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Extension and Validation of an Advanced Integral Equation Model
for Bistatic Scattering from Rough Surfaces

Kuan-Liang Chen1, Kun-Shan Chen2, 3, *, Zhao-Liang Li3, and Yu Liu2

Abstract—This paper deals with the modeling of bistatic scattering from a randomly rough surface. An
advanced integral equation model is presented by giving its general framework of model developments,
model expressions, and predictions of bistatic scattering for various surface parameters. Extension work
to improve the model accuracy is also reported in more detail. In particular, the transition function for
the Fresnel reflection coefficient is in more general form. Model predictions are illustrated, demonstrated,
and validated by extensive comparisons with numerical simulations. The updated advanced integral
equation model remains a compact algebraic form for single scattering and substantially improves
prediction accuracy in bistatic scattering that is drawing more emerging applications in earth remote
sensing.

1. INTRODUCTION

Electromagnetic wave scattering from a randomly rough surface is of palpable importance in many
fields of disciplines and bears itself in various applications spanning from surface treatment to remote
sensing of terrain and sea [1–6]. For example, it has been a common practice to retrieve, by analyzing
the sensitivity of the scattering behavior and mechanisms, the geophysical parameters of interest from
the scattering and/or emission measurements. Another example is that by knowing the backscattering
patterns, one may be able to detect the presence of the undesired random roughness of a reflective
surface such as antenna reflector, and thus accordingly devise a means to correct or compensate the
phase errors. Therefore, researchers have been both theoretically and practically motivated to study
the electromagnetic wave scattering from the random surfaces. Research and progress of this topic has
been documented well and is still kept updated.

In order to tackle the complex and sometimes intricate mathematical derivations and yet to
retain a high level of accuracy beyond conventional models, notably, Kirchhoff and small perturbation
method (SPM), the integral equation model (IEM) has been developed by Fung et al. [3, 7, 8] under
several physical-justified assumptions. Among the assumptions, one was to use a simplified Green’s
function by dropping off the phase term associated with the random surface height. Doing so might
be more profoundly critical among all assumptions but greatly alleviating the burden of mathematical
derivations, and yet unavoidably degrading the model accuracy, to certain extents, depending upon the
surface property and observation geometry. Nevertheless, the IEM model proves to perform very well
in backscattering and offers to seamlessly bridge the gap between the Kirchhoff and SPM models.

Driven by the need of predicting bistatic scattering and microwave emissivity, much effort has been
devoted to further improving the IEM accuracy [9–19] by removing some of the assumptions originally
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imposed for the purpose of mathematical simplicity during the course of derivation. Another leap
forward step was the introduction of a transition function into the Fresnel reflection coefficients to
take spatial dependence into account, removing the restrictions on the limits of surface roughness and
permittivity [3, 11]. Though the approach is of heuristic but self-consistent, it proves to work well for a
broad range of surface dielectric and geometric parameters [6, 11, 14].

As will be presented in later sections, the propagation vectors in upward and downward directions
are graphically decomposed to better gain physical insights into the second order scattering mechanism.
This decomposition allows us to mathematically express all the necessary terms to account for the
scattering components. We generalize the transition function of Fresnel reflection to bistatic scattering
plane. The location of the dips in scattering plane is accurately predicated, and the scattering pattern
has been studied more extensively. Comparisons with experimental measurements have been limited
due to very limited well-controlled measured data available in the literature. Numerical simulation is an
alternative to cross-verify the scattering behavior and is under working. Another issue is the complete
multiple scattering terms needed to be included when the surface slope becomes sufficiently large.

2. THE ADVANCED INTEGRAL EQUATION MODEL

2.1. Formulation of the Wave Scattering from a Rough Surface

Referring to Figure 1, consider that a plane wave impinges onto a dielectric rough surface which scatters
waves up into the incident plane and down into the lower medium, with the electric and magnetic fields
written as

�Ei = p̂E0 exp
[
−j

(
�ki · �r

)]
, (1)

⇀

H i =
1
η
k̂i ×

⇀

Ei; (2)

where j =
√−1; i denotes incident wave, p̂ the unit polarization vector, E0 the amplitude of the

incident electric field, and η the intrinsic impedance of the upper medium, respectively. The position
and wavenumber vectors in incident and scattering directions are defined as follows, respectively

�r = xx̂ + yŷ + zẑ
⇀

k i = kk̂i = x̂kix + ŷkiy + ẑkiz; kix = k sin θi cos φi, kiy = k sin θi sin φi, kiz = k cos θi
⇀

ks = kk̂s = x̂ksx + ŷksy + ẑksz; ksx = k sin θs cos φs, ksy = k sin θs sin φs, ksz = k cos θs

For linearly horizontal-polarized and vertical-polarized waves, the polarization vector p̂, for incident and
scattering waves, is defined as

ĥi = −x̂ sinφi + ŷ cos φi

Figure 1. Wave scattering geometry.
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v̂i = ĥi × k̂i = − (x̂ cos θi cos φi + ŷ cos θi sinφi + ẑ sin θi)

ĥs = φ̂ = −x̂ sin φs + ŷ cos φs

v̂s = θ̂ = ĥs × k̂s = x̂ cos θs cos φs + ŷ cos θs sin φs − ẑ sin θs

The scattered fields according to the Stratton-Chu formula may be expressed as [2, 5]

�Es(�r) =
Æ

S′
dS′

{
iωμ

[
n̂ × �H

(
�r′

)]
G

(
�r,�r′

)
+

[
n̂ · �E

(
r′

)]∇′G
(
�r,�r′

)
+

[
n̂× �E

(
r′

)]×∇′G
(
�r,�r′

)}
(3a)

�Hs(�r) =
Æ

S′
dS′

{
−iωε

[
n̂ × �E

(
�r′

)]
G

(
�r,�r′

)
+

[
n̂ · �H

(
r′

)]∇′G
(
�r,�r′

)
+
[
n̂× �H

(
r′

)]×∇′G
(
�r,�r′

)}
(3b)

where G is the Green’s function, n̂ the unit normal vector pointing to the scattering region, and the
integration is performed over the rough surface S′. The total field is sum of the incident field, which is
known, and the scattered field, which is unknown, is to be determined. For a source free region as in
our case, mathematically, it is expressed as [20]

�E(�r) = Υ �Ei(�r) − Υ
4π

Æ
dS′

{
iωμ

[
n̂ × �H

]
G − [n̂ × �E] ×∇′G −

[
n̂ · �E

]
∇′G

}
(4a)

�H(�r) = Υ �Hi (�r) +
Υ
4π

Æ
dS′

{
iωε

[
n̂ × �E

]
G +

[
n̂ × �H

]
×∇′G +

[
n̂ · �H

]
∇′G

}
(4b)

where Υ = (1 − Ω/4π)−1, Ω =
{

0, �r /∈ S′
2π, �r ∈ S′ .

To solve the above integral equations, we follow the approach in [3, 7]. Once the surface fields n̂× �E,
n̂× �H are solved, the scattered filed are obtained by (3a) and (3b). Note that the normal components of
the surface fields are related to tangential components by surface divergence operation. The scattering
coefficient with q polarization is then calculated as [2]:

σo
qp =

4πR2Re
{〈∣∣Es

qp

∣∣2〉}

A0 cos θiRe
{
|Ei|2

} (5)

where R is the range from surface to observation point, and A0 is illuminated overlapping area, confined
by transmitting and receiving antenna beam patterns, over the surface.

2.2. Surface Tangential Fields

Equation (3) states the Huygens’ Principle [5], and the field solution in a given volume V ′ is completely
determined by the tangential fields specified over the surface S′ enclosing V ′. To find the surface fields,
one has to solve the pair of Fredholm integral equations of 2nd kind. For rough surface with irregular
boundary, completely analytic solution is almost prohibitive. Instead, we seek an approximate estimate
of the surface tangential fields by taking vector product with the unit surface normal on both sides
of Equations (4a), (4b) and, after some reformulations [21], by using the iterative scheme to find the
estimates.

In IEM modelling [3, 7], the estimation of surface fields is the sum of the Kirchhoff field and the
complementary field, (

n̂ × �Ep

)
=

(
n̂ × �Ep

)
k

+
(
n̂ × �Ep

)
c

(6a)

(n̂ × Hp) =
(
n̂ × �Hp

)
k

+
(
n̂ × �Hp

)
c

(6b)

where the Kirchhoff fields can be expressed as(
n̂ × �Ep

)
k

= n̂ × [
(1 − Rv) p̂ + (Rv + Rh)

(
p̂ · t̂) t̂

]
Ei, (7a)

η1

(
n̂ × �Hp

)
k

= n̂ × k̂i ×
[
(1 + Rv) p̂ + (Rv + Rh)

(
p̂ · t̂) t̂

]
Ei. (7b)
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The complementary surface fields, which corrects the Kirchhoff estimates, are written as(
n̂ × �Ev

)
c

= − 1
4π

[
n̂ ×

�
(1 − Rv) �Evds′ + n̂ ×

�
(1 + Rv) �Evtds′

− (Rv + Rh)
(
n̂ × t̂

) (
n̂ × t̂

) · n̂ ×
� (

�Ev − �Evt

)
ds′

]
(8a)

(
n̂ × �Eh

)
c

= − 1
4π

[
n̂ ×

�
(1 + Rh) �Ehds′ + n̂ ×

�
(1 − Rh) �Ehtds′

+ (Rv + Rh) t̂t̂ · n̂ ×
� (

�Eh − �Eht

)
ds′

]
(8b)

(
n̂ × �Hv

)
c

=
1
4π

[
n̂ ×

�
(1 + Rv) �Hvds′ + n̂ ×

�
(1 − Rv) �Hvtds′

− (Rv + Rh) t̂t̂ · n̂ ×
� (

�Hv − �Hvt

)
ds′

]
(9a)

(
n̂ × �Hh

)
c

=
1
4π

[
n̂ ×

�
(1 − Rh) �Hhds′ + n̂ ×

�
(1 + Rh) �Hhtds′

+ (Rv + Rh)
(
n̂ × t̂

) (
n̂ × t̂

) · n̂ ×
� (

�Hh − �Hht

)
ds′

]
(9b)

In the above expressions, we make use of a local coordinate defined by [k̂i, t̂, d̂] in Figure 2 [2, 3]. The
unknown electric and magnetic fields that appear inside the integrals above are expressed as

�Ep = jkη
(
n̂ × �Hp

)
G −

(
n̂ × �Ep

)
×∇′G −

(
n̂ · �Ep

)
∇′G (10a)

�Hp = j
k

η

(
n̂ × �Ep

)
G −

(
n̂ × �Hp

)
×∇′G −

(
n̂ · �Hp

)
∇′G (10b)

�Ept = −
[
jktηt

(
n̂ × �Hp

)
Gt −

(
n̂ × �Ep

)
×∇′Gt − 1

εr

(
n̂ · �Ep

)
∇′Gt

]
(11a)

�Hpt = −
[
j
kt

ηt

(
n̂ × �Ep

)
Gt −

(
n̂ × �Hp

)
×∇′Gt − 1

μr

(
n̂ · �Hp

)
∇′Gt (11b)

where ηt is the intrinsic impedance of the lower medium, the wave transmitted region. (10) and (11)
involve Green’s functions and theirs gradients in the upper and lower media. To seek solutions by

Figure 2. Geometry of scattering from a rough surface, where F±, G± respectively represent the
upward re-radiation and downward re-radiation, going through upper medium and lower medium.
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iterative scheme we make use of the spectral form, instead of spatial form, of the Green’s function [3, 7]

G =
1
2π

�
j

qi
exp[jΦ]dudv (12a)

∇′G =
1
2π

�
�gi

qi
exp [jΦ]dudv (12b)

Gt =
1
2π

�
j

qt
exp [jΦt] dudv (13a)

∇′Gt =
1
2π

�
�gt

qt
exp [jΦt] dudv (13b)

where the phase terms associated with the upper and lower medium are, respectively,

Φi = j
[
u

(
x − x′) + v

(
y − y′

) − qi|z − z′|] (14a)

Φt = j
[
u

(
x − x′) + v

(
y − y′

) − qt|z − z′|] , (14b)

with qi =
√

k2 − u2 − v2; qt =
√

k2
t − u2 − v2; �gi = x̂u + ŷv ∓ ẑqi; �gt = x̂u + ŷv ∓ ẑqt.

By substituting the Kirchhoff surface fields in (7a)–(7b) into (10)–(11), we obtain the estimates of
the complementary fields of (8)–(9). This may be seen as a 2nd iteration of seeking the solution of the
integral equations governing the surface fields using Kirchhoff fields as initial guess which is indeed a
very good choice for fast convergence.

2.2.1. Far-Zone Scattered Field and Scattering Coefficients

Now, with the surface tangential field estimates available, the scattered field for q polarization at far-zone
distance R is readily calculated by making use of the Stratton-Chu formula [referring to Figure 2]:

Es
qp = KE0

� [
q̂ × k̂s ·

(
n̂ × �Ep

)
+ ηq̂ ·

(
n̂ × ⇀

Hp

)]
exp

[
j
(
kk̂s · �r

)]
dS (15)

where
K = − jk

4πR
exp(−jkR)

Corresponding to the Kirchhoff and the complementary surface fields in (6a), (6b), the far-zone scattered
field may also be expressed as the sum of the Kirchhoff and complementary scattered fields [3, 7]:

Es
qp = Ek

qp + Ec
qp (16)

where the Kirchhoff field is given by

Ek
qp = KE0

�
fqp exp{jΦ}dxdy (17)

with the phase term Φ = k[(k̂s − k̂i) · �r].
The complementary scattered field, propagating upward and downward, may be written as

Ec
qp =

KE0

8π2

� {
Fqpe

j[Φi+�ks·�r−�ki·�r′] + Gqpe
j[Φt+�ks·�r−�ki·�r′]

}
dudvdxdydx′dy′ (18)

The Kirchhoff field coefficients fqp appearing in (17) may be more explicitly written into the following
form

fvv = −
[
(1 − Rv) ĥs · (n̂ × v̂i) + (1 + Rv) v̂s ·

(
n̂ × ĥi

)]
s1

− (Rh + Rv)
(
v̂i · t̂

) [(
ĥs · d̂

)(
n̂ · k̂i

)
−

(
n̂ · d̂

) (
ĥs · k̂i

)
− (

v̂s · t̂
) (

n̂ · k̂i

)]
s1 (19a)

fvh =
[
(1 − Rh) v̂s · (n̂ × v̂i) − (1 + Rh) ĥs ·

(
n̂ × ĥi

)]
s1

− (Rh + Rv)
(
ĥi · d̂

) [(
ĥs · t̂

) (
n̂ · k̂i

)
−

(
n̂ · d̂

)(
v̂s · k̂i

)
+

(
v̂s · d̂

) (
n̂ · k̂i

)]
s1 (19b)
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fhv =
[
(1 − Rv) v̂s · (n̂ × v̂i) − (1 + Rv) ĥs ·

(
n̂ × ĥi

)]
s1

− (Rh + Rv)
(
v̂i · t̂

) [(
ĥs · t̂

)(
n̂ · k̂i

)
−

(
n̂ · d̂

) (
v̂s · k̂i

)
+

(
v̂s · d̂

)(
n̂ · k̂i

)]
s1 (19c)

fhh =
[
(1 + Rh) v̂s ·

(
n̂ × ĥi

)
+ (1 − Rh) ĥs · (n̂ × v̂i)

]
s1

− (Rh + Rv)
(
ĥi · d̂

) [(
ĥs · d̂

) (
n̂ · k̂i

)
−

(
n̂ · d̂

)(
ĥs · k̂i

)
− (

v̂s · t̂
) (

n̂ · k̂i

)]
s1 (19d)

where s1 =
√

1 + z2
x + z2

y accounting for surface slope.
Note that in IEM model, the terms involved (Rh + Rv) in (19) are all dropped off. Keeping in

mind that the Kirchhoff field coefficients fqp are spatially dependent on the Fresnel reflection coefficients
Rp, p = h, v and the surface slope term s1. To make the integrals in (17) and (18) mathematically
manageable in calculation of the average scattered power, we apply a stationary phase approximation
while ignoring the edge diffraction, to obtain an estimate of the surface slopes:

∂Φ
∂x

= 0 → zx = −ksx − kx

ksz − kz

∂Φ
∂y

= 0 → zy = −ksy − ky

ksz − kz

(20)

That is, the surface slopes are presumably independent of spatial variable and are approximately
determined by the directions of incident and scattering waves. To further tackle the mathematical
manipulations, removal of the spatial dependence of the reflection coefficient will be treated in the next
section. Keeping in mind that to what extent such an estimate is valid or at least sufficiently accurate
remains further investigations.

Now let us go back to the complementary scattered field, which is much more complicated to deal
with. Recalled from the preceding section that the complementary scattered field is contributed from
the reradiated fields that may propagate through medium 1 and medium 2, represented by upwardly
and downwardly waves, the physical mechanism may be graphically represented by the field coefficients
or propagators, Fqp, Gqp, as illustrated in Figure 2. Further dealing with the phase term involving
the surface height, the propagators may be decomposed into the upward components designated by
F+

qp, G +
qp and the downward components by F−

qp, G−
qp, mathematically appearing as the absolute terms

in (14), physically denoting the change of propagation velocity at different media. In the original
IEM model [3, 7], the reradiated fields propagating through the lower medium is ignored, and also in
calculating the coefficient F±

qp, a simplified phase term, Φg = j[u(x−x′)+v(y−y′)], is used by dropping
off the phase term associated with the surface height, viz the term qi|z − z′|. In calculating �gi, �gt, the
z-component is ignored. Physically, this implies that the upward and downward reradiated fields are
statistically canceled out [7]. Such argument holds valid more so for the cases of backscattering or when
the correlation between two surface points, z, z′, is electromagnetically small.

In what follows, the complete phase terms are kept and all possible propagation waves included.
After straightforward but tedious mathematical manipulations, the complementary field coefficients can
be obtained and put into compact forms for both the upward and downward propagations. Explicit
expressions that are easy for numerical computation are given below:

F±
vv(u, v) = −

(
1 − Rv

±qi

)
(1 + Rv)C1 +

(
1 − Rv

±qi

)
(1 − Rv) C2 +

(
1 − Rv

±qi

)
(1 + Rv) C3

+
(

1 + Rv

±qi

)
(1 − Rv)C4 +

(
1 + Rv

±qi

)
(1 + Rv) C5 +

(
1 + Rv

±qi

)
(1 − Rv) C6 (21a)

G ±
vv(u, v) =

(
(1 + Rv) μr

±qt

)
(1 + Rv) C1t −

(
1 + Rv

±qt

)
(1 − Rv) C2t −

(
1 + Rv

±qtεr

)
(1 + Rv)C3t

−
(

(1 − Rv) εr

±qt

)
(1−Rv)C4t−

(
1−Rv

±qt

)
(1 + Rv)C5t−

(
1 − Rv

±qtμr

)
(1 − Rv) C6t (21b)
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F±
hh(u, v) =

(
1 − Rh

±qi

)
(1 + Rh)C1 −

(
1 − Rh

±qi

)
(1 − Rh)C2 −

(
1 − Rh

±qi

)
(1 + Rh)C3

−
(

1 + Rh

±qi

)
(1 − Rh) C4 −

(
1 + Rh

±qi

)
(1 + Rh)C5 −

(
1 + Rh

±qi

)
(1 − Rh)C6 (21c)

G ±
hh(u, v) = −

(
(1 + Rh) εr

±qt

)
(1 + Rh)C1t+

(
1 + Rh

±qt

)
(1 − Rh)C2t −

(
1+Rh

±qtμr

)
(1+Rh)C3t

+
(

(1 + Rh) μr

±qt

)
(1−Rh)C4t +

(
1−Rh

±qt

)
(1+Rh)C5t−

(
1 − Rh

±qtεr

)
(1−Rh)C6t (21d)

F±
hv(u, v) =

(
1 − R

±qi

)
(1 + R) B1 +

(
1 − R

±qi

)
(1 − R) B2 −

(
1 − R

±q

)
(1 + R) B3

+
(

1 + R

±qi

)
(1 − R) B4 +

(
1 + R

±qi

)
(1 + R) B5 −

(
1 + R

±qi

)
(1 − R)B6 (21e)

G±
hv(u, v) = −

(
(1 + R)μr

±qt

)
(1 + R)B1t +

(
1 + R

±qt

)
(1 − R) B2t +

(
1 + R

±qtεr

)
(1 + R) B3t

−
(

(1 − R) εr

±qt

)
(1 − R) B4t +

(
1 − R

±qt

)
(1 + R)B5t +

(
1 − R

±qtμr

)
(1 − R) B6t (21f)

F±
vh(u, v) =

(
1 + R

±qi

)
(1 − R) B1 −

(
1 + R

±qi

)
(1 + R) B2 −

(
1 + R

±qi

)
(1 − R) B3

+
(

1 − R

±qi

)
(1 + R) B4 +

(
1 − R

±qi

)
(1 − R) B5 +

(
1 − R

±qi

)
(1 + R)B6 (21g)

G±
vh(u, v) = −

(
(1 − R) εr

±qt

)
(1 − R) B1t +

(
1 − R

±qt

)
(1 + R)B2t +

(
1 − R

±qtμr

)
(1 − R) B3t

−
(

(1 + R)μr

±qt

)
(1 + R)B4t −

(
1 + R

±qt

)
(1 − R) B5t −

(
1 + R

±qtεr

)
(1 + R) B6t (21h)

For cross polarizations, we use an approximate reflection coefficient by taking the average of the reflection
coefficients of horizontal and vertical polarizations: R ≈ 1

2(Rh + Rv) [3]. The coefficients C, B, Ct Bt

appearing in (21) are given in Appendix A. Note that the coefficients Ct Bt for the lower or transmitted
medium have similar forms to C and B with q being simply replaced by qt.

It is readily realized that for downward radiation, the field coefficients are obtained by replacing
kz by −kz, and ktz by −ktz. That is, F−

qp = F+
qp(kx, ky ,−kz), G−

qp = G +
qp(kx, ky,−ktz).

With the scattered fields calculated, we perform ensemble averaging to compute the scattered power
and scattering coefficient. To gain more physical insights into the field interactions that produce the
average power, the following expression for the incoherent average power is written as a sum of three
terms: the Kirchhoff power, the cross power due by the Kirchhoff field and the complementary power:

P s
qp =

〈
Es

qpE
s∗
qp

〉
− 〈

Es
qp

〉 〈
Es∗

qp

〉
=

〈
Ek

qpE
k∗
qp

〉
−

〈
Ek

qp

〉〈
Ek∗

qp

〉

+2Re
[〈

Ec
qpE

k∗
qp

〉
− 〈

Ec
qp

〉 〈
Ek∗

qp

〉]
+

〈
Ec

qpE
c∗
qp

〉
− 〈

Ec
qp

〉 〈
Ec∗

qp

〉
� P k

qp + P kc
qp + P c

qp (22)

where 〈 〉 denotes the ensemble average over the randomly rough surface z(x, y), and ∗ is the complex
conjugation operator. Referring to Figure 3, it is readily recognized that the cross power is the result
of the interactions between the Kirchhoff field and the complementary field, involved by 4 terms — 2
accounting for the upper medium propagation and another 2 for the lower medium:

P kc
qp = P kc

qp|F+
qp

+ P kc
qp|F−

qp
+ P kc

qp|G +
qp

+ P kc
qp|G−

qp
(23)

Similarly, the radiated power by the complementary field itself is mutually generated by reradiation
fields from every point on the surface and thus consists of sixteen terms resulting from interactions of
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Figure 3. Interactions among Kirchhoff fields and complementary fields to generate the scattering
power given in Equation (24).

2 upward fields and 2 downward fields propagating through medium 1 and medium 2 [see Figure 3]:
P c

qp = P c
qp|F+

qpF+
qp

+ P c
qp|F+

qpF−
qp

+ P c
qp|F+

qpG +
qp

+ P c
qp|F+

qpG−
qp

+P c
qp|F−

qpF+
qp

+ P c
qp|F−

qpF−
qp

+ P c
qp|F−

qpG +
qp

+ P c
qp|FG−

qpG−
qp

+P c
qp|G +

qpF+
qp

+ P c
qp|G +

qpF−
qp

+ P c
qp|G +

qpG +
qp

+ P c
qp|G +

qpG−
qp

+P c
qp|G−

qpF+
qp

+ P c
qp|G−

qpF−
qp

+ P c
qp|G−

qpG +
qp

+ P c
qp|G−

qpG−
qp

(24)

Now by substituting the Kirchhoff field given in Equation (17) and the complementary field given
in Equation (18) into Equation (22) and carrying out the ensemble averages, we obtain an explicit
expression of the incoherent average power. When the medium is very lossy, contributions from the
lower medium propagation is expected to be small. However, in general, all modes must be included
to get a more complete scattered power, as claimed in [19]. After some algebraic manipulations and
arrangements, we can reach the final expression of a relatively compact form as:

σs
qp =

k2

2
exp

[−σ2
(
k2

iz + k2
sz

)] ∞∑
n=1

σ2n

n!
|I n

qp|2W(n) (ksx − kix, ksy − kiy) (25)

where
I n

qp = (ksz + kiz)
n fqp exp

(−σ2kizksz

)
+

1
4

{
F+

qp (−kix,−kiy) (ksz − kiz)
n exp

[−σ2
(
k2

iz − kiz (ksz − kiz)
)]

+F+
qp (−ksx,−ksy) (ksz + kiz)

n exp
[−σ2

(
k2

iz − kiz (ksz − kiz)
)]

+F−
qp (−ksx,−ksy) (ksz − kiz)

n exp
[−σ2

(
k2

iz + kiz (ksz − kiz)
)]

+G +
qp (−kix,−kiy) (ksz − ktz)

n exp
[−σ2

(
k2

tz − ktz (ksz − kiz)
)]

+G−
qp (−kix,−kiy) (ksz + ktz)n exp

[−σ2
(
k2

tz + ktz (ksz − kiz)
)]

+G +
qp (−ksx,−ksy) (ksz + ktz)

n exp
[−σ2

(
k2

tz − ktz (ksz − kiz)
)]

+G−
qp (−ksx,−ksy) (ksz − ktz)

n exp
[−σ2

(
k2

tz + ktz (ksz − kiz)
)]}

(26)

and W(n)(ksx −kix, ksy −kiy) is the surface roughness spectrum of the surface related to the nth power
of the surface correlation function by two-dimensional Fourier transform, assuming that the surface
height is Gaussian distribution, and σ is surface rms height. In all numerical computations in this
paper, we use exponential correlation with correlation length �. When the surface roughness is very
large, the use of (25) might be computationally slow to reach convergence. As for the surface roughness
spectrum, a generalized power law spectrum was proposed to characterize a broad range of rough surface
statistics [22]. For non-Gaussian surface height distributions with non-symmetry, higher order statistics,
e.g., bispectral, may be included [8].
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2.3. A New Transition Function for Fresnel Reflection Coefficients

The Fresnel reflection coefficient for a homogenous rough surface is dependent on the local incidence
angle, which is determined by the incident direction and surface unit normal. In modeling the wave
scattering, in order to remove the spatial dependence of the reflection coefficient, it is a common practice
to approximate the local incident angle either by the incident angle for a slightly rough surface or by
the specular angle. Such approximation, however, leads to an unpredictable error for the local incident
angle which is random in nature across the rough surface. A transition model was proposed [11] to fix
such deficiency. It is necessary to generalize the transition function so that the local angle variation is
accounted for. This is important for a scattering model to cover a wider range of surface roughness.
Recalling that the scattering coefficient may be decomposed into three terms, recognized as Kirchhoff,
cross, and complementary terms: σo

qp = σk
qp + σkc

qp + σc
qp. The transition model takes two extremes of

the form [11]
Rp(T ) = Rp(θi) + [Rp(θsp) − Rp(θi)]γp (27)

where θi is the incidence angle, θsp the specular angle, and the transition function is defined as

γp = 1 − Sp

So
p

(28a)

with

Sp =
σc

pp

∣∣
Rp=Rp(0)

σo
pp

∣∣
Rp=Rp(0)

, (28b)

So
p = lim

kσ→0

σc
pp

∣∣
Rp=Rp(0)

σo
pp

∣∣
Rp=Rp(0)

(28c)

Note that lim
kσ→0

σo
pp = a+b+c, lim

kσ→0
σc

pp = c, with the coefficients a, b, c, corresponding to the Kirchhoff,

cross and complementary terms, respectively. Under the framework of the AIEM model, the three terms
are given in Appendix B.

The Fresnel reflection coefficients for horizontally and vertically polarized waves are, respectively

Rh =
μtk cos θi − μ0ktz

μtk cos θi + μ0ktz
, (29a)

Rv =
ε0ktz − εtk cos θi

εtk cos θi + ε0ktz
, (29b)

where
ktz = Re{ktz} + jI m{ktz} (29c)

with

Re{ktz} =
1√
2

[
Re{k2

t } − k2 sin2 θi +
√(

Re{k2
t } − k2 sin2 θi

)2 +
(
I m{k2

t }
)2

]1/2

(29d)

I m{ktz} = − 1√
2

[
− (

Re{k2
t } − k2 sin2 θi

)
+

√(
Re{k2

t } − k2 sin2 θi

)2 +
(
I m{k2

t }
)2

]1/2

(29e)

2.3.1. Numerical Illustrations

In what follows, we shall demonstrate the use of the update transition function for Fresnel reflection
coefficient, with Geometric Optics model (GOM) as a reference. Figure 4 displays a set of bistatic
scattering coefficients for a rough surface with dielectric constants of εr = 10+j0.05. The incident angle
and scattering angle at fixed at θi = 20◦, θs = 40◦ with a surface roughness of k� = 6.28, kσ = 0.628. At
this surface roughness scale, the first order SPM is not valid. The azimuthal angular behavior of AIEM
and GOM predictions are closely matched with the updated transition model perfectly following that of
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GOM at the location of dip of the scattering coefficient. Now to see the impact of dielectric constant, we
set the surface roughness to a very large of k� = 7.5, kσ = 2.8, for dielectric constants of εr = 4 − j0.3,
9− j1.8, 16, 40 − j3. The incident angle and scattering angle are fixed at θi = 50◦ and θs = 30◦. From

Figure 4. Bistatic scattering coefficient with dielectric constants εr = 10+ j0.05 and surface roughness
of kσ = 0.628, k� = 6.28. The incident angle and scattering angle are fixed at θi = 20◦, θs = 40◦. The
GOM and SPM models are plotted for reference.
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Figure 5. Scattering coefficients calculated by AIEM with old and new transition model in reflection
coefficient for dielectric constants εr = 4− j0.3, 9− j1.8, 16, 40− j3. The incident angle and scattering
angle fixed at θi = 50◦, θs = 30◦ with a surface roughness of ks = 2.5, kl = 7.5.

Figure 5, it is observed that the difference between the use of old transition model and new one in
AIEM becomes larger as the surface dielectric constant decreases. At large dielectric, essentially there
is no difference between the two models, as expected. Also it is clear that the transition model has
more impact on the vertical polarization than on horizontal polarization. With the use of the updated
transition model, the azimuthal angular behavior perfectly follows that of GOM. The prediction of the
dip in the azimuthal plane is apparently dislocated for the old transition model.

At this point, it is interesting to further exam the effect of the surface dielectric property on
bistatic scattering. Focus is placed on the lossy effect, namely, the magnitude of the imaginary part
of the dielectric constant. We use the same parameters in Figure 4, except at smaller roughness of
kσ = 0.314, k� = 3.14 and increasing the loss tangent. Results are plotted in Figure 6, where three
sets of bistatic scattering coefficients are shown, namely predicted by AIEM, GOM, and SPM models.
It is clearly seen that as the dielectric loss increases, the dip in azimuthal plane is changed not only
for its magnitude, but also for its angular width. The dislocation of the dip in azimuth scattering
plane by SPM predictions is understood for their invalid at this roughness scale. The more the surface
is lossy, the shallower and wider the dip becomes. Further verification of this behavior and possible
physical mechanisms behind it may be necessary by means of either full-blown numerical simulation or
laboratory measurement, or better both. For very lossy surface, numerical simulation will be a very
challenging work. Nevertheless, at this point, the presented three examples persistently explain the
need of an updated transition model for reflection coefficient for more accurate prediction of bistatic
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Figure 6. Effects of dielectric loss properties with incident angle and scattering angle fixed at θi = 20◦,
θs = 40◦ and surface roughness of kσ = 0.314, k� = 3.14. The dielectric constants are εr = 10 + j0.5,
εr = 10 + j1.0, εr = 10 + j2.0.
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scattering. To further illustrate the model performance, comparisons with numerical simulations and
experimental data, all from published literatures, are made in the following section.

3. COMPARISON WITH NUMERICAL SIMULATIONS

Though only limited simulations are available, the prediction of scattering coefficient in scattering
plane between the present model and numerical results of SSA (Small Slope Approximation) and MoM
(method of moment) is shown in Figure 7. The simulation data are adopted from [23] for a Gaussian
correlated surface with εr = 4 − j1; kσ = 0.5, k� = 3.0 at incident angle of 30 degrees and scattering
angle between −60 and 60 degrees. Obviously, all the three predictions are quite close to each other
except at larger scattering angle. There is a dip in specular direction shown by MoM and SSA, but not
by AIEM. Doubling the surface roughness, results are given in Figure 8 from which we can see that the
angular trends by three predictions are similar to those in Figure 7. The dip in specular direction is
now largely shallow because of more roughness.
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Figure 7. Comparison of scattering coefficient between AIEM model and numerical results of MoM
and SSA for both horizontal and vertical polarization for a Gaussian correlated surface with εr = 4−j1;
kσ = 0.5, k� = 3.0, and incident angle of 30 degrees.
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4. SUMMARY

This paper provides extensions of an Advanced Integral Equation Model (AIEM) for rough surface
scattering. A framework of the model development is outlined, followed by giving model expression. A
complete Kirchhoff field is included. Accordingly, a transition function for Fresnel reflection coefficients
is also derived. Numerical illustrations are given for bistatic scattering, by comparisons with numerical
simulations and experimental measurements. All the model coefficients are written to give their explicit
forms for the ease of numerical computation. It is believed that the AIEM presented here provides
very accurate predictions of bistatic scattering, which is becoming more interesting for remote sensing
of terrain and sea. Therefore, it is suggested that the AIEM model, covering a very wide range of
surface property and observation geometry, offers a useful tool for the interpretation of the scattering
mechanisms, and perhaps more practically, for surface parameters retrieval. As a final note, because all
expressions in the model are in algebraic form, computational effort is not an issue.
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APPENDIX A.

In this appendix, we give the explicit expressions of upward and downward reradiation coefficients
appearing in Equations (21a)∼(21h).

C1 = cos (φs − φ)
[
1 − (ksx + u) (kx + u)

(ksz − q) (kz + q)

]
− sin (φs − φ)

(kz + u) (ksy + v)
(ksz − q) (kz − q)

(A1)

C2 = − cos (φs − φ)
[
−q cos θ +

u cos θ (ksx + u)
ksz − q

− q1 sin θ (kx + u)
kz + q

+
u sin θ (ksx + u) (kx + u)

(ksz − q) (kz + q)

−vcosθ (ky + v)
kz + q

+
v sin θ (ksx + u) (ky + v)

(ksz − q) (kz + q)

]

+ sin (φs − φ)
[
−u cos θ (ksy + v)

ksz − q
− u sin θ (kx + u) (ksy + v)

(ksz − q) (kz + q)
+

q1 sin θ (ky + v)
kz + q

−u cos θ (ky + v)
kz + q

− v sin θ (ksy + v) (ky + v)
(ksz − q) (kz + q)

]
(A2)

C3 =
− (kz + q) sin θ + (kx + u) cos θ

(ksz − q) (kz + q)

+
[ksxq cos (φs − φ) + ksyq sin (φs − φ) + kszu cos (φs − φ) + kszv sin (φs − φ)]

(ksz − q) (kz + q)
(A3)

C4 = cos θs sin (φs − φ)
[
sin θ (ky + v)

kz + q
+

cos θ (ksx + u) (ky + v)
(ksz − q) (kz + q)

]

+ cos θs cos (φs − φ)
[
cos θ +

sin θ (kx + u)
kz + q

− cos θ (ksy + v) (ky + v)
(ksz − q) (kz + q)

]

+ sin θs

[
cos θ (ksx + u)

ksz − q
+

sin θ (ksx + u) (kx + u)
(ksz − q) (kz + q)

+
sin θ (ksy + v) (ky + v)

(ksz − q) (kz + q)

]
(A4)

C5 = − cos θs sin (φs − φ)
[
(ksx + u) v

ksz − q
+

(kx + u) v

kz + q

]

− cos θs cos (φs − φ)
[
q +

(kx + u)u

kz + q
− (ksy + v) v

ksz − q

]
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− sin θs

[
q1 (ksx + u)

ksz − q
+

u (ksx + u) (kx + u)
(ksz − q) (kz + q)

+
v (ksy + v) (kx + u)
(ksz − q) (kz + q)

]
(A5)

C6 = cos θs sin (φs − φ)
[
q (ksx + u) (ky + v)
(ksz − q) (kz + q)

+
u (ky + v)

kz + q

]

− cos θs cos (φs − φ)
[
q1 (ksy + u) (ky + v)
(ksz − q) (kz + q)

+
v (ky + v)

kz + q

]

+ sin θs

[
u (ksy + v) (ky + v)
(ksz − q) (kz + q)

− u (ksx + u) (kx + v)
(ksz − q) (kz + q)

]
(A6)

B1 = cos θs sin (φs − φ)
[
1 − q (ksx + u) (kx + u)

(ksz − q) (kz + q)

]

+ cos θs cos (φs − φ)
sin θsksx + (ksy + v)

ksz − q

(kx + u) (ksy + v)
(ksz − q) (kz + q)

(A7)

B2 = cos θs sin (φs − φ)
[
q cos θ − u cos θ (ksx + u)

ksz − q
+

q sin θ (kx + u)
kz + q

−u sin θ (ksx + u) (kx + u)
(ksz − q) (kz + q)

+
v cos θ (ky + v)

kz + q
− v sin θ (ksx + u) (kx + u)

(ksz − q) (kz + q)

]

+ sin θs

[
q cos θ (ksy + v)

ksz − q
+

q1 sin θ (kx + u) (ksy + v)
(ksz − q) (kz + q)

+
q1 sin θ (ksx + u) (ky + v)

(ksz − q) (kz + q)

+
u cos θ (ksx + u) (ky + v)

(ksz − q) (kz + q)
+

v cos θ (ksy + v) (ky + v)
(ksz − q) (kz + q)

]

+ cos θs cos (φs − φ)
[
q cos θ (ksy + v)

ksz − q
+

u sin θ (kx + u) (ksy + v)
(ksz − q) (kz + q)

− q sin θ (ky + v)
kz + q

+
u cos θ (ky + v)

kz + q
+

v sin θ (ky + v) (ksy + v)
(ksz − q) (kz + q)

]
(A8)

B3 = − cos θs sin (φs−φ)
[
q sin θ (ksx+u)

ksz − q
+ u sin θ − q cos θ (ksx+u) (kx+u)

(ksz − q) (kz + q)
− u cos θ (kx + u)

kz + q

]

+cos θs cos (φs − φ)
[
q1 sin θ (ksy+v)

ksz−q
+ v sin θ − q1 cos θ (ksy+v) (kx+u)

(ksz − q1) (kz + q)
− v cos θ (kx + u)

kz + q

]

−sin θs

[
u sin θ (ksy+v)

kz − q
−u cos θ (ksy+v) (kx+u)

(ksz − q) (kz + q)
− v sin θ (ksx+u)

ksz − q
+

v cos θ (ksx+u) (kx+u)
(ksz − q) (kz + q)

]
(A9)

B4 = cos (φs − φ)
[
sin θ (ky + v)

kz + q
+

cos θ (ksx + u) (ky + v)
(ksz − q) (kz + q)

]

− sin (φs − φ)
[
cos θ +

sin θ (kx + u)
kz + q

− cos θ (ksy + v) (ky + v)
(ksz − q) (kz + q)

]
(A10)

B5 = − cos (φs − φ)
[
v (ksx + u)

ksz − q
+

v (kx + u)
kz + q

]
+ sin (φs − φ)

[
q − v (ksy + v)

ksz − q
− u (kx + u)

kz + q

]
(A11)

B6 = cos (φs−φ)
[
q (ksx+u) (ky+v)
(ksz − q) (kz + q)

+
u (ky+v)
kz + q

]
+sin (φs−φ)

[
q (ksy+v) (ky + v)
(ksz − q) (kz + q)

+
v (ky + v)

kz + q

]
(A12)

APPENDIX B.

In this appendix, we give coefficients appearing in Equation (28c).

a = ki (cos θs + cos θi) |fqp|2 (B1)
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b =
1
2

{
f∗

qpF
+
qp(−kix,−kiy) [ki cos θs − kiz ][ki cos θs + ki cos θi]

+ f∗
qpF

+
qp(−ksx,−ksy)[ki cos θs + ksz][ki cos θs + ki cos θi]

}
+

1
2

{
f∗

qpF
−
qp(−kix,−kiy) [ki cos θs + kiz][ki cos θs + ki cos θi]

+ f∗
qpF

−
qp(−ksx,−ksy)[ki cos θs − ksz][ki cos θs + ki cos θi]

}
+

1
2

{
f∗

qpG
+
qp(−kix,−kiy) [ki cos θs − κtz ][ki cos θs + ki cos θi]

+ f∗
qpG

+
qp(−ksx,−ksy)[ki cos θs + κtsz][ki cos θs + ki cos θi]

}
+

1
2

{
f∗

qpG
−
qp(−kix,−kiy) [ki cos θs + κtz ][ki cos θs + ki cos θi]

+ f∗
qpG

−
qp(−ksx,−ksy)[ki cos θs − κtsz][ki cos θs + ki cos θi]

}
(B2)

c =
1
16

{
F+

qp (−kix,−kiy) F+∗
qp (−kix,−kiy) [ki cos θs − kiz][ki cos θs − kiz]

+F+
qp (−kix,−kiy)F+∗

qp (−ksx,−ksy) [ki cos θs − kiz][ki cos θi + ksz]

+F+
qp (−ksx,−ksy) F+∗

qp (−kix,−kiy) [ki cos θi + ksz][ki cos θs − kiz]

+ F+
qp (−ksx,−ksy) F+∗

qp (−ksx,−ksy) [ki cos θi + ksz][ki cos θi + ksz]
}

+
1
16

{
F+

qp (−kix,−kiy)F−∗
qp (−kix,−kiy) [ki cos θs − kiz][ki cos θs + kiz ]

+F+
qp (−kix,−kiy)F−∗

qp (−ksx,−ksy) [ki cos θs − kiz][ki cos θi − ksz]

+F+
qp (−ksx,−ksy) F−∗

qp (−kix,−kiy) [ki cos θi + ksz][ki cos θs + kiz]

+F+
qp (−ksx,−ksy) F−∗

qp (−ksx,−ksy) [ki cos θi + ksz][ki cos θi − ksz]
}

+
1
16

{
F+

qp (−kix,−kiy)G +∗
qp (−kix,−kiy) [ki cos θs − kiz][ki cos θs − κtz]

+F+
qp (−kix,−kiy)G +∗

qp (−ksx,−ksy) [ki cos θs − kiz][ki cos θi + κtsz ]

+F+
qp (−ksx,−ksy) G +∗

qp (−kix,−kiy) [ki cos θi + ksz][ki cos θs − κtz ]

+ F+
qp (−ksx,−ksy) G +

qp ∗ (−ksx,−ksy) [ki cos θi + ksz][ki cos θi + κtsz]
}

+
1
16

{
F+

qp (−kix,−kiy)G −∗
qp (−kix,−kiy) [ki cos θs − kiz][ki cos θs + κtz]

+F+
qp (−kix,−kiy)G −∗

qp (−ksx,−ksy) [ki cos θs − kiz][ki cos θi − κtsz ]

+F+
qp (−ksx,−ksy) G−∗

qp (−kix,−kiy) [ki cos θi + ksz][ki cos θs + κtz ]

+ F+
qp (−ksx,−ksy) G−∗

qp (−ksx,−ksy) [ki cos θi + ksz][ki cos θi − κtsz]
}

+
1
16

{
F−

qp (−kix,−kiy)F+∗
qp (−kix,−kiy) [ki cos θs + kiz][ki cos θs − kiz ]

+F−
qp (−kix,−kiy)F+∗

qp (−ksx,−ksy) [ki cos θs + kiz][ki cos θi + ksz]

+F−
qp (−ksx,−ksy) F+∗

qp (−kix,−kiy) [ki cos θi − ksz][ki cos θs − kiz]

+ F−
qp (−ksx,−ksy) F+∗

qp (−ksx,−ksy) [ki cos θi − ksz][ki cos θi + ksz]
}

+
1
16

{
F−

qp (−kix,−kiy)F−∗
qp (−kix,−kiy) [ki cos θs + kiz][ki cos θs + kiz ]

+F−
qp (−kix,−kiy)F−∗

qp (−ksx,−ksy) [ki cos θs + kiz][ki cos θi − ksz]

+F−
qp (−ksx,−ksy) F−∗

qp (−kix,−kiy) [ki cos θi − ksz][ki cos θs + kiz]

+ F−
qp (−ksx,−ksy) F−∗

qp (−ksx,−ksy) [ki cos θi − ksz][ki cos θi − ksz]
}
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+
1
16

{
F−

qp (−kix,−kiy) G +∗
qp (−kix,−kiy) [ki cos θs + kiz][ki cos θs − ktz ]

+F−
qp (−kix,−kiy) G +∗

qp (−ksx,−ksy) [ki cos θs + kiz][ki cos θi + ktsz]

+F−
qp (−ksx,−ksy)G +∗

qp (−kix,−kiy) [ki cos θi − ksz][ki cos θs − ktz ]

+ F−
qp (−ksx,−ksy)G +∗

qp (−ksx,−ksy) [ki cos θi − ksz][ki cos θi + ktsz]
}

+
1
16

{
F−

qp (−kix,−kiy) G−∗
qp (−kix,−kiy) [ki cos θs + kiz][ki cos θs + ktz ]

+F−
qp (−kix,−kiy) G−∗

qp (−ksx,−ksy) [ki cos θs + kiz][ki cos θ − ktsz]

+
(
F−

qp (−ksx,−ksy) G−∗
qp (−kix,−kiy) [ki cos θi − ksz][ki cos θs + ktz ]

)
+ F−

qp (−ksx,−ksy)G−∗
qp (−ksx,−ksy) [ki cos θi − ksz][ki cos θi − ktsz]

}
+

1
16

{
G +

qp (−kix,−kiy)F+∗
qp (−kix,−kiy) [ki cos θs − κtz ][ki cos θs − kiz]

+G +
qp (−kix,−kiy)F+∗

qp (−ksx,−ksy) [ki cos θs − κtz][ki cos θi + ksz]

+G +
qp (−ksx,−ksy)F+∗

qp (−kix,−kiy) [ki cos θi + κtsz][ki cos θs − kiz]

+ G +
qp (−ksx,−ksy)F+∗

qp (−ksx,−ksy) [ki cos θi + κtsz ][ki cos θi + ksz]
}

+
1
16

{
G +

qp (−kix,−kiy)F−∗
qp (−kix,−kiy) [ki cos θs − κtz ][ki cos θs + kiz]

+G +
qp (−kix,−kiy)F−∗

qp (−ksx,−ksy) [ki cos θs − κtz][ki cos θi − ksz]

+G +
qp (−ksx,−ksy)F−∗

qp (−kix,−kiy) [ki cos θi + κtsz][ki cos θs + kiz]

+ G +
qp (−ksx,−ksy)G −∗

qp (−ksx,−ksy) [ki cos θi + κtsz][ki cos θi − ksz]
}

+
1
16

{
G +

qp (−kix,−kiy)G +∗
qp (−kix,−kiy) [ki cos θs − κtz][ki cos θs − ktz ]

+G +
qp (−kix,−kiy)G +∗

qp (−ksx,−ksy) [ki cos θs − κtz ][ki cos θi + ktsz]

+G +
qp (−ksx,−ksy)G +∗

qp (−kix,−kiy) [ki cos θi + κtsz ][ki cos θs − ktz ]

+ G +
qp (−ksx,−ksy)G +∗

qp (−ksx,−ksy) [ki cos θi + κtsz][ki cos θi + ktsz]
}

+
1
16

{
G +

qp (−kix,−kiy)G−∗
qp (−kix,−kiy) [ki cos θs − κtz][ki cos θs + ktz ]

+G +
qp (−kix,−kiy)G−∗

qp (−ksx,−ksy) [ki cos θs − κtz ][ki cos θi − ktsz]

+G +
qp (−ksx,−ksy)G−∗

qp (−kix,−kiy) [ki cos θi + κtsz ][ki cos θs + ktz ]

+ G +
qp (−ksx,−ksy)G −∗

qp (−ksx,−ksy) [ki cos θi + κtsz][ki cos θi − ktsz]
}

(B3)

where ktsz =
√

k2
t − k2

sx − k2
sy.
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