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Electromagnetic Modeling of Coupled Carbon Nanotube Dipole
Antennas Based on Integral Equations System

Mourad Aidi* and Taoufik Aguili

Abstract—Fundamental properties of carbon nanotube antenna are firstly investigated to predict the
antenna bundle response. The carbon nanotube effects are mathematically introduced via a quantum
mechanical conductivity. This paper presents a new formulation based on integral equations system to
study the coupled carbon nanotube antennas. The proposed integral equations system is numerically
solved by the moments method. Each dipole antenna is excited at its center by a gap voltage source. The
aim of the developed method is to investigate the antennas interaction effects for any coupling distance.
The obtained input impedances, the current distributions and the antenna radiation patterns are in
agreement with those obtained by the effective conductivity method or by the array factor method,
according to the coupling distances.

1. INTRODUCTION

Carbon nanotubes (CNT) are considered as one of the carbon’s allotropes, formed by a rolled-up sheet of
graphene. They were discovered by Ijima in 1991 [1]. There are two kinds of CNT; Single Walled Carbon
Nanotubes (SWCNT) and Multiwalled Carbon Nanotubes (MWCNT), depending on graphene’s rolled-
up sheet number [2]. We focus here on SWCNT. Because the crystal structure of SWCNT is strongly
related to that of graphene, the tubes are typically identified using graphene’s lattice vectors [3].

Depending on the structural orientation of SWCNT, determined by the lattice bases vector, there’s
three groups: armchair, zigzag or chiral SWCNT. Electrical and mechanical properties are strongly
related to the SWCNT structural orientation: armchair SWCNT present a metallic behavior, while
zigzag and chiral SWCNT can exhibit both metallic or semiconducting properties. MWCNT all exhibit
metallic behavior [3].

In previous modeling works [4], CNT was considered as an antenna, but its potential performances
have never been discussed. Recently, SWCNTs are synthesized with a length near to the microwave in
free space, and by the way, this motivation leads to explore their properties as antenna. From other
side, CNT can has metallic properties and may grow until have a length in centimeter order. In the
range of centimeter and millimeter applications, CNT antennas are originally proposed by Burke [5].

In [5], CNT dipole antennas are modeled using a transmission line approach, so the following
transmission line parameters; kinetic inductance LK , quantum capacitance CQ and quantum resistance
R are determined using the electrons fluid model.

Another common approach is to simulate electromagnetic wave propagation along CNT based on
these electrodynamics properties [6]. This approach presents a macroscopic view for interactions of high
frequency electromagnetic field with CNTs. However, the radiation efficiency of CNT antenna is very
low, as a result of the slow wave surface which decreases the radiation resistance [7]. On the other hand,
if we use a single CNT as dipole antenna, the problem of impedance mismatch is strongly posed. In
fact, the characteristic impedance of the CNT antenna (10–100 kΩ) is greater than each of the feeding
line (50 Ω). Consequently, the bundle of CNT has been proposed to solve this problem [7].
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In previous works CNT antennas bundle is studied based on effective axial surface conductivity for
low coupling distances [8, 9]. In terahertz and infrared frequency range, the radiation characteristics
of CNT dipole antenna arrays have been investigated by CST MICROWAVE STUDIO. It was shown
that, N ×N antenna arrays have a higher radiation efficiency than single CNT dipole antenna [10, 11].
For the CNT antennas array without coupling, the array factor approach is used to investigate the
antenna radiation pattern. In this paper, some fundamental properties of finite length coupled CNT
dipole antennas are rigorously described using a proposed system of N coupled integral equations. The
input impedances, current distributions and the radiation antenna patterns are presented and discussed
for different coupling distances. For validity purpose, obtained results are compared to those obtained
by the array factor method or effective conductivity method according to the coupling distance. This
paper is organized as following: in Section 2 we are interested in studying the performance of a single
CNT dipole antenna. A comparison has been made to a conventional thin wire antenna of same size and
shape. Section 3 presents an electromagnetic formulation based on a system of N integral equations to
accurately describe the CNT dipole antenna coupling. The proposed formulation has been applied for
two identical coupled CNT dipole antennas. In Section 4, we conclude this work.

2. CURRENT DISTRIBUTION FOR CNT DIPOLE ANTENNA

In this section, we are interested to investigate and discuss the CNT dipole antenna properties. In
this purpose, dipole antenna is modeled as a finite cylinder excited at its center by a gap-slice with
unit voltage. Figure 1 shows the antenna structure, where L and a are the antenna length and radius
respectively.

2.1. Dynamic Conductivity and Integral Equation for CNT Dipole Antenna

Dynamic conductivity of CNT represents a macroscopic quantity relating to the flow electron
perturbation along the CNT, due to the temporal variation of the applied electric field along it [12].
Dynamic conductivity of CNT may be calculated using the Boltzmann kinetic equation. For a small
radius of CNT, the dynamic conductivity can be expressed as [6, 13]:

σcn(w) = σzz(w) � −j 2e2vF
π2�a(w − jν)

(1)

where e is the electron charge value, ν is the relaxation electron frequency for CNT (equal to
3.10−12 s−1), a is the CNT radius, � the reduced Planck constant and here we use the Fermi velocity as
vF = 9, 71.105 m/s.

Figure 2 shows the dynamic conductivity variation as a function of frequency for different radius
values of CNT. The dynamic conductivity increases when the radius decreases which shows the
important conductivity of CNT with small radius.
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Figure 1. CNT model of cylindrical antenna.
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frequency for different CNT radius values.
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This equivalent surface conductivity is characterized by a complex value with a negative imaginary
part. This latter one part represents an inductive effect that introduces a deceleration in the
electromagnetic wave velocity along the CNT, which leads to reduce the wavelength. This property
is so important in the passive RF devices and antennas.

CNT antenna is modeled as a finite conductive cylinder excited at its center by a slice-gap source
of unit voltage. We use the dynamic conductivity to include the electrical properties of the CNT in the
mathematic formulation. Then, the surface impedance per unit length of a SWCNT can be determined
as:

Zs =
1

2πaσcn(w)
=

π�v

4e2vF
+ j

π�

4e2vF
w = RQ + jLKw (2)

This electromagnetic formulation may be presented in different forms, as well as finite elements,
finite difference or as an integral equation. However, electric field integral equation is the appropriate
method, for a simple wire antenna.

In the case of simple CNT dipole antenna oriented along the z axis which is shown in Figure 1, the
electric field at the surface of the antenna may be written as:

Ein + Er − ZsI = 0 (3)

Er is the radiated electrical field given by [6]:

Erz =
1

j4πwε

(
k2 +

∂2

∂z2

)∫ L/2

−L/2

e−jk
√

(z−z′)2+a2√
(z − z′)2 + a2

I(z′)dz′ (4)

where L is the antenna length and a is the antenna radius which will be in the order of nanometer.
By substituting the radiated electrical field expression, we have the Pocklington integral equation:(

k2 +
∂2

∂z2

)∫ L/2

−L/2

e−jk
√

(z−z′)2+a2√
(z − z′)2 + a2

I
(
z′
)
dz′ = j4πwε

(
ZsI(z) − Ein

z (z)
)

(5)

Finally, we can convert the integral Equation (5) into a Hallen’s integral equation, by writing [6]:(
k2 +

∂2

∂z2

)∫ L/2

−L/2
F

(
z − z′

)
I
(
z′
)
dz′ = −j4πwεEin

z (z) (6)

where the function F is given by [6]:

F
(
z − z′

)
=
e−jk

√
(z−z′)2+a2√

(z − z′)2 + a2
+
wε

aσ

e−jk|z−z′|

k
(7)

This integral equation is numerically solved using the MoM method. The antenna is divided into
N = 2M + 1 segments of length Δ = L

N , and Equation (6) is evaluated used the delta function basis for
the small sample of antenna as: (

k2 +
∂2

∂z2

)
V (zn) = 2kEin

z (zn) (8)

where:

V (zn) =
jη

2π

∫ L/2

−L/2
F

(
zn − z′

)
I
(
z′
)
dz′ (9)

And η is the characteristic impedance of free space, that is expressed by: η =
√

μ
ε .

We applied the finite difference approximation to the second derivative in z, which allows to rewrite
Equation (8) as following:

k2Vn +
Vn+1 − 2Vn + Vn−1

Δ2
= 2kEin

n (10)

We denote that: V (zn) = Vn and Ein(zn) = Ein
n .
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Then we have:
Vn+1 − 2αVn + Vn+1 = γEn (11)

where: α = 1 − k2Δ2

2 ; γ = 2kΔ2 and −(M − 1) ≤ n ≤M − 1.
We can convert (11) in the corresponding matrix equation, as it’s shown in the matrix below for

M = 3. ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 −2α 1 0 0 0 0
0 1 −2α 1 0 0 0
0 0 1 −2α 1 0 0
0 0 0 1 −2α 1 0
0 0 0 0 1 −2α 1
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V−3

V−2

V−1

V0

V1

V2

V3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= γ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E−3

E−2

E−1

E0

E1

E2

E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

We can write (12) as: AV = γδE where δ is the projection matrix. We note that P is its complement
P = Id − δ, which enforce the edges conditions (I±M = 0).

PI = (Id − δ) I = 0 (13)

The current distribution along the CNT is expressed as the sum of the samples current Im using a
basis function B(z):

I(z) =
M∑

m=−M
ImB(z − zm) (14)

Then Equation (9) is rewritten as following:

V (zn) =
M∑

m=−M
Im

jη

2π

∫ L/2

−L/2
F

(
zn − z′

)
B

(
z′
)
dz =

M∑
m=−M

ZnmIm (15)

So the impedance matrix is given by:

Znm =
jη

2π

∫ L/2

−L/2
F

(
zn − z′

)
B

(
z′
)
dz (16)

Therefore, we deduce the current vector as: I = δA−1Z−1δE.
Using the current distribution found by MoM method, we compute the input impedance as:

Zin = U0
I0

.
The current distribution in the CNT antenna can be considered in one dimension, and its time

variation will generate a radiated electrical far field in the surrounding free space [4]:

Eθ = iη
ke−jkr

4πr
sin θ

[∫ L/2

−L/2
I(z)ejkz cos θdz

]
(17)

where η is the free space characteristic impedance, L and r are respectively the dipole length and radius,
and θ is the elevation angle coordinate.

2.2. Numerical Results of Single CNT Dipole Antenna

In this section, we give a quantitative discussion concerning the single CNT dipole antenna response
to a delta gap source of unit voltage localized in its center. Firstly we are interested to study the
convergence of our problem. Figure 3(a) presents the input impedance variation in function of the
segments number N , for different used basis function. Like in the delta-gap case, the triangular and
pulse basis functions converge the faster. For large values of N , all the bases functions produces the
same results with the exception of the delta basis function which converges very slowly. To illustrate
the convergence properties, the current distribution of the half length wave CNT antenna is represented
in Figure 3(b) using a pulse basis function for different values of N . This result is in agreement with
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that found using input impedance. For the rest of paper, we used the pulse as a basis function and the
segments number is fixed to N = 2M + 1 = 100 to ensure convergence.

Figure 4(a) and Figure 4(b) present the complex input impedance of CNT antenna and perfectly
conducting thin wire antenna of same size and shape, as a function of the frequency. The length of
the dipole antenna is L = 20 µm, and the radius is assumed to 2.71 nm. It can be noted that, the
CNT antenna has a first resonance nearly to 150 GHz yielding a propagation velocity vp = 0.01c, where
c is the light velocity in the vacuum. However, the perfectly conducting thin wire antenna does not
has any resonance at this frequency range. The first resonance appears nearly at 7500 GHz yielding a
propagation velocity v = 0.5c. Therefore, the resonant frequencies corresponding to a velocity reduction
factor in the order of 0.02. This reduction is due to the excess of kinetic inductance in the CNT.
This kinetic induction has much greater value compared to the conventional magnetic inductance of
perfectly conducting thin wire antenna [4]. The excess inductance has a significant effect on slowing
the electromagnetic propagation velocity along CNT, which leads to reduce the wavelength.

We present the radiation pattern of the CNT dipole antenna and conventional thin wire antenna
for lengths L = 20 µm and L = 2 mm respectively. The operating frequency is around f = 150 GHz.
Obtained results were illustrated in Figure 5(a). Note that the conventional thin wire antenna is more
directive than the CNT antenna. If the length of the conventional thin wire antenna is in the order of
0.01λ, the two antennas generates the same radiation pattern. Therefore, the CNT antenna wavelength
noted λp should be approximately 100 times smaller than the free space wavelength (λp ≈ 0.01λ), where
λp is called plasmon wavelength [4].
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Figure 6. Current distribution obtained on a CNT dipole antenna of length L = 20 µm and radius
a = 2.71 nm. (a) Operating frequency f = 10 GHz. (b) Operating frequency f = 150 GHz.

As it is shown in Figure 5(b), MoM method and transmission line method gives nearly the same
current distribution for a CNT dipole antenna of length 300µm for operating frequency 10 GHz.

For an operating frequency insufficient to reach the first resonance, the current distribution take
approximately a triangular form, like the ordinary short dipole which is shown in Figure 6(a). For
operating frequency around the first resonance, the current distribution is shown in Figure 6(b). In
this case, the current distribution is approximately a half sinusoid for operating frequency f = 150 GHz
and antenna length L = 20 µm which corresponds to L = λp/2. It can also be noted that, the CNT
antenna length is nearly 0.01 times the length of the ordinary half-wave length antenna at this frequency,
which gives a scaling reduction factor of nearly 0.01 (λp = 0.01λ). This results represents an important
miniaturization of antennas structures which makes the CNT antenna a good candidate for microwave
applications. If the frequency is doubled, the current distribution is a sinusoid which is corresponding
to an antenna with a length equal to λp.

The current intensity at the center of CNT dipole antenna is plotted versus the antenna radius in
Figure 7 (a). The antenna is excited at the center by a unit delta-gap source for an operating frequency
f = 150 GHz. This result proves that the variation of the antenna radius affects only the magnitude of
current distribution. In Figure 7(b), we can see that the changes in the CNT antenna radius does not
affect the current distribution shape. It remains approximately a half-sinusoid, which corresponds to a
current distribution of half wavelength antenna (L = λp/2). If we decrease progressively the antenna
radius there is a proportional current peak that appears in the antenna center reflecting the source
effect.
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Figure 7. (a) Current intensity at the antenna center as a function of antenna radius values. (b) Current
distribution on a CNT antennas of same lengths L = 20 µm and different radius values for operating
frequency f = 150 GHz.

3. COUPLED CARBON NANOTUBE DIPOLE ANTENNAS

The mutual coupling phenomenon between antennas cannot be neglected if the antennas are near each
other. The mutual impedance is a measure of the interaction effects between the near antennas [14, 15].

3.1. Integral Equations for N Coupled CNT Dipole Antennas

Consider N identical parallel CNT dipole antennas center-driven by the generators V1, V2, . . . , VN .
Their centers are separated by the distance d along the x-direction. I1(z), I2(z), . . . , IN (z) are the
currents on the CNT dipoles antennas induced by the generators and the mutual interactions. The
antennas have the same length and radius. The antenna radius is very small compared to the antenna
length, then the total current density will has only the z-component given by [16, 17]:

Jz
(
x′, y′, z′

)
=

N∑
p=1

Ip
(
z′
)
δ
(
x′ − xp

)
δ
(
y′ − yp

)
(18)

Taken into account the form of the total current density, the z-component of the scattered electric field
generated by the currents will be:

Ez(z) =
1

j4πwεμ

N∑
p=1

(
∂2

∂z2
+ k2

)∫ L
2

−L
2

e−jkRp

Rp
Ip(z′)dz′ (19)

where Rp is the distance from the observation point (x, y, z) to the z′ point on the each antenna.
Thus, on the surfaces of each antenna we write:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ed11 + Ed21 + Ed31 + . . . + EdN1 − ZsI1 = −Ein

1

Ed12 + Ed22 + Ed32 + . . . + EdN2 − ZsI2 = −Ein
2

...
Ed1N + Ed2N + Ed3N + . . .+ EdNN − ZsIN = −Ein

N

(20)

where Epq is the z-component of the electric field on the antenna p induced by the current on the
antenna q:

Epq(z) =
(
∂2

∂z2
+ k2

)∫ l
2

− l
2

e−jkRpq

Rpq
Iq

(
z′
)
dz′ =

�

GpqIq (21)

Knowing that:
�

Gpq =
1

j4πwε

(
k2 +

∂2

∂z2

)∫ h

−h

e−jkRpq

Rpq
dz′ (22)
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Figure 8. Array of linear dipole antennas.

and

Rpq =
√

(z − z′)2 + d2
pq (23)

That is shown in Figure 8, dpq is the coupling distance which is calculated as follows [14, 18]:{
dpq =

√
(xp − xq)2 + (yp − yq)2 if p �= q

dpq = ap if p = q
(24)

Then we obtain a system of N integral equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

G11I1 +
�

G21I1 +
�

G31I1 + . . .+
�

GN1I1 − ZsI1 = −Ein
1

�

G12I2 +
�

G22I2 +
�

G32I2 + . . .+
�

GN2I2 − ZsI2 = −Ein
2

...
�

G1N IN +
�

G2N IN +
�

G3NIN + . . . +
�

GNNIN − ZsIN = −Ein
N

(25)

By using a testing (weighting) function gn(z), which is centered on zn for each antenna p, (28) can be
written as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈
g1n,

(
�

G11 − Zs

)
I1

〉
+

〈
g1n,

�

G21I2

〉
+

〈
g1n,

�

G31I3

〉
+ . . .+

〈
g1n,

�

GN1IN

〉
= − 〈

g1n, E
in
1

〉
〈
g2n,

�

G21I1

〉
+

〈
g2n,

(
�

G22 − Zs

)
I2

〉
+

〈
g2n,

�

G32I3

〉
+ . . .+

〈
g2n,

�

GN3IN

〉
= − 〈

g2n, E
in
2

〉
...〈
gNn,

�

GN1I1

〉
+

〈
gNn,

�

GN2I1

〉
+

〈
gNn,

�

GN3I1

〉
+ . . .+

〈
gNn,

(
�

GNN − Zs

)
IN

〉
=− 〈

gNn, E
in
N

〉
(26)

The current along the CNT is expressed as the sum of the current samples In using a basis functions
f(z):

Iq(z) =
N∑

m=−N
Iqmf(z − zm) (27)

Therefore, we convert this system into a matrix form and deduce the current distribution for each dipole
antenna:⎡

⎢⎢⎢⎣
[〈
g1n,

(
�

G11 − Zs

)
f1m

〉]
. . .

[〈
g1n,

�

GN1f1m

〉]
...

. . .
...[〈

gNn,
�

G1NfNm

〉]
. . .

[〈
gnN ,

(
�

GNN − Zs

)
fNm

〉]
⎤
⎥⎥⎥⎦

⎡
⎣ I1...
IN

⎤
⎦ = −

⎡
⎢⎣
[〈
g1n, E

in
1

〉]
...[〈

gNn, E
in
N

〉]
⎤
⎥⎦ (28)

3.2. Integral Equation Based on Equivalent Dynamic Conductivity for N Coupled CNT
Dipole Antennas

In the case of very small inter-tubes distances, the array elements are strongly coupled, and the medium
is considered as a single antenna with effective surface conductivity σ [9, 19, 20]. In the Figure 9, we
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consider a densely packed bundle of single walled carbon nanotubes (SWCNT) having a circular cross
section with radius R and length L. The bundle is formed by N metallic SWCTs with radius a, which
are connected in parallel at their centers by a delta gap source with unit voltage.

The effective surface conductivity of the formed antenna is defined by [8]:

σ � Nσcn(w)a
R

(29)

The electromagnetic wave interaction between CNT antennas is modeled by the integral equation like
the analysis of the single antenna seen in first section. The basic idea is to use the integral equation
as single CNT antenna based on Hallen’s integral equation, with a slightly modification to include the
surface conductivity of the bundle.(

k2 +
∂2

∂z2

)∫ h

−h

(
e−jk

√
(z−z′)2+a2√

(z − z′)2 + a2
+
wε

aσ

e−jk|z−z′|

k

)
I
(
z′
)
dz′ = −j4πwεEin

z (z) (30)

This integral equation can be solved numerically using the MoM method, and follows the same steps as
in the case of a single antenna described in the first section. Based on the obtained current distribution,
we deduce the input impedance and other antenna parameters.

3.3. Pattern Multiplication: Array Factor

The array factor (A · F ) is function of the antenna parameters. It depends on the element number,
the coupling distance, phase and amplitude of the applied signal to each element. If the antennas are
isolated, we can assume that all the polar radiation patterns of the elements taken individually are
identical and that the patters are all aligned in the same direction in azimuth and elevation. The total
array antenna pattern is got by multiplying the array factor (A · F ) by the element pattern.

The general form of the A · F for a linear array with uniform elements spacing is given by [21]:

A · F = 1 + ej(kd cos(θ)+δ) + e2j(kd cos(θ)+δ) + . . .+ ej(N−1)(kd cos(θ)+δ) (31)

where k = 2π
λ , N is the elements number and δ is phase shift and θ is the elevation angle.

This section applied a one dimensional symmetric linear antenna array of N -identical elements
regularly positioned along x-axis and equally positioned by a distance d, see Figure 10. The array

R

a

Figure 9. Schematic structure of SWCNT bundle.

In the far field of the 

array: 

1r  =r
2r    r−dcosθ~~

3r    r−2dcosθ~~

Figure 10. The linear array on the y-axis of N -elements.
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factor of N elements can be written as [22]:

A · F =
N∑
n=1

ej(n−1)ψ (32)

where ψ = kd cos(θ) + δ is defined as the array phase function which depending to the phase shift, the
elevation angle and the elements spacing.

Finally, if the A · F is multiplied by ejψ, we come up with [23]:

A · F =
sin

(
N
ψ

2

)

sin
(
ψ

2

) ej(N−1)ψ
2 (33)

where θ ≥ 0 and 0 ≤ δ ≤ 2π.
Practically, in the array factor, the amplitude of the radiated fields is often important than the

phase. So, we just take the norm of the array factor.

|A · F | =

∣∣∣∣∣∣∣∣
sin

(
N
ψ

2

)

sin
(
ψ

2

)
∣∣∣∣∣∣∣∣

(34)

Also, what often matters is the relative level of the field when the direction change. Then we use a
normalized array factor where its value does not exceed one.

4. NUMERICAL RESULTS

In this section, we give a quantitative discussion concerning the coupling of aligned single CNT dipole
antennas. In the following, we present different numerical results for various parameters: coupling
distance, CNT number and choice of used method.

Figure 11 shows the structure of the problem, we consider two parallel center-driven coupled CNT
antennas with identical size and shape.

4.1. Study of Coupling Depending to the Separate Distance

We are interested in the assessment of the current distribution induced along each CNT dipoles antennas.
All antennas are excited at its centers by a gap-slice source of unit voltage. Assuming that we have
two identical coupled CNT antennas with lengths L = 20 µm and radius a = 2.71 nm for operating
frequency f = 150 GHz. First, we are interested in evaluating the coupling effects when the coupling
distance changes.

Figure 12 presents the normalized norm of the mutual coupling matrix as a function of the coupling
distance d. For a coupling distances that are much greater than the half wavelength (d > 0.5λp), the
norm of the mutual coupling matrix vanishes like 1/d. Indeed, there are three coupling regions:

 

11r  =  (z -z') +a1 1
2 2

12r  =  (z -z') +b1 2
2 2

22r  =  (z -z') +a2 2
2 2

21r  =  (z -z') +b2 1
2 2

Figure 11. Array of two identical parallel linear antennas.
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Figure 12. Normalized mutual coupling matrix norm as a function of the coupling distance. Obtained
result of two identical coupled antennas with the same length L = 20 µm and operating frequency
f = 150 GHz.
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Figure 13. (a) Normalized mutual coupling matrix for different coupling distances. (b) Current
distribution along each CNT dipole antennas for different coupling distances. Results obtained for
coupled antennas with lengths L = 20 µm and radius a = 2.71 nm for operating frequency f = 150 GHz.
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- Strongly coupled antennas, where the coupling distance does not exceed 0.2λp.
- Weakly coupled antennas, where the coupling distance can reach 0.75λp.
- Isolated antenna, for a coupling distance greater than 0.75λp.

We present in Figure 13(a) the normalized mutual coupling matrix of two coupled CNT dipole
antennas for different coupling distances (d = 0.5λp, d = 0.1λp and d = 0.01λp). For a coupling distance
values greater than the half-length of the dipole antenna, the mutual coupling matrix takes a non
diagonal form, and the coupling effects vanishes. Figure 13(b) shows that, the current distribution of the
excited antenna is more greater than each of the unexcited antenna for a coupling distances d > 0.5λp,
this confirms the weak coupling effect. In fact, the current distribution along the unexcited antenna is
induced by the incident electric field radiated by the excited antenna. If the coupling distance increases,
the electric field effect in the unexcited antenna decreases like 1/d, which is confirmed by Figure 12. For
a coupling distances that exceed λp, the current distribution vanishes and the antennas are considered
as isolated. Furthermore, the current distribution of each antenna is approximately a half sinusoid for
an operating frequency f = 150 GHz and antennas lengths L = 20 µm which corresponds to the first
resonance. Likewise, for a coupling distance d = 0.1λp, the mutual coupling matrix takes nearly a
diagonal form. In fact, the matrix elements vanish compared to each of the diagonal. Consequently, the
current distribution of the unexcited antenna keeps the same shape with amplification of the magnitude.

From Figure 13, it can be noted that, when the antennas are strongly coupled (d = 0.01λp), they
generate approximately the same current distribution, with a diagonal mutual coupling matrix.
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Figure 14. (a) Real part of input impedance as a function of the carbon nanotube number for operating
frequency f = 430 GHz. (b) Real and imaginary part of the input impedance as a function of the
frequency for different number of carbon nanotube.
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Figure 15. (a) Total current distribution for two adjacent CNT dipole antennas (d = 0.01λp). (b) Total
current distribution for two strongly coupled CNT dipole antennas (d = 0.2λp). Results obtained for
antenna lengths L = 20 µm, radius a = 2.71 nm and operating frequency f = 150 GHz.
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4.2. CNT Number Effects

Figure 14(a) shows the real part of the input impedance as a function of the CNT number in the
bundle. The length of the antenna bundle is assumed to be 20µm at 150 GHz of frequency. It should
be noted that the input impedance is monotonically decreased if the number of CNT increases. In
this case, adaptation to 50 Ω is obtained for a number of carbon nanotubes N = 75. We represent in
Figure 14(b), the input impedance for different values of N . For the case of N = 8, the first resonance
occurs nearly at the frequency f = 430 GHz for a resonance impedance in the order of 1645 Ω. If we
compare this results to the conventional half-wavelength dipole antenna, CNT dipole antenna has an
important scale reduction factor of 0.057. For N = 20, the resonance frequency is nearly to f = 600 GHz
and the resonance impedance is in the order of 687 Ω. Therefore, the scale reduction factor reaches a
value of 0.08. It can be noted that the antenna bundle formed by N = 120 carbon nanotubes, does
not resonate for this frequency range. So, for a fixed CNT length and radius, the input impedance
is inversely proportional to the CNT number. If the CNT number increases, the resonance frequency
shifts to the high values.

4.3. Array Antenna Radiation Pattern

As described in Figure 12, our study is focused in three regions according to the coupling intensity. As
shown in Figure 15(a), if the coupling distance is very low (d = 0.01λp), which does not exceed 0.1λp,
obtained total current distribution will be in agreement with that obtained by effective conductivity
method. Increasing the coupling distance (d = 0.2λp), the array elements interaction decreases
gradually. It can be noted that, for the effective conductivity method, there is a shift in the resonance
frequency to the lower values.

Similarly, the current amplitude moves towards higher values (Figure 15(b)). When the coupling
distance increases even more, the effective conductivity method diverges due to the errors introduced
by the average conductivity computation. For a comparison purpose, we determine the radiation
pattern generated by the antenna array, using all methods described previously. The array is formed
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proposed coupled integral equations approach and array factor method. Results obtained for different
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by two identical antennas with length L = 20 µm and radius a = 2.71 nm. For operating frequency
f = 150 GHz, obtained results are illustrated in Figure 16. We note that, for a strongly coupled antennas
(d = 0.01λp), our proposed approach and effective conductivity method gives the same results, whereas
A · F method behaves differently. This is explained by the fact of not isolated antennas. In fact, in
the A · F computation we assume that all antennas produce the same radiation pattern modulus that
remain constant. However, for a weakly coupling distances (d < 0.5λp) we cannot neglect the antenna
interaction and the radiation patterns of each dipole antenna are perturbed.

For a coupling distance 0.2λp < d < 0.75λp, results obtained by different methods are not in
agreement. Increasing the coupling distance, only our proposed approach and A · F method are in
accordance. This is shown for coupling distance d = λp and d = 1.5λp. Consequently, we demonstrate
that our approach can be accurately applied for any coupling distance.

5. CONCLUSION

In this paper, we have investigated the carbon nanotube dipole antenna properties based on Hallen’s-
type integral equation. The CNT effects are mathematically introduced using a rigorous quantum
mechanical conductivity. A comparison has been made to a conventional thin wire antenna of same
size and shape. It is found that, we cannot think of a CNT dipole antenna in the same way as a thin
wire antenna. In fact, this difference is due to the excess of the inductance, approximately of 104 time
greater than the inductance of a thin-wire antenna. Obtained results indicates that CNT dipole antenna
displays similar characteristics as well as thin wire antenna, but offer an advantage of higher frequency.

Because the CNT dipole antenna presents a high input impedance, the problem of impedance
mismatch is strongly posed. To solve this problem, CNT antennas array is studied and the proposed
formulation based on a system of integral equations allows to accurately describe the interaction between
the array elements for any coupling distance. For validation purpose, the proposed approach has
been applied to a structure formed by two coupled CNT dipole antennas. Obtained results are in
the agreement with those obtained by the effective conductivity approach or the array factor method
according to the coupling distance. This proposed formulation can be also applied to study an irregular
antenna array with any shape.
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