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Reflection and Transmission of an Electromagnetic Wave due to
Fractal Slab Sandwiched between Ordinary Material

Safiullah Khan1, *, Muhammad J. Mughal1, 2, and Qaisar A. Naqvi3

Abstract—This paper presents an analytical solution to study the reflection and transmission of
an electromagnetic wave impinged upon a multilayered structure. The structure is composed of a
fractal slab sandwiched by ordinary material on either side. Modified Maxwell equations for fractional
dimension space are used to represent the fields in a fractal slab. The electromagnetic characteristics of
the structure are studied for different dimensions (D) and numerical results are presented for both
the classical (D is integer) and fractal (D is non-integer) slabs. This study provides foundations
for investigating the waveguides filled with fractal media and electromagnetic waves propagation in
multilayered structures at fractional boundaries.

1. INTRODUCTION

In optics, microelectronic and engineering, multilayered structures have been of great interest to
the researchers. In applications, such as lens designing, resonators, fibre optics, antireflection
coatings etc., properties of multilayered structures have been exploited [1, 2]. Multilayered structures
consisting of dielectric slabs or metallic sheets have been used in industry over the glass and plastic
substrate to operate on microwave frequency and/or optical frequency to produce shielding effect from
electromagnetic interference [3]. However, increase in losses and thickness are the serious limitations
associated with the use of metallic multilayered structures. Therefore, composite structures are used
as an alternate solution. Metamaterials (MTMs) are artificial composite structures made to acquire
unusual electromagnetic properties that do not exist in materials found in nature [4]. In recent
years, due to increasing interest of researchers in metamaterials, multilayered structures have gained
considerable attention in the the field of electromagnetics. The applications of multilayered structures
made up of metamaterials are polarization rotators, cloaks, electromagnetic tunneling, radomes and
filter designing [5–7].

When an electromagnetic (EM) field interacts with material, its behaviour mainly depends on
permeability (μ), permittivity (ε), and conductivity (σ) of the material. Multilayered structures are
made of alternating layers of material with different constitutive parameters [8–10]. Smirnova, et al.,
suggested to employ multilayer graphene structure to overcome the difficulty to excite the graphene
surface plasmon modes, due to its deep sub-wavelength nature [11]. Liu, et al., designed microwave
filter using ε-negative material [12]. Sabah, et al., proposed filters made up of double positive and
double negative MTMs and further concluded that chiral mirrors act as Bragg reflectors [10, 13]. Study
on multilayered structures carried out by researchers can be easily found in literature [5–13].

The slabs (layers) constituting multilayered structures have always been considered ordinary
dielectric [5–13]. If a fractal slabs were introduced instead of dielectric slabs, how would it affect the
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characteristics of these structures? Therefore, the aforementioned question and the analysis presented
in [29] about the quasi fractional slab provides motivation for this work.

In 1982, Mandelbrot described the irregular and complex structures and geometries by introducing
the concept of “fractals” [14]. This concept laid foundations to categorize objects such as Menger
sponge, Serpinski triangle, porous media etc., as fractal geometries [15]. In this way, Mandelbrot was
able to present a solution to differentiate between pure geometries and fractal geometries. It is not
easy to use euclidean geometry to model every object in this universe. Therefore, fractional calculus is
used to model these object in fractal geometry. Fractional calculus has been applied to various fields of
sciences and is used by many scientists and researchers to find solutions of complex problems. Fractional
calculus in physics and engineering has found applications in electrical, control and diffusive systems and
mechanics [17]. Therefore, the fractional calculus study provided a way to analyze an electromagnetic
wave propagation in fractal media [18]. Engheta presented the fractional solution to the Helmholtz wave
equation followed by analysis on the role of fractional calculus in electromagnetics [19, 20]. In 1998, he
also introduced the fractional curl operator in electromagnetics [21]. Naqvi et al. further extended the
work using fractional calculus and provided important results in the field of electromagnetics [22–
24]. Later on, Zubair et al. presented solutions to spherical wave, cylindrical wave, differential
electromagnetic (EM) wave and general plane wave in D-dimension fractional space [25]. Extending
these concepts electromagnetic wave interaction with fractal interfaces have been studied by various
researchers [26–28].

In the presented work, the effect of dimension of the slabs on the reflectance and transmittance
of the multilayered structure have been studied. In Section 2, structure layout, important parameters
and model are discussed. In Section 3, the expressions for the transmission and reflection as a function
of dimension, incident angle, slab width and frequency are derived. Transfer Matrix Method (TMM)
is used to find the solutions. Numerical results to these expressions have then presented in Section 4
followed by the conclusion in Section 5.

2. DESIGN AND MODEL

A planar stratified structure used in this paper is composed of three layers, as shown in Figure 1. The
structure is placed in cartesian coordinate system. The slabs are infinite in length. A quasi fractional
space, slab F is sandwiched between homogenous, isotropic and non dispersive medium, slabs A. Index
of refraction, wave number, and width for slab A are denoted by nA, kA, and dA, respectively and for
slab F, are denoted by nF , kF , and dF , respectively. Constitutive parameters associated with slab A are
(μA, εA) and slab F are (μF , εF ). The structure is placed in air having index of refraction, n◦ =

√
μ◦ε◦.

Intrinsic impedance of the slabs for non-magnetic material is given by ηi = η◦
ni

, where i = (A,F, ◦) and
η◦ is the free space impedance. When wave travels in a slab from one point to another, the optical width
is the geometric length d multiplied by n (refractive index of the slab). Therefore, optical width of slab
A and slab F are |nA|dA and |nF |dF , respectively. Transfer Matrix Method (TMM) is used to find
the relation for reflected fields and transmitted fields. TMM helps in avoiding tedious calculations by
solving matrices for periodic multilayered structures. In TMM, matching matrices relate fields on one
side of the interface (Ii where i = 1, AF, FA, 2) to the other side and propagation matrices include the
phase change occurred while propagating through optical width of slab. Combining matching matrices
and propagation matrices yields transition matrix, which gives the expression for incident and reflected
fields with transmitted fields. Note that fractionality of slab F is taken only in single direction i.e.,
z-axis and ejωt is the time dependency considered in this paper and is kept suppressed.

3. FORMULATION

A plane wave of magnitude Ei impinges on a three layered structure at an interface I1 (located at
z = 0) with an incident angle of θi from air. It is partially reflected with the magnitude Er at a
reflection angle θr and partially transmitted through the structure. The magnitude of transmitted field
is Et and transmission angle is θt. The electric and magnetic field expressions for incident, reflected
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Figure 1. Three layered structure with fractal slab sandwiched.

and transmitted wave in air and slab A are [9],

Ei = [Ei‖(x̂ cosθi
+ẑ sinθi

) + Ei⊥ŷ]e−jk◦(ẑ cosθi
−x̂ sinθi

), (1)

Er = [Er‖(x̂ cosθr −ẑ sinθr) + Er⊥ŷ]ejk◦(r̂ cosθr +x̂ sinθr ), (2)

Et = [Et‖(x̂ cosθt +ẑ sinθt) + Et⊥ŷ]e−jk◦(ẑ cosθt
−x̂ sinθt

), (3)

Hi =
1
η
[Ei‖ŷ − Ei⊥(x̂ cos θi + ẑ sin θi)]e−jk◦(ẑ cosθi

−x̂ sinθi
), (4)

Hr =
1
η
[Er⊥(x̂ cos θr − ẑ sin θr − Er‖ŷ)]ejk◦(r̂ cosθr +x̂ sinθr ), (5)

Ht =
1
η
[Et‖ŷ − Et⊥(x̂ cos θt + ẑ sin θt)]e−jk◦(ẑ cosθt

−x̂ sinθt
), (6)

In above equations, the incident, reflected and transmitted fields are represented by the subscripts
i, r, and t, respectively. Subscripts ⊥ and ‖ denote the perpendicular and parallel components of
corresponding field, respectively. η and k◦ are the intrinsic impedance and wave number.

The wave incident on slab A from air, after propagating through optical path length of slab A,
interacts with slab F at interface IAB. Slab F is composed of fractal medium. Its dimension is
represented by D (2 ≤ D ≤ 3). Electric and magnetic fields for fractal structures are computed using
modified Maxwell equations [25]. Therefore, incident, reflected and transmitted fields in slab F can be
written as,

Ei = [Ei‖(x̂ cos θi + ẑ sin θi) + Ei⊥ŷ]e−jkF (−x sin θi)(kF z cos θi)n
[
H(2)

n (kF z cos θi)
]
, (7)

Er = [Er‖(x̂ cos θr − ẑ sin θr) + Er⊥ŷ]e−jkF (−x sin θr)(kF z cos θr)n
[
H(1)

n (kF z cos θr)
]
, (8)

Et = [Et‖(x̂ cos θt + ẑ sin θt) + Et⊥ŷ]e−jkF (−x sin θt)(kF z cos θt)n
[
H(2)

n (kF z cos θt)
]
, (9)

Hi =
1
η
[Ei‖ŷ − Ei⊥(x̂ cos θi + ẑ sin θi)]e−jkF (−x sin θi)(kF z cos θi)nh

[
H

(2)
nh (kF z cos θi)

]
, (10)

Hr =
1
η
[−Er‖ŷ + Er⊥(x̂ cos θr − ẑ sin θr)]e−jkF (−x sin θr)(kF z cos θr)nh

[
H

(1)
nh (kF z cos θr)

]
, (11)

Ht =
1
η
[Et‖ŷ − Et⊥(x̂ cos θt + ẑ sin θt)]e−jkF (−x sin θt)(kF z cos θt)nh

[
H

(2)
nh (kF z cos θt)

]
, (12)

where, x̂, ŷ and ẑ are the unit vectors. Similarly, subscripts i, r and t represent the incident, reflected
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and transmitted wave, respectively in fractal slab with ‖ (parallel) and ⊥ (perpendicular) components.
The wave travelling in +z axis (forward propagating wave) is denoted by Hankel function of the second
kind and wave travelling in −z axis (backward propagating wave) is expressed by Hankel function of
the first kind. Order of the Hankel function is given by subscripts n or nh. Moreover, n = |3−D|

2 and
nh = |D−1|

2 where D is the dimension. Wave number (kF ) = ω
√

με and index of refraction (nF ) are
assumed to be almost equal to that of integer spaces.

In order to find the relation between the fields on either side of the structure and study the effect
of frequency, angle and dimension on the fields, boundary conditions are applied at each interface
(I1, IAF , IFA, I2) of the structure. I1, IAF , IFA, and I2 represent the air-dielectric, dielectric-fractal,
fractal-dielectric, and dielectric-air interface, respectively. Applying boundary conditions on each
interface yields matching matrices (M1,MAF ,MFA,M2). To compute MAF , Eq. (19) represent equation
in matrix form.⎡
⎢⎢⎢⎢⎣

cos θi 0 cos θr 0

0 1 0 1

0 −nA cos θi 0 nA cos θr

nA 0 −nA 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

EA
i‖

EA
i⊥

EA
r‖

EA
r⊥

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

H2e cos θi 0 H1e cos θr 0
0 H2e 0 H1e

0 −nBH2h cos θi 0 nBH1h cos θr

nBH2h 0 −nBFH1h 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

EB
i‖

EB
i⊥

EB
r‖

EB
r⊥

⎤
⎥⎥⎥⎥⎥⎦

,

(13)
where,

H1e = (kF z cos θr)n
[
H(1)

n (kF z cos θr)
]
, (14)

H2e = (kF z cos θi)n
[
H(2)

n (kF z cos θi)
]
, (15)

H1h = (kF z cos θr)nh
[
H

(1)
nh (kF z cos θr)

]
, (16)

H2h = (kF z cos θi)nh
[
H

(2)
nh (kF z cos θi)

]
, (17)

[MAF ] in Eq. (18) can be obtained by substituting Eq. (14)–(17) in Eq. (13) by applying matrix
operations,⎡
⎢⎢⎢⎢⎣

EA
i‖

EA
i⊥

EA
r‖

EA
r⊥

⎤
⎥⎥⎥⎥⎦ = [MAF ]

⎡
⎢⎢⎢⎢⎢⎣

EB
i‖

EB
i⊥

EB
r‖

EB
r⊥

⎤
⎥⎥⎥⎥⎥⎦

. (18)

[MAF ] =

⎡
⎢⎢⎢⎢⎣

cos θi 0 cos θr 0

0 1 0 1

0 −nA cos θi 0 nA cos θr

nA 0 −nA 0

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

H2e cos θi 0 H1e cos θr 0
0 H2e 0 H1e

0 −nBH2h cos θi 0 nBH1h cos θr

nBH2h 0 −nBFH1h 0

⎤
⎥⎥⎥⎦. (19)

Similar procedure is followed for matching matrices [M1], [MFA] and [M2]. All the matching matrices
constituted are of 4×4 size except [M2] which is 4×2. After computing matching matrices, propagation
matrix for each slab is constructed. It is a 4 × 4 diagonal matrix which includes path difference due to
change in refractive indices. Eq. (20) shows a propagation matrix for slab A,

PA =

⎡
⎢⎢⎢⎣
e−jk◦dA 0 0 0

0 e−jk◦dA 0 0
0 0 ejk◦dA 0
0 0 0 ejk◦dA

⎤
⎥⎥⎥⎦ (20)
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A 4 × 2 transition matrix is constructed using propagation matrices and matching matrices as shown
in Eq. (22). It relates the incident and reflected fields with transmitted field. In this equation, m is a
positive integer which represents structure periodicity. The equation holds true for structure composed
of any odd number of slabs. ⎡

⎢⎢⎢⎣
Ei‖
Ei⊥
Er‖
Er⊥

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12

a21 a22

a31 a32

a41 a42

⎤
⎥⎥⎥⎦

[
Et‖
Et⊥

]
(21)

T =

⎡
⎢⎢⎢⎣
a11 a12

a21 a22

a31 a32

a41 a42

⎤
⎥⎥⎥⎦ = [M1][PA][T1]m[M2] (22)

T1 = [MAB ][PB ][MBA][PA] (23)

The mathematical expressions derived in this section are valid for non-integer values of dimensions.
Inserting integer value of dimension (D = 1, 2, 3) verifies classical results. In Eq. (21), incident, reflected
and transmitted fields are function of frequency (f), incident angle (θi), dimension (D), and optical
width. Numerical results for three layered are presented in Section 4.

4. RESULTS

In this section, numerical results for three layered structure composed of dielectric-fractal-dielectric
interface are presented. The structure presented is periodic i.e., AFA and can be extended to odd
number of slabs. Optical width of all the slabs is λ◦/4, where λ◦ is the wavelength at operational
frequency 1 THz. Firstly, effect of dimension on the characteristic of reflection and transmission from
the structure when the frequency is varied is shown in Figure 2. In this figure only parallel polarized
wave is considered (Ei‖ �= 0, Ei⊥ = 0). In Figure 2(a), it can be seen that reflected power at (0.8,
1.4, 1.65, 2.3, 2.6, 3.2 and 3.85) THz increases as the dimension of the sandwiched slab increases from
2.0D to 2.5D. The structure behaves like a narrow band filter for 2.0D, 2.3D and 2.5D with maximum
bandwidth of 0.2 THz at centre frequency 3.2 THz for wave passing through 2.5D medium. Figure 2(b)
shows the transmitted field behaviour. It contains sharp narrowband peaks with approximately 100%
power (anti-reflective) at even harmonics for wave passing through 2.0D, 2.3D and 2.5D. Secondly,
the effect of dimension on the characteristic of reflection and transmission from the structure when
the incident angle is varied is shown in Figure 3. Figure 3(a), shows that the reflection power is
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Figure 2. Reflectance and transmittance versus frequency for three layered structure with nA = 2.5,
nF = 2.0, |nA|dA = |nF |dF = λ◦/4, and θi = 0◦.
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Figure 3. Reflectance and transmittance versus incident angle for three layered structure with nA = 2.5,
nF = 2.0 |nA|dA = |nF |dF = λ0/4, and f/f0 = 1.5.

always greater when 2.5D and 2.3D medium are sandwiched except between (43◦–50◦) and (40◦–50◦),
respectively. The minimum reflection power when 2.0D medium is sandwiched is zero at (35◦, 57◦,
69◦ and 81◦). The minimum reflection power when 2.3D and 2.5D medium are sandwiched between
ordinary material are 5% and 10% at 69.5◦ and 70.5◦, respectively. Figure 3(b), shows the transmit
power as a function of incident angle and dimension.

5. CONCLUSION

In this paper, analysis and solution to fractal structure sandwiched between ordinary material are
presented using modified Maxwell equations for fractional space. Field equations inside fractal slab
follow the fractional space equations. Reflection and transmission coefficients are obtained as a
function of dimension, frequency, and angle of incidence for periodic multilayered structures by applying
boundary conditions on all the interfaces of structure and Maxwell’s curl equations. The reflection
and transmission coefficients for parallel polarized wave are presented. These results show interesting
frequency and incident angle analysis when dimension changes. The study explores ways to investigate
waveguides and slabs filled with fractal medium and provide analysis for wave propagation at fractal
boundaries.
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