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Mutual Inductance Calculation between Misalignment Coils
for Wireless Power Transfer of Energy

Slobodan Babic1, *, José Martinez2, Cevdet Akyel3, and Bojan Babic4

Abstract—In this paper we present a detailed theoretical analysis of lateral and angular misalignment
effects in RF coils. Radio-frequency (RF) coils are used extensively in the design of implantable devices
for transdermal power and data transmission. A design procedure is established to maximize coil
coupling for a given configuration to reduce the effects of misalignment on transmission efficiency.
Formulas are derived for the mutual inductance between all possible coil configurations including the
coils of cross section, thin solenoids, pancakes and filamentary circular coils whose axes are laterally
and angularly displaced. Coils are in air. In this approach we used the filament method and the mutual
inductance between filamentary circular coils placed in any desired position. We completely describe all
mathematical procedures to define coil positions that lead to relatively easy method for calculating the
mutual inductance between previously mentioned coils. The practical coils in implantable devices fall
into two categories: disk coils (pancakes) and solenoid coils. From the general approach for calculating
the mutual inductance between coils of rectangular cross section with lateral and angular misalignments
the mutual inductance between misalignment solenoids and disks will be calculated easily and accurately.

1. INTRODUCTION

Many contributions have been made in literature in relation to the problem of mutual inductance
calculation for coaxial circular coils [1–4]. These contributions have been based on the application
of Maxwell’s formula, Neumann’s formula, and the Biot Savart law. The calculation of the mutual
inductance of inclined circular coils is of fundamental practical interests to electrical engineers and
physicists. A survey of past literature shows that the greater part of this work was concentrated on
the mutual induction calculation between an inclined filamentary circular coil and a thin wall solenoid
or between two inclined thin wall solenoids. The mutual inductance of such configurations has been
obtained over series expressed by Legendre polynomials [1–3]. Recently, a considerable work has been
done in the calculation of the mutual inductance between circular coils with parallel and inclined axes
using improved Grover’s formulas elliptic integrals, Bessel and Strouve functions [5–13]. The problem
can be directly tackled using purely numerical methods such as finite and boundary element methods.
However, sometimes analytical or semi-analytical methods might be possible, even though the problem
is purely 3-D because coil axes can be parallel or inclined. In this paper, we will study the most
general case for calculating the mutual inductance between coils of rectangular cross section placed
in any desired positions. We use the filament method [5] and the formula for the mutual inductance
between filamentary circular coils placed in any desired position [6]. The presented method covers all
possible coil combinations either with inclined or parallel axes. This method is the most general then
that one given in [5] in which one has to take into account center’s positions of secondary filamentary
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coils replacing the real secondary coil of rectangular cross section. In this case Grover’s formula for
inclined filamentary circular coils has to be modified. With the general formula for two filamentary
inclined coils [6], we cover uniquely all inclined coils either with rectangular cross section or inclined
coils with negligible cross section. The presented approach can be successfully used in applications such
as transcutaneous energy transfer for medical implants, wireless power transfer through human skin
based on the resonant techniques, inductive power pickup systems, RFID technology, PEEC modeling,
magnetically controllable devices and sensors, wireless charging pads for portable electronic products
such as mobile phones and iPods [14–24].

2. BASIC EXPRESSIONS

In [6] we calculated the mutual inductance between inclined filamentary circular coils placed in any
desired position (see Figure 1),

M =
μ0RS

π

2π∫

0

[p1 cos φ + p2 sin φ + p3] Ψ(k)
k
√

V 3
0

dφ (1)

where Rs and Rp are the radius of secondary (small coil) and primary (large) coils, respectively. Here
after we assume the primary coil is located in the plane “z = 0” centered at the origin (0, 0, 0), while
Rs is placed in the inclined plane, whose general equation is λ ≡ ax + by + cz centered at (xc, yc, zc),
being a, b and c the coefficients of the plane’s transformations. The constant μ0 = 4π × 10−7 H/m is
the permeability of free space (vacuum) and the coefficients: p1 = γc
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the argument K(k) and E(k) are the complete elliptic integrals of the first and second
kind [25, 26], respectively. Symbols:
V 2

0 = β2+γ2+α2[l1 cos2 φ+l2 sin2 φ+l3 sin 2φ]+2α [q1 cos φ+q2 sin φ], whose parameters are: l1=1− b2c2

l2L2 ,
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l2 , l3 = abc
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l and A0=1+α2 +β2 + γ2 + δ2 +2α[p4 cos φ+ p5 sin φ] with:

δ = zc
Rp

, p4 = γl2−βa−δbc
lL , and p5 = δa−βc

l .

Equation (1) describes the most general case, however there is one no contemplated and that is when
the a secondary coil is aligned with the y-axis with normal N (0, 1, 0). In this case a = c = 0 and
alternative definitions for above parameters can be found at the limit l → 0, i.e., [6]:

p1 = 0, p2 = −γ, p3 = 0, p4 = β, p5 = δ

l1 = 1, l2 = 0, l3 = 0, q1 = β, q2 = 0
V 2

0 = β2 + γ2 + α2 cos2 φ + 2αq1 cos φ

Figure 1. Filamentary circular coils with angular and lateral misalignment (most general case).
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A0 = 1 + α2 + β2 + γ2 + δ2 + 2α [p4 cos φ+p5 sinφ]

For this singular case it is also possible to find other expressions for previously mentioned coefficients
which lead to the same results [6]. Note that “λ” defines the plane where the secondary coil is in
three dimensional space with respect to the primary coil therefore its inclusion crucial for the mutual
inductance calculations.

3. CALCULATION METHOD

For the purpose of computation the well-known filament method [5] is used. Our group recently use
this approach for calculation of the self- and mutual-inductance to design actual coaxial coils with good
experimental agreements [27]. Table 1 summarizes the notation used to distinguish the primary coil
(larger coil) with respect to the secondary coil (smaller coil). The center of the primary coil is positioned
at the point O (0; 0; 0) and the plane z = 0 while the secondary coil is positioned at the point C in the
plane λ as depicted in Figure 1.

If coils are such the packing factors alone the axial and azimuth direction are small enough [27],
then the electrical currents in these coils can be considered uniformly distributed over the whole cross
sections on the winding. Using the well-known filamentary approach the current density in the coil
cross section is assumed to be uniform, so that the filament currents are equal for each coil. This means
that it is possible to take into consideration the pair of filamentary unit turn coils for which the mutual
inductance is given by (1). Therefore, the fine dimension of the coil can be discretized into subdivisions
along the x- and y-axis, respectively. Figure 2 illustrates the discretization of the primary coil into
(2N+1)(2S + 1) cells while the secondary coil into (2n + 1)(2m + 1) cells. The coil’s centers cuts the
axial length aa (primary coil) ba (secondary coil) into two equal fractions as depicted in Figure 2.

Using the same procedures given in [5, 6] the mutual inductance can be expressed in the following
form:

M = N1N2

S∑
g=−S

N∑
h=−N

m∑
p=−m

n∑
q=−n

M(g, h, p, q)
(2S + 1)(2N + 1)(2m + 1)(2n + 1)

(2)

Table 1. Notation and location of coils.

Coil Inner radius Outer radius Axial length Radial length Center Plane
Primary R1 R2 aa R2 − R1 O (0, 0, 0) z = 0

Secondary R3 R4 ba R4 − R3 C (xC ; yC ; zC) Λ

Figure 2. Discretization of the finite dimensions of two circular coils of rectangular cross section.
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where N1 and N2 are the total number of turns for the primary and secondary coil, respectively. And
inner coefficient of the series given by (1), i.e.,

M(g, h, p, q) =
μ0RS(q)

π

2π∫
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V 3
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with dependence on g, h, p and q as given below:
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Table 2. Formulas of mutual inductance for typical configurations of inclined coils.

Configurations Simplifications Equation (2)

1. A thick circular coil of

rectangular cross section

and a filamentary circular

coil with inclined axis

N2 = 1; hs = 0; ba = 0

and RS(q) = RS

M = N1

∑S
g=−S

N∑
h=−N

M(g, h)

(2S + 1)(2N + 1)

2. A thick circular coil of

rectangular cross section

and an inclined thin disk

ba = 0 M = N1N2

S∑
g=−S

N∑
h=−N

n∑
q=−n

M(g, h, q)

(2S + 1)(2N + 1)(2n + 1)

3. A circular coil and an

inclined thin wall solenoid
hS = 0; RS(q) = RS M = N1N2
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g=−S

N∑
h=−N

m∑
p=−m

M(g, h, p)

(2S + 1)(2N + 1)(2m + 1)

4. Two thin inclined

wall solenoids

hP = hS = 0;

RP (h) = RP ; RS(q) = RS

M = N1N2

S∑
g=−S

m∑
p=−m

M(g, p)

(2S + 1)(2m + 1)

5. A thin solenoid and an

inclined thin disk coil

hP = 0; ba = 0;

RP (h) = RP

M = N1N2

S∑
g=−S

n∑
q=−n

M(g, q)

(2S + 1)(2n + 1)

6. A thin solenoid and

an inclined filamentary

circular coil

N2=1; hP = hS = 0;

ba = 0; RP (h) = RP ;

RS(q) = RS

M =
S∑

g=−S

M(g)

(2S + 1)

7. Two thin inclined disks aa = ba = 0 M = N1N2

N∑
h=−N

n∑
q=−n

M(h, q)

(2N+1)(2n + 1)

8. A thin disk and an

inclined filamentary coil

N2 = 1; aa = ba = 0;

hS = 0; RS(q) = RS

M =
N∑

h=−N

M(h)

(2N + 1)



Progress In Electromagnetics Research M, Vol. 38, 2014 95

Note that (2) has the same singularity as in (1) in the case a = c = l = 0, therefore coefficients are
likewise determined using the limit l → 0 as pointed out earlier. There are number of configurations
that can be extracted from (2). Table 2 summarizes most probable combinations of circular coils with
rectangular cross sections (e.g., disk coils, thin wall solenoids, filamentary, etc.) engineers may have in
designing [15–24].

4. EXAMPLES

In the following examples we give some comparative results obtained by the presented method and
those obtained in literature. As we previously said the practical coils in implantable devices fall into
two categories: disk coils (pancakes) and solenoid coils. In the following examples we will treat them
as well as their combinations with filamentary circular coils.

4.1. Example 1

Two reactance coils of rectangular cross section with parallel axes with coil characteristics (see for
instance [9, 11]): RP = 7.8232 cm; RS = 11.7729 cm; la = 14.2748 cm; la = 2.413 cm; hP = 1.397 cm;
hS = 4.1529 cm; c = 7.366 cm; d = 30.988 cm. The numbers of turns are N1 = 1142 and N2 = 516. c is
is the axial displacement of the centers of the two coils and d is the relative perpendicular displacement
of the axes of two coils. Calculate the mutual inductance between reactance coils. Table 3 summarizes
the dimensions according to the present method. The mutual inductance calculation the formulae to
be applied is the general case according to (2).

Table 3. Physical dimension and localization of coils of Example 1.

Coil N1(2) R1(3) (cm) R2(4) (cm) aa(ba) (cm) Center (cm) Plane position (cm)

Primary coil 1142 7.1247 8.5217 14.2748 O (0, 0, 0) z = 0

Secondary coil 516 9.69645 13.84935 2.413 C (0, 30.988, 7.366) z = 7.366

The mutual inductance for this configuration was numerically computed, using Matematica
software, by Conway [11]:

M = −1.42256038µH.

Using the method reported by Akyel et al. [7] the mutual inductance for this system was:

M = −1.42262284µH.

If we assume that the total number of subdivisions of both coils is 12 (i.e., N = S = n = m = 12), the
computation using (2) after 291 s yielded:

M = −1.42262284µH.

The agreement between these two computations is good. The small relative error (∼10−5) between the
above values is not significant for experimental determination of the mutual inductance. The accuracy
of cutting edge technologies for impedance measurements does not exceed 0.08% (e.g., Agilent 4294A
Precision Impedance Analyzer Technologies Inc., USA).

In order to assess the impact of number of subdivisions instead of 12 we use 20 (e.g., N = S = n =
m = 20). And the mutual inductance was recalculated yielding to:

M = −1.422583607µH.

However, the computational time increases from 291 s to 32.3 min. The absolute discrepancy between
these values was 0.0028%. As pointed earlier the latter discrepancy exceeds the experimental accuracy;
therefore increasing the number of subdivisions does not impact accuracy but increase undesirably the
computational time. One conclusion we can draw from this example is that there is an optimum number
of subdivisions to reduce the computational time of the mutual inductance of actual coils.
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Table 4. Physical dimensions and localization of Example 2.

Coil N1(2) RP (cm) RS (cm) aa(ba) (cm) Center (cm) Plane position (cm)
Primary coil 120 7 12 O (0, 0, 0) z = 0

Secondary coil 60 5 4 C (0, 0, 0) sin α · y + cos α · z = 0

4.2. Example 2

Next example the calculation of the mutual inductance of two solenoids reported by Snow was
considered [2]. One solenoid has radius 6 cm, length 12 cm, and 10 turns, while the other 5 cm, 4 cm,
15 turns, respectively. Their axes were inclined at an angle whose cosine is 0.8. Center of the second
solenoid is in the middle plane of the primary solenoid. This is the combination of two thin inclined
wall solenoids that was described in Table 2 (see configuration 4). The physical dimensions of solenoids
are given in Table 4.

The computation of the mutual inductance (see configuration 4 in Table 2) after 257 s considering
S = m = 300 gave:

M = 336.8474µH.

In [2] Snow obtained the mutual inductance for this system equal to:

M = 336.8473µH.

In an early study the mutual inductance was obtained [5] yielding to:

M = 336.8483µH,

and using Fast-Henry software gave [14]:

M = 337.4905µH.

The mutual inductance of this configuration (see configuration 4 in Table 2) was recalculated and yielded
to:

M = 336.8489µH

Once again the time was dropped to 19s when the number of subdivisions was S = m = 80 instead of
K = m = 300. The absolute discrepancy between these values was small (∼0.0001%).

In an attempt to reduce even further the computational time the number of subdivision was set to
S = m = 30. The calculation after 5 s for this combination yielded to:

M = 336.8539µH,

Yet, about 0.001% discrepancy between the values was observed. Decreasing further the number of
subdivision was not warranted without deteriorating accuracy. Therefore for this type of configuration
it is recommended set the number of subdivision to 30.

4.3. Example 3

In this example let’s consider a solenoid (radius 6 cm, length 12 cm, number of turns 120) and a circular
filament coil of radius 5 cm. The latter is centered at different points on the axis of the solenoid with
different angles of inclination. Axes are inclined at an angle whose cosine is 0.4. Center of the circle on
the axis of the solenoid is 6 cm outside the end plane as described in [2]. For this case the computation
of the mutual inductance is given by the configuration 6 on Table 2. Physical dimension and localization
of the filament coil and solenoid are the same of Table 4 with the exception N2 and ba are not applicable
and the center of the origin of coordinates for the secondary coil C (0, 0, 0.12) and localized in same
plane as before but at z = 0.12 cm; with cos α = 0.4, (a = 0; b = sin α; c = cos α).

In our first computation the number of subdivision was set to S = 1700, then after 2.1 s yields to:

M = 0.5735µH.
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The mutual inductance obtained by Snow [2] was,

M = 0.5735µH.

Using one of our earliest approaches for the calculation of the mutual inductance [5] results,

M = 0.5735µH.

The recalculation of the mutual inductance but this time setting S = 30, then after 0.1 s gave:

M = 0.5734µH

A discrepancy between these previous computation of 0.0173% let us to conclude S = 30 is a good
approximation for the discretization of the solenoid involved in this example.

4.4. Example 4

In this example we treat two disk coils (pancakes) where the centers of filamentary coils that replace the
second inclined disc are on the axis of the primary coil [5]. Calculate the mutual inductance between
these pancakes when their axes are inclined at an angle whose cosine is 0.9. This is the combination of
two thin inclined disks with N1 and N2 turns as described in Table 2 (see configuration 7). Physical
dimension and localization of pancakes are depicted in Table 5.

Table 5. Physical dimension and localization of coils of Example 4.

Coil N1(2) R1(3) (cm) R2(4) (cm) aa(ba) (cm) Center (cm) Plane position (cm)

Primary coil 200 0.4 0.6 0 O(0,0,0) z = 0

Secondary coil 100 0.15 0.25 0 C (0, 0, 0) sin α · x + cos α · z

Setting the total number of subdivision to N = n = 60 the mutual inductance gave:

M = 98.6965µH.

In [5] the mutual inductance has been obtained by the presented approach,

M = 98.6965µH,

and also by the software Fast-Henry [14],

M = 97.6160µH

Once again the above results are in good agreement.

4.5. Example 5

Two annular disk coils have each an inner radius of 20 cm and an outer radius 50 cm. They each have
100 turns and lie in parallel planes of constant z = 25 cm. The distance between axes is 10 cm. Physical
dimensions and localizations of these disks are depicted in Table 6. To calculate the mutual inductance
between these disks we use the mutual inductance of configuration 7 (see Table 2).

Table 6. Physical dimension and localization of coils of Example 5.

Coil N1(2) R1(3) (cm) R2(4) (cm) aa(ba) (cm) Center (cm) Plane position (cm)

Primary coil 100 20 50 0 O (0, 0, 0) z = 0

Secondary coil 100 20 50 0 C (10, 0, 25) z = 25 cm

We compare the accuracy of the presented method for different number of subdivisions with an
independent exact approach for thin coils with parallel axes based on Bessel functions [13].

In [13], Conway obtained by his approach the mutual inductance between previously mentioned
disks,

M = 2.278193661584031µH
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In his approach using the software Mathematica, Conway gave 16 significant figures. We will use this
result to test the accuracy and the computational time for different number of subdivisions of presented
method in this paper. The mutual inductance calculation presented in this paper was made in Matlab
and Mathematica implementation.

In Table 7 we give the mutual inductance calculation for different number of subdivisions,
computational time and discrepancy regarding to Conway’s result. From Table 7 we can see that all
results are in a very good agreement with the result given in [13]. The significant figures were bolded to
compare results of the presented approach with the result given in [13]. Also we can see that increasing
in the number of subdivisions of disks doesn’t give considerable accuracy but the computational time
increases considerably. Thus, for practical engineering applications we don’t need a lot of subdivisions
to better approximate coils. It is enough to take 4, 8 or 16 disks’ subdivisions to have a very good
accuracy with minimum computational time. The same conclusion can be used in the treatment of
the mutual inductance between all types of coils treated in this paper. All presented examples for
these coils show very accurate calculation of the mutual inductance with reduced computational time.
Thus the presented approach can be considered as the simplest method in the calculation of the mutual
inductance between real circular coils under lateral and angular misalignments.

The effect of the total number of subdivisions upon accuracy is better understood to the light of
Figure 3. The data plotted corresponds to that of Table 7. On the left y-axis the mutual inductance was
plotted while on the right y-axis the discrepancy. As mentioned earlier the experimental uncertainty on
measurements does not exceed 0.08%. In Figure 3 at (N = n = 10) the discrepancy between calculated
values is 0.075% and therefore it is the optimum number of subdivisions for this arrangement. Here,
the optimum value means to attain a desired accuracy, within a reasonable computational time, for a
minimum number of cell subdivisions. This fact becomes clear from Figure 4 where the total number
of subdivisions was plotted vs the computational time as well as the mutual inductance. Likewise, the
data is the one given on Table 7.

Figure 4 illustrates the monotonically increasing dependence of the computational time with
respect to number of subdivisions. This increase is exponential and therefore the optimum number
of subdivisions is crucial to optimize the time and microprocessor resources. The former is important in
the case the corrections of misalignments are done in real time. In this case the control is via closed-loop
and feedback type of technique where decisions whether or not corrections need to be made are based
on previous computation stages. In this case the computational time is critical and may decide the
sampling rate of this application.

Table 7. Comparison of computational efficiency.

N/n All M — This work (µH) Computational Time (Seconds) Discrepancy (%)
4 2.280116287235428 0.077170 −0.08439255
8 2.278731101248461 0.228908 −0.02359060
16 2.278336179839532 0.856784 −0.00625576
32 2.278230388412927 3.238267 −0.00161210
64 2.278202985704301 13.139142 −0.00093241
100 2.278197502109049 31.422768 −0.00016858
150 2.278195374152472 76.183236 −0.00009130
200 2.278194626504623 131.765031 −0.00004235
250 2.278194279749312 197.192871 −0.00002713
300 2.278194091151046 288.381211 −0.00001886
350 2.278193977334336 379.562336 −0.00001386
400 2.278193903416549 493.767600 −0.00001062
450 2.278193852714596 649.236990 −0.00000839
500 2.278193816434139 887.394346 −0.00000680
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4.6. Example 6

Let’s take into consideration wireless domino-resonator systems with non-coaxial resonators [23, 24].
The configuration of a circular domino-resonator is the system with n identical circular resonators in
which all the centers of the resonators are placed on a circular path with radius R = 0.6 m and the
center of each resonator is placed in a same plane with the center of the circular path (See Figure 5). If
we consider resonators as simple circular coils of the radius RR = 0.5 m calculate the mutual inductance
between two adjacent resonators for n = 2; 3; 4; 5; 6; 7 and 8.

In Table 8 we give values of the mutual inductance for different number of resonators. From
this table we can see that the mutual inductance between two adjacent resonator increases that was
expected [23, 24].

Figure 3. Dependence of number of subdivision
on the computational time.

Figure 4. Computational time with respect to
total number of subdivisions.
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Figure 5. Configuration of a circular domino-resonator system with 8 identical circular resonators.
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Table 8. Mutual inductance between two adjacent resonator (Equation (1)).

n Θ C (xC , yC , zC) (m) {a; b; c} M (nH)
2 π C (0; 1.2; 0) {0; 0; −1} 62.90315288
3 2π/3 C (0; 0.9; 0.6 · 0.30.5) {0; 30.5; −1} 94.39741981
4 π/2 C (0; 0.6; 0.6) {0; 1; 0} 149.3340559
5 2π/5 C (0; 0.6 · (1 − cos 2π/5); 0.6 · sin 2π/5) {0; tan 2π/5; 1} 209.9549206
6 π/3 C (0; 0.3; 0.6 · 0.30.5) {0; 30.5; 1} 270.4709781
7 2π/7 C (0; 0.6 · (1 − cos 2π/7); 0.6 · sin 2π/7) {0; tan 2π/7; 1} 329.4709781
8 π/4 C (0; 0.3 (2 − 20.5); 0.3 · 20.5) {0; 1; 1} 385.2920506

5. CONCLUSION

This paper presents a consistent analytical derivation of the mutual inductance for real coils under
lateral and angular misalignments. The mutual inductance between circular coils of rectangular cross
section placed in any desired position is obtained by simple integral whose kernel function is the
combination of the complete elliptic integrals of the first and second kind. This method is suitable
for any combinations of inclined coils such as coils of rectangular cross section, disk coils, solenoids
and filamentary circular coils. Also, the presented approach is suitable either for large coils or for
micro coils that was confirmed by several examples. It is notable that the presented method gives high
accuracy for reasonable computational time so that it can be useful tool for engineers and physicists
which do not have to use complicated numerical methods to calculate the mutual inductance between
inclined circular coils of different shapes that are demonstrated in this paper. From presented examples
one can conclude that an easy and suitable method for calculating the mutual inductance between
real coils which are positioned in any desired position (angular and lateral misalignments) has been
given. By our knowledge the presented method is the simplest known method in the calculation of the
mutual inductance between circular coils under lateral and angular misalignments. This general method
includes also either lateral or angular misalignment as the special cases.
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