance of interference cancellation may drop significantly.

3.3. Proposed RB-FI-PC

To improve the performance of RB-PC method, an efficient method called response variation (RV)
can be employed to control consistency of the frequency response over the frequency-angle range of
interest [16]. The parameter RV is given by

RV =
1

NfNΘ

Nf∑
i=1

NΘ∑
j=1

[S(fi, θj) − S(fr, θj)][S(fi, θj) − S(fr, θj)]H (26)

where N• denotes the number of the sampling points, Θ the angle range over which RV is considered,
and fr the reference frequency. If RV is small enough, the beamformer has a better consistent frequency
response over f and Θ.

The parameter RV can be transformed to

RV = wHCw (27)

where

C =
1

NBNΘ

NΘ∑
j=1

Nf∑
i=1

|S(fi, θj) − S(fr, θj)|2 (28)

We define a threshold γ to constraint the parameter RV

RV =
∥∥LH

1 w
∥∥2 ≤ γ (29)

where L1 = U1Λ
1/2
1 , with Λ1 being the eigenvalue matrix of C, and U1 being the corresponding

eigenvector matrix. Similar to (29), we can get

wHR̂xxw =
∥∥LH

2 w
∥∥2

(30)

Then the robust wideband beamformer with the RV constraint (RB-FI-PC) can be approximated
as

min
w

∥∥LH
2 w
∥∥2

s.t. Im
{
wHS(fr, θs)

}
= 0√

wHCew ≤ 1√
− ln(1−t)

(
wHS(fr, θ0) − 1

)
θs

‖w‖2 < γw∥∥LH
1 w
∥∥2 ≤ γ

(31)

where γw is a positive real-valued constant to avoid a large noise gain.
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3.4. Optimization Problem Solution Using Iterative SOCP

Since the solution processing of the RB-PC method is the same as the RB-FI-PC method, next we will
give the solution of RB-FI-PC by using iterative SOCP method.

Note that

t = p − exp

(
−
(
wHS(fr, θs) + 1

)2
wHCew

)
= 1 − p −

{
1 − exp

(
−
(
wHS(fr, θs) + 1

)2
wHCew

)}
< p (32)

For initialization of the iterative SOCP, we can choose t0 = p and obtain the initial weight vector w0

by the SOCP method.
Using the estimated weight vector wk−1 of (31) to update the variable tk in (23) as

tk = p − exp

(
−
(
wH

k−1S(fr, θs) + 1
)2

wH
k−1Cewk−1

)
(33)

To guarantee the estimated wk−1 always be in feasible regions, we should check the value of the function
Φ(wk−1) before the new iteration

Φ(wk−1) = exp

(
−
(
wH

k−1S(fr, θs) − 1
)2

wH
k−1Cewk−1

)
− exp

(
−
(
wH

k−1S(fr, θs) + 1
)2

wH
k−1Cewk−1

)
≤ 1 − p (34)

If wk−1 cannot satisfy the constraint in (34), we will employ the following measures.
For any constant β ≥ 1, we can get[

(βwk−1)HS(fr, θs) − 1
]2

(βwk−1)HCe(βwk−1)
≥
[
(βwk−1)HS(fr, θs) − β

]2
(βwk−1)HCe(βwk−1)

=

(
wH

k−1S(fr, θs) − 1
)2

wH
k−1Cewk−1

(35)

[
(βwk−1)HS(fr, θs) + 1

]2
(βwk−1)HCe(βwk−1)

≤
[
(βwk−1)HS(fr, θs) + β

]2
(βwk−1)HCe(βwk−1)

=

(
wH

k−1S(fr, θs) + 1
)2

wH
k−1Cewk−1

(36)

It is easy to observe that the function Φ(βwk−1) is a decreasing function on constant β. As a result,
there always exists a suitable β to make βwk−1 satisfy the constraint in (34). The constant β can be
directly obtained by some conventional one-dimension search schemes.

When the absolute value |tk−tk−1| drops below a certain pre-specified threshold, it is assumed
that the variable t has adapted optimally and the iterative procedure can stop. Otherwise the iterative
process should continue until it reaches convergence. Fortunately, it only needs 2 to 3 times of iterative
to achieve convergence according to numbers of experiments.

For an iterative algorithm, we need present the convergence proof of the optimization algorithm
based on iterative SOCP theory. First of all, let us prove that the sequence {tk} is a monotone non-
increasing sequence in the iteration process. For a known tk, the Eq. (31) is a convex optimization
problem. As a result, the optimum weight wk can be obtained.

Using the KKT condition in (31), we can obtain tk as

tk = 1 − exp

(
−
(
wH

k S(fr, θs)−1
)2

wH
k Cewk

)
(37)

On the other hand, we know that

tk+1 = p − exp

(
−
(
wH

k S(fr, θs) + 1
)2

wH
k Cewk

)
(38)

Therefore, we can get

tk+1−tk = exp

(
−
(
wH

k S(fr, θs)−1
)2

wH
k Cewk

)
− exp

(
−
(
wH

k S(fr, θs) + 1
)2

wH
k Cewk

)
− (1 − p) (39)
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Using Eq. (34), it is easy to find that tk+1−tk ≤ 0, so the sequence {tk} is a monotone non-increasing
sequence in the iteration process. Therefore, we can verify that when k → ∞, there always exits a lower
bound topt > 0 to make the sequence {tk} convergent. Furthermore, when k → ∞, the optimum weight
{wk} can also converge to the optimum value wopt.

So we can summarize the proposed algorithm as follows
Step 1. Selecting the initial value t0 = p, we can obtain the initial weight vector w0 by applying

the SOCP method in (31).
Step 2. For k > 1, if the k − 1th weight vector wk−1 is content with (34), the tk can be obtained

by (33). If not, let us choose the appropriate constant β ≥ 1 through one-dimension search algorithm,
and replace wk−1 by βwk−1 to obtain the updated tk. Then, the weight vector wk can be obtained by
(31).

Step 3. If the absolute value |tk−tk−1| drops below a certain pre-specified threshold, the variable t
and the weight vector w have adapted optimally and the iterative procedure can stop. Otherwise, the
iterative process should return to step 2 to continue until it reaches convergence.

4. SIMULATIONS

In our simulation, we compare the proposed RB-FI-PC beamformer in (31) with the RB-PC beamformer
in (25), the RB-WC beamformer and the RB-FI-WC beamformer in [15]. A total of 200 independent
Monte-Carlo runs are used to obtain each point.

They are performed based on a ULA with M = 15 and J = 20, the frequency range of interest
is between 800 MHz and 1300 MHz, the reference frequency is 1050 MHz, the number of the chosen
discrete frequencies is 18. The covariance matrix Ce can be approximated as σ2IMK [20], where σ2 is
0.4. Sample number is set to 512 in each simulation.

The actual desired signal comes from θ0 = 0
◦

with a signal-to-noise ratio (SNR) of 10 dB. Two
wideband interferences arrive from −30◦ and 45◦, respectively, with a signal-to-interference (SIR) of
−30 dB. In the following, the presumed look direction is θs = 4◦. For the RB -PC beamformer, p is
set to be 0.95; for the RB-FI-PC beamformer, the value of γ = 0.0007 and p = 0.95 is chosen; for the
RB-WC beamformer, ε is set to be 4.5; for the RB-FI-WC beamformer, ε = 3.1 and ς = 0.013 are
chosen.

The resultant beam pattern of the RB-PC and the RB-FI-PC is shown in Fig. 2(a) and Fig. 2(b),
respectively, which shows an effective robustness of the wideband beamformer against look direction

(a) The RB-PC (b) The RB-FI-PC

Figure 2. The resultant beam pattern of the wideband beamformer.
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errors and forms two nulls at −30◦ and 45◦ to suppress two interfering signals. Furthermore, the RB-
FI-PC beamformer has a better performance in terms of frequency invariant property over the RV angle
range, response variation control and interference suppression.

Figure 3 shows the output SINR versus the probability p for the wideband beamformers. Generally,
the probability p cannot smaller than 0.9. To observe the change trend of output SINR with the varied
p, we expand the range of p to 0.1∼ 1. With the increasing value of p, we can see that the output SINRs
for both proposed beamformers improve gradually. When the probability p ≥ 0.9, the output SINRs of
proposed RB-FI-PC method will stay higher than 20 dB with little fluctuation.

Let us set constraint parameters as p = 0.95, σ2 ∈ [0.1, 1] and γ ∈ [0.0001, 0.001]. Fig. 4(a) shows
the output SINR versus the parameter σ2 of the RB-PC method. Since the larger σ2 denotes the larger
steering vector mismatch, the output SINR performance decreases drastically with the increasing σ2 in
[0.4 ∼ 1]. However, when σ2 ∈ [0.1 ∼ 0.4], the larger σ2 brings the better output SINR. Because too
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many constraints narrowed the scope of optimal solution set, the appropriate increase of σ2 is equivalent
to enlarge the set of optimal solutions, thus the output performance of SINR increased. Fig. 4(b) shows
the output SINR versus the parameter σ2 of the RB-FI-PC method. Following the increase of σ2, in
order to obtain the better SINR performance, the selection range of parameter γ is smaller. When the
other conditions remain unchanged, the larger σ2 can decrease the output SINR performance. Therefore,
we should select those parameters reasonably to achieve the best output performance.

Figure 5 shows the output SINR versus the input SNR for the RB-FI-PC, the RB-FI-WC, the
RB-PC, and the RB-WC beamformer. Obviously, the RB-FI-PC has obtained the highest output SINR
than the other beamformers for the input SNRs in [−2 ∼ 20] dB. The worst-case mismatch of the
RB-FI-WC and RB-WC beamformer may actually seldom occur in practical applications, so the over
conservative constraint can degrade the output performance. However, when the input SNRs is lower
than −2 dB, the output SINR of RB-FI-WC is slightly higher than the proposed RB-FI-PC due to the
worse initial t of RB-FI-PC in the low SNR condition.

In the last, we study their performance in terms of output SINR versus look direction error, and
the result is shown in Fig. 6. It can be seen that the RB-FI-PC beamformer has the best robustness
than others against the look direction error. For large look direction errors, the performance of the
RB-PC beamformer decreases significantly due to the extra consumption of degrees of freedom caused
by the frequency response inconsistency.
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an angle estimation error of 4◦.
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5. CONCLUSION

A novel robust wideband beamformer with frequency invariance constraints is proposed based on the
probability-constrained optimization. By employing the RV element, we can control the frequency
invariant property of the adaptive wideband beamformer in the look direction region over the frequency
range of interest. The optimum coefficient vector is obtained by a proposed iterative SOCP method
without the small steering vector errors assumption. Simulation results have validated a superior
performance of the proposed wideband beamformer as compared to robust wideband beamformer based
on worst-case performance optimization.
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