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Broadband Green’s Function with Low Wavenumber Extraction
for Arbitrary Shaped Waveguide and Applications to

Modeling of Vias in Finite Power/Ground Plane

Leung Tsang* and Shaowu Huang

Abstract—In this paper we developed the method of broadband Green’s function with low wavenumber
extraction (BBGFL) for arbitrary shaped waveguide. The case of Neumann boundary condition is
treated. The BBGFL has the advantage that when using it to solve boundary value problems in a
waveguide, the boundary conditions have been satisfied already. The broadband Green’s function is
expressed in modal expansion of modes that are frequency independent. To accelerate the convergence
of the Green’s function, a low wavenumber extraction is performed. The singularity of the Green’s
function is also extracted by such low wavenumber extraction. Numerical results show that BBGLF
and direct MoM are in good agreement. We next illustrate the application of BBGFL for broadband
simulations of vias in printed circuit boards (PCB) by combining with the method of Foldy-Lax multiple
scattering equation. The results show that BBGFL are in good agreement with MoM and HFSS. It is
also shown that BBGFL is many times faster than direct MoM and HFSS. The computational efficiency
in broadband simulations makes this technique useful for fast computer-aided design (CAD).

1. INTRODUCTION

The effects of waveguide or cavity structures are critical for the electrical performance of electronic
devices and components in signal integrity (SI), power integrity (PI), electromagnetic interference (EMI),
and electromagnetic compatibility (EMC). Harmful electromagnetic signal noises or interferences are
often generated and amplified at the resonant frequencies of the waveguide or cavity structures. The
issues deteriorate when the electronic devices or computer systems operate at higher frequency or faster
speed. In printed circuited boards (PCBs), two adjacent power/ground planes form a waveguide/cavity
structure. The propagating modes satisfy the PMC (Neumann boundary conditions) at the edges
of PCB power/ground plane structures. The power/ground plane structures are the key root causes
in SI/PI and EMI/EMC problems. Vias are used for vertical interconnects for multilayer PCBs. At
frequencies near the resonant frequencies, the propagating electromagnetic waves excite resonant modes,
that result in strong edge radiations. These cause EMI/EMC problems. The switching noises induced
by voltage regulator module (VRM) generate voltage fluctuations and lead to PI problems. The high
frequency power noise can also couple into signal vias and cause SI/PI coupling issues. Therefore, the
modeling of PCB cavity with vias is critical in practical designs and applications of high speed PCBs
and packages. Fast and accurate modeling technique is desired for broadband simulations in electronic
design and application. The finiteness of the parallel power/ground planes make them waveguide/cavity
structures. The power/ground planes are also of arbitrary shape. Commercial tools such as HFSS
provide solutions for the analysis of the via-cavity coupling problem. The tools require large CPU and
memory and are not suited for broadband analysis. The physical problem is that of TM modes in a
cavity with PMC boundary conditions on the side walls. Various methods have been used for waveguide
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problem of arbitrary shape [1–14]. For example, analytical methods were developed for rectangular
structures [3, 4]. Numerical methods such as transmission matrix method [5], finite differential time
domain (FDTD) method [6], and finite differential method (FDM) [7] were used for arbitrarily shaped
structures. The boundary integral resonant mode expansion (BI-RME) method [8] was used to calculate
the modes of arbitrarily shaped waveguide.

Green’s function method with MoM has played an important role in the modeling waveguide/cavity
structures and printed circuit boards (PCBs) [9–14]. The standard MoM method as in References [10, 11]
consists of using the free space Green’s function to formulate the integral equation. The disadvantage of
the use of the free space Green’s function is that, one solves the boundary value problem of an arbitrary
shaped waveguide for each frequency. For broadband simulations, the dense MoM matrix equation
needs to be solved many times leading to low computational efficiency. In this paper, a novel technique,
the broadband Green’s function with low wavenumber extraction (BBGFL), is proposed for fast and
accurate modeling of problems in arbitrarily shaped waveguide/cavity structures. The technique is also
is applied to the problem of high speed interconnects. Broadband Green’s functions exist for rectangular
waveguide and circular waveguide [15]. In this paper we develop the broadband Green’s function for
waveguide of arbitrary shape. Unlike the MoM method in [10, 11], the MoM in BBGFL is solved only
once for low wavenumber extraction.

Using the BBGFL method, we compute the modes of the arbitrary shape waveguide with a reference
Green’s function. Then we use the modes to construct the broadband Green’s function. In addition, a
low wavenumber extraction is introduced to accelerate the convergence of the modal expansion of the
broadband Green’s function. The merits of the methodology of BBGFL in this paper are: (1) a fast
technique for computing the broadband Green’s functions is developed; (2) the convergence of the modal
expansion is accelerated using low wavenumber extractions; (3) with the low wavenumber extraction,
the singularity of the broadband Green’s function is also extracted, (4) the MoM with free space Green’s
function is used only once for the low wavenumber, and (5) the BBGFL is combined with the method
of Foldy-Lax multiple scattering equations [9–14, 16–21] for fast and accurate field simulations of vias
in arbitrarily shaped PCB power/ground planes.

2. METHODOLOGY

2.1. Broadband Bounded Green’s Function with Low Frequency Extractions

In this section we derive the equations for the BBGFL technique and illustrate it for the L-shape
waveguide. The methodology applies to waveguide of arbitrary shape. In Figures 1(a), and 1(b), we
show respectively the rectangular waveguide with domain Ω and the L shape waveguide with domain

(a) (b)

Figure 1. (a) Rectangle cavity Ω with boundary ∂Ω. gΩ
H(k, ρ̄, ρ̄ ′) is Green’s function with wavenumber

k for Ω, gΩ
H(kΩ

L , ρ̄, ρ̄
′) = g0(kΩ

L , ρ̄, ρ̄
′) + gΩ

HR(kΩ
L , ρ̄, ρ̄

′) is Green’s function at low wavenumber kΩ
L . (b)

L-shaped cavity S with boundary ∂S. gS
H(k, ρ̄, ρ̄ ′) is Green’s function with general wavenumber k for

S, gS
H(kS

L, ρ̄, ρ̄
′) = g0(kS

L, ρ̄, ρ̄
′) + gS

HR(kS
L, ρ̄, ρ̄

′) is Green’s function at low wavenumber kS
L.
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S. The boundaries are ∂Ω and ∂S respectively. The boundary σ in Figures 1(a) and 1(b) is the part of
∂S that is not in ∂Ω.

The problem in PCB consists of multiple vias in the L-shaped waveguide S. The BBGFL can be
applied to many vias. For the sake of illustration of the technique, we showed two vias one centered at
ρ̄p and the other centered at ρ̄q in Figure 1(b). The goal is to solve the problem in Figure 1(b) for a
broad range of frequencies. The Green’s function gΩ

H(k, ρ̄, ρ̄ ′) for rectangular waveguide Ω has been used
in the BI-RME method [8]. The Green’s function is at the wavenumber k. In this paper, we go beyond
the rectangular waveguide Ω to develop the Green’s function gS

H(k, ρ̄, ρ̄ ′) for the L-shape waveguide S.
The subscript H is to denote the Neumann boundary condition on the boundary ∂Ω and ∂S.

The physical problem in Figure 1(b) is that of TM modes with PMC on the boundary ∂S and
PEC on the boundary of the vias. In waveguide problems with PEC side walls, the Neumann boundary
condition corresponds to the TE case. However, in this present problem, it corresponds to the TM case.
For the present problem, the wave function ψ represents the Ez component of the TM wave.

2.1.1. Broadband Green’s Function gΩ
H(k, ρ̄, ρ̄ ′) and gS

H(k, ρ̄, ρ̄ ′) with Low Wavenumber Extraction

Consider a rectangular waveguide Ω of dimensions Lx and Ly, −Lx
2 < x < Lx

2 , −Ly

2 < y <
Ly

2 . The
modal solutions are

ΨΩ
mn(r̄) =

√
ξmξn
LxLy

cos
mπ

Lx

(
x+

Lx

2

)
cos

nπ

Ly

(
y +

Ly

2

)
(1)

where m,n = 0, 1, 2, . . .; ξm = 2 if m �= 0; and ξm = 1 if m = 0. Let kmn =
√

(kxm)2 + (kyn)2 be the
resonant wavenumber of the rectangular waveguide Ω with kxm = mπ

Lx
, kyn = nπ

Ly
.

We use α as the combined index of (m, n). Then

gΩ
H

(
k, ρ̄, ρ̄ ′) =

∑
α

ψΩ
α (ρ̄)ψΩ

α (ρ̄ ′)
k2

α − k2
(2)

In the BIRME method [8], the convergence of the modal expansion for the rectangular waveguide is
accelerated by the extraction at DC. In the following, we use a low wavenumber extraction to accelerate
the convergence. Note that the low wavenumber extraction is applicable for Ω as well as for the arbitrary
waveguide S. Let the low wavenumber be kΩ

L , which is much lower than the wavenumber of interest.
That is kΩ

L � k = ω
√
με.

We calculate gΩ
H(kΩ

L , ρ̄, ρ̄
′) as the sum of the free space Green’s function and the response

gΩ
H

(
kΩ

L , ρ̄, ρ̄
′) = g0

(
kΩ

L , ρ̄, ρ̄
′)+ gΩ

HR

(
kΩ

L , ρ̄, ρ̄
′) (3)

where
g0
(
kΩ

L , ρ̄, ρ̄
′) =

1
4j
H

(2)
0

(
kΩ

L , ρ̄, ρ̄
′) (4)

In Equations (3) and (4), H(2)
0 is the 0th order Hankel function of the second kind, and gΩ

HR(kΩ
L , ρ̄, ρ̄

′)
is the response at the single low wavenumber kΩ

L . In the appendix, we describe the calculations of the
impedance matrix elements associated with the free space Green’s function and the response Green’s
function for the low wavenumber kΩ

L . Then the decomposition of gΩ
H(k, ρ̄, ρ̄ ′) is as follows

gΩ
H

(
k, ρ̄, ρ̄ ′) = g0

(
kΩ

L , ρ̄, ρ̄
′)+ gΩ

HR

(
kΩ

L , ρ̄, ρ̄
′)+

∑
α

k2 − (kΩ
L

)2
(k2

α − k2)
(
k2

α − (kΩ
L

)2)ψΩ
α (ρ̄)ψΩ

α

(
ρ̄ ′) (5)

Note that the modal expansion now converges as 1/k4
α. Also gΩ

H(k, ρ̄, ρ̄ ′) needs only be calculated for ρ̄
and ρ̄ ′ on the L part of the boundary which is denoted as σ in Figure 1(b).
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2.1.2. Calculation of gS
H(k, ρ̄, ρ̄ ′) Modal Solution ψS

β and Resonant Wavenumber kS
β

The Green’s function for the L-shaped waveguide S is

gS
H

(
k, ρ̄, ρ̄ ′) =

∑
β

ψS
β (ρ̄)ψS

β (ρ̄ ′)(
kS

β

)2
− k2

(6)

where ψS
β (ρ̄) is the modal solution of S and kS

β the corresponding resonant wavenumber. Following a
procedure similar to BI-RME [8], an integral equation approach is formulated to calculate ψS

β (ρ̄) by
using the gΩ

H(k, ρ̄, ρ̄ ′) with low wavenumber extraction and equivalent sources on σ. There are some
differences from BI-RME in the matrix equation because we use low wavenumber extraction instead of
DC extraction. The wave function ψS

H obeys the wave equation(∇2
t + k2

)
ψS

H = 0 (7)

with Neumann boundary condition n̂t · ψS
H = 0 on ∂S. Applying the Green’s theorem to domain S to

the two functions ψS
H , and gΩ

H , there is a contribution from the surface integral on σ because gΩ
H does

not obey boundary condition on σ. The result integral equation is

−ψs
H (ρ̄) =

∫
σ
dl′
(
ψs

H

(
ρ̄ ′) n̂′t · ∇′

tg
Ω
H

(
k, ρ̄, ρ̄ ′)) (8)

Substitute gΩ
H(k, ρ̄, ρ̄ ′) from (5) into (8), we obtain

ψs
H (ρ̄)=−

∫
σ
dl′ψs

H

(
ρ̄ ′) n̂′t·∇′

tg0
(
kΩ

L , ρ̄, ρ̄
′)−∫

σ
dl′ψs

H

(
ρ̄ ′) n̂′t·∇′

tg
Ω
HR

(
kΩ

L , ρ̄, ρ̄
′)−∑

α
bα

ψα (ρ̄)

k2
α − (kΩ

L

)2 (9)

with

bα =
k2 − (kΩ

L

)2
k2

α − k2

∫
σ
dl′ψs

H

(
ρ̄ ′) n̂′t · ∇′

tψα

(
ρ̄ ′) (10)

Equation (9) can be solved by the method of moments with point matching and pulse basis functions.
Note that the singularity is only in the term containing the free space Green’s function n̂′t ·∇′

tg0(kΩ
L , ρ̄, ρ̄

′)
at low wavenumber kΩ

L . We discretizing σ into N patches of Δt length each. Let the unknowns be

ψS
Hn =

qn
Δt

(11)

on σn, where σn is the nth patch on σ with n = 1, 2, . . . , N . Let the truncation of the modal expansion
be at M terms, such that α = 1, 2, . . . ,M .

We define the matrix elements Pmn which is at a single low wavenumber kΩ
L

Pmn =
(

1
2

)
1

Δt
+

1
Δt

∫
σm

dl′n̂′t · ∇′
tg

Ω
HR

(
kΩ

L , ρ̄m, ρ̄
′) (12a)

for n = m, and

Pmn =
1

Δt

∫
σn

dl′n̂′t · ∇′
tg

Ω
H

(
kΩ

L , ρ̄m, ρ̄
′) (12b)

for n �= m. Let

Smα =

(
1

k2
α − (kΩ

L

)2
)
ψα (ρ̄m) (13)

In the appendix, we describe the method that we used to calculate Pmn.
In matrix notations

S b̄+ P q̄ = 0 (14)

where S is of dimension N × M with matrix elements described in (13), P is of dimension N × N
with matrix elements described in (12), b̄ is the unknown eigenvector of dimension M × 1, and q̄ is of
dimension N × 1 with elements defined in (11).
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Let

Qαn =

(
1

k2
α − (kΩ

L

)2
)[

n̂′t · ∇′
tψα

(
ρ̄ ′)]

ρ̄ ′=ρ̄n
(15)

Then

bα =
k2 − (kΩ

L

)2
k2

α − k2

(
k2

α − (kΩ
L

)2)∑N

n=1
Qαnqn (16)

Let

Dαβ =

(
1

k2
α − (kΩ

L

)2
)
δαβ (17)

Then, in matrix notations

D b̄+Q q̄ =
1

k2 − (kΩ
L

)2 b̄ (18)

where D is of dimension M ×M and Q is of dimension M ×N .
Combining the two matrix Equations (14) and (17) gives the eigenvalue problem(

D −QP
−1
S

)
b̄ =

1
k̃2
b̄ (19)

with k̃2 = k2 − (kΩ
L )2. Solving the eigenvalue problem gives the resonant wavenumber k and the

associated eigenvector b̄. Note that D −QP
−1
S is independent of k.

2.1.3. Normalization of Modes for Neumann Case

The size of the matrix eigenvalue equation in (19) is M . Let β be the eigenvalue index, kS
β be the

resonant wavenumber and bαβ be the eigenvector. After solving (19), we next normalize the modes
ψS

β (ρ̄).
Let

ψ̃s
β (ρ̄) =

∑M

α=1
bαβ

ψα (ρ̄)

k2
α − (kΩ

L

)2 (20)

Substitute (20) into (9) and apply ∇2. Then

∇2ψ̃s
β (ρ̄) = −∇2ψs

H (ρ̄) +
(
kΩ

L

)2 ∫
σ
dl′ψs

H

(
ρ̄ ′) n̂′t · ∇′

tg
Ω
H

(
kΩ

L , ρ̄, ρ̄
′) (21)

We discretize the L-shaped boundary σ, and use the discretized unknowns qn. Equation (20) gives(
kS

β

)2
ψs

β (ρ̄) =
∑M

α=1
bαβ

k2
αψα (ρ̄)

k2
α − (kΩ

L

)2 +
(
kΩ

L

)2∑N

n=1
qn
[
n̂′t · ∇′

tg
Ω
H

(
kΩ

L , ρ̄, ρ̄
′)]

ρ̄′=ρ̄n
(22)

2.1.3.1 Case of kβ �= 0
Let the nth element of the column vector ζ̄(ρ̄) be[

ζ̄ (ρ̄)
]
n

=
[
n̂′t · ∇′

tg
Ω
H

(
kΩ

L , ρ̄, ρ̄
′)]

ρ̄′=ρ̄n
(23)

Then (
kS

β

)2
ψs

β (ρ̄) =
∑M

α=1
bαβ

k2
αψα (ρ̄)

k2
α − (kΩ

L

)2 +
(
kΩ

L

)2 [
ζ̄t (ρ̄)

]
q̄ (24)

where t denotes the transpose of the matrix.
The normalization is∫∫

S
dxdy

(
ψs

β (ρ̄)
)2 =

1(
kS

β

)4

∫∫
S
dxdy

∑
α

∑
α′

[
bαβk

2
αψα (ρ̄)

k2
α − (kΩ

L

)2 bα′βk
2
α′ψα′ (ρ̄)

k2
α′ −

(
kΩ

L

)2
]
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+
1(
kS

β

)2

∫∫
S
dxdy

∑
α′

[
bα′βk

2
α′ψα′ (ρ̄)

k2
α′ −

(
kΩ

L

)2
] (

kΩ
L

)2(
kS

β

)2

[
ζ̄t (ρ̄)

]
q̄

+
1(
kS

β

)2

∫∫
S
dxdy

∑
α

[
bαβk

2
αψα (ρ̄)

k2
α − (kΩ

L

)2
] (

kΩ
L

)2(
kS

β

)2

[
ζ̄t (ρ̄)

]
q̄

+
∫∫

S
dxdy

⎡
⎢⎣
(
kΩ

L

)2(
kS

β

)2

[
ζ̄t (ρ̄)

]
q̄

⎤
⎥⎦

2

(25)

We use the property k2
α

∫∫
S dxdyψα(ρ̄) = 0. Then

∫∫
S
dxdy

(
ψs

β (ρ̄)
)2 =

1(
kS

β

)4

∑
α

(bαβ)2
(

k2
α

k2
α − (kΩ

L

)2
)2

+
∫∫

S
dxdy

⎡
⎢⎣
(
kΩ

L

)2(
kS

β

)2

[
ζ̄t (ρ̄)

]
q̄

⎤
⎥⎦

2

(26)

Since
∫∫

S dxdy(ψ
s
β(ρ̄))2 = 1 and kΩ

L � kS
β , the normalization condition for the eigenvector is∑M

α=1
(bαβ)2 =

(
kS

β

)4
(27)

2.1.3.2 Case of kS
β = 0

The constant mode is a solution for the arbitrary waveguide with Neumann boundary condition.
The constant mode for the L-shaped waveguide is

ψS
0 (ρ̄) =

√
1
AS

(28)

where AS = area of L-shaped waveguide.

2.1.4. Broadband Green’s Function for L-shaped Waveguide and Low Wavenumber Extraction

After the normalized modal functions are calculated, the Green’s function for the Neumann problem of
the L-shaped waveguide is as given in Equation (6). The modal functions and eigenvalues are calculated
by (19) for kS

β �= 0 and by (28) for kS
β = 0. We will further use low wavenumber extraction for gS

H of the
arbitrary waveguide. Note that we use low wavenumber extraction, twice, with kΩ

L for the rectangular
waveguide and kS

L for the waveguide with arbitrary shape. Let the solution be denoted by gS
H(kS

L, ρ̄, ρ̄
′).

When calculating the solution by MoM at kS
L, the solution is separated into the sum of the primary

g0(kS
L, ρ̄, ρ̄

′) and the response gS
HR(kS

L, ρ̄, ρ̄
′).

gS
H

(
kS

L, ρ̄, ρ̄
′) = g0

(
kS

L, ρ̄, ρ̄
′)+ gS

HR

(
kS

L, ρ̄, ρ̄
′) (29)

With the low wavenumber extraction the Green’s function gS
H(k, ρ̄, ρ̄ ′) for arbitrary k is

gS
H

(
k, ρ̄, ρ̄ ′) = g0

(
kS

L, ρ̄, ρ̄
′)+ gS

HR

(
kS

L, ρ̄, ρ̄
′)+

∑
β

k2 − (kS
L

)2((
kS

β

)2 − k2

)((
kS

β

)2 − (kS
L

)2)ψS
β (ρ̄)ψS

β

(
ρ̄ ′)

(30)
Equation (30) is the result of the Broadband Green’s function with low wavenumber extraction
(BBGFL). Note that:

i) The modal summation in (30) has convergence of (kS
β )−4;

ii) The singularity of the Green’s function in (30) has been subtracted and resides in the primary
Green’s function of the single low wavenumber, g0(kS

L, ρ̄, ρ̄
′);
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iii) The wave functions ψS
β (ρ̄), and resonant wavenumber kS

β only depend on geometry. They are
computed once and used for all frequencies;

iv) The part of the expression that depends on frequencies and material properties are in k2 in (30);
v) The computations of broadband Green’s function gS

H(k, ρ̄, ρ̄ ′) are usually only needed for a small
set of points ρ̄ and ρ̄ ′ since the Neumann boundary conditions on ∂S have been satisfied.

2.1.5. Summary Procedure for Computing gS
H(k, ρ̄, ρ̄′)

In summary, the steps in the procedure as follows:
Step 1: At a single low wavenumber kΩ

L , calculate the impedance matrix elements of Pmn of Equation (12)
as given in Appendix A.
Step 2: Use Equation (18) to solve for eigenmodes ψS

β (ρ̄) and resonant wavenumbers kS
β .

Step 3: The normalization of modes ψS
β (ρ̄) are performed by Equations (27) and (28).

Step 4: At a single low wavenumber kS
L, solve MoM equations for L-shaped waveguide to get

gS
H(kS

L, ρ̄, ρ̄
′). Decompose into primary and response as in (29).

Step 5: Construct broadband Green’s function gS
H(k, ρ̄, ρ̄ ′) using low wavenumber extraction of

gS
H(kS

L, ρ̄, ρ̄
′), and normalized modal solutions ψS

β (ρ̄) as in Equation (30).
The response Green’s function, gS

HR(k, ρ̄, ρ̄ ′) is given by subtracting the primary at k

gS
HR

(
k, ρ̄, ρ̄ ′) = g0

(
kS

L, ρ̄, ρ̄
′)+ gS

HR

(
kS

L, ρ̄, ρ̄
′)− g0

(
k, ρ̄, ρ̄ ′)

+
∑

β

k2 − (kS
L

)2((
kS

β

)2 − k2

)((
kS

β

)2 − (kS
L

)2)ψS
β (ρ̄)ψS

β

(
ρ̄ ′) (31)

The procedure thus includes one MoM solution at low wavenumber kS
L for arbitrarily shaped waveguide

(L-shaped waveguide). The result in Equation (31) is labelled as broadband because the dependence on

frequency/wavenumber is merely in the factor (k2−(kS
L)2)

((kS
β )2−k2)

while the rest of the expression is independent

of wavenumber/frequency.
The method of DC extraction is used in BI-RME [8] for the cases of rectangular waveguide

and circular waveguide. In such cases, closed form analytical expressions were obtained for the DC
extraction. The DC extraction offers only a small advantage for rectangular and circular waveguides.
Analytical expressions of DC extraction have not been derived for arbitrary shape waveguide S. At
frequency in the GHz range, we find it convenient to use low wavenumber extraction because the method
is general and can be implemented numerically for rectangular, circular and arbitrary shape waveguides
rather than relying on closed form analytical expressions. Another reason is because the DC extraction
method needs to deal with the mode at kmn = 0 for arbitrary shape waveguide, while low wavenumber
extraction circumvents the problem. We also use a modal series representation in the Appendix for low
wavenumber extraction of the rectangular waveguide.

It is to be noted that the BIRME [8] had not been used to construct the Green’s function for the
arbitrary waveguide. In this paper, we use the modes of arbitrary waveguide to construct the broad
band Green’s function (BBGFL). We next apply the method of BBGFL for broadband simulations of
the multiple vias problem.

2.2. Application of Broadband Green’s Function of Arbitrary Waveguide to Foldy Lax
Multiple Scattering Equation for Scattering by Vertical Vias

We next consider multiple vias in the arbitrary shaped waveguide S. The Green’s function at
an arbitrary k can be separated into the primary Green’s function and the wall Green’s function
gS
W (k, ρ̄, ρ̄ ′). The wall Green’s function is the same as the response Green’s function gS

HR(k, ρ̄, ρ̄ ′)
of Equation (31). We used the name wall Green’s function next to be consistent with the previous
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paper in which we combined MoM with the Foldy Lax equation [11]. In this section, we combine the
BBGFL with Foldy Lax multiple scattering solutions.

We treat the TM modes with

kzl =
lπ

d
; kρl =

√
k2 − k2

zl (32)

where l = 0, 1, 2, . . .. The separation between the two plates is d, and k is the wavenumber. In the
problem of PCB power/ground plane pair, kd � 1. Thus modes with l �= 0 are evanescent and will
not propagate to the wall and have little reflection from the boundary walls. We include the boundary
effects of the waveguide for the l = 0 mode. The modes with l �= 0 are included in the results but follow
the treatment of Foldy Lax equations as that of infinite ground plane [17–19]. In the l �= 0 modes, the
near field interactions are included among the vias and between the antipad source and the vias. For
TM0 mode, the electric field only has the Ez component which is represented by the wave function ψ.
The “z” subscript in Ez will be suppressed. For the l = 0 mode, kzl = 0 and kρl = k. Since there is
no variation with z; we use only the 2-dimensional del operator ∇t and the two dimensional position
vector ρ̄. The power/ground planes have perfect magnetic conductor (PMC) on the boundary walls.
Thus the wave functions obey Neumann boundary conditions.

In the following we suppress the k dependence in gW and g0, since in solving Foldy Lax equations,
we solve the equations for each k.

Consider a via centered at ρ̄p (left circle in Figure 3). From the via, the Ez component of the
outgoing mth cylindrical wave of the TM0 mode is

Em (ρ̄− ρ̄p) = kH(2)
m (k |ρ̄− ρ̄p|) e−jmφρρp (33)

where φρρp is the angle between the vector ρ̄− ρ̄p and the x axis. To obtain Em(ρ̄− ρ̄p) from g0(ρ̄, ρ̄a),
we use the relation

g0 (ρ̄, ρ̄a) =
1
4j
H

(2)
0 (k |ρ̄− ρ̄a|) =

∑
m

1
4jk

Jm (k |ρ̄a − ρ̄p|) exp
(
jmφρaρp

)
Em (ρ̄− ρ̄p) (34)

Consider ρ̄a to be points on a circular cylinder of radius R1 about the via center ρ̄p (left circle in
Figure 3). Then

Em (ρ̄− ρ̄p) =
4jk

2πJm (kR1)

∫ 2π

0
dφρaρp exp

(−jmφρaρp

)
g0 (ρ̄, ρ̄a) (35)

Figure 2. 3D geometry of the L-shaped
power/ground plane pair with small cut out and
2 vias.

Figure 3. Calculation of XqpW
nm by integration

over two circles of radii R1 and R2 around ρ̄p and
ρ̄q respectively.
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The electric field of the mth cylindrical wave from via p is incident on the wall. The scattered field
from the wall, EWpm

s (ρ̄), is expressed in terms of the wall Green’s function gW (ρ̄, ρ̄a).

EWpm
s (ρ̄) =

4jk
2πJm (kR1)

∫ 2π

0
dφρaρp exp

(−jmφρaρp

)
gW (ρ̄, ρ̄a) (36)

Next, we consider the wall reflected field EWpm
s (ρ̄) to be incident on via q. The via q can be the same

via, in which case, q = p, or not the same via, in which case, q �= p. The scattered field from the wall
onto via q is expanded in regular wave functions, RgEn(ρ̄− ρ̄q), about via q

EWpm
s (ρ̄) =

∑
n
RgEn (ρ̄− ρ̄q)XqpW

nm (37)

where
RgEn (ρ̄− ρ̄q) = kJn (k |ρ̄− ρ̄q|) exp

(−jnφρρ q

)
(38)

In (37), XqpW
nm is the coefficient, due to the wall reflection, that couples the mth cylindrical outgoing

wave of via p to the nth incident cylindrical wave onto via q. The XqpW
nm coefficients are obtained by

XqpW
nm =

1
2πkJn (kR2)

∫ 2π

0
dφρbρq exp

(
jnφρbρq

)
EWpm

s (ρ̄b) (39)

where ρ̄b are points on a circular cylinder of radius R2 about the via ρ̄q (right circle in Figure 3).
Substituting (36) into (39),

XqpW
nm =

1
2πkJn (kR2)

∫ 2π

0
dφρbρq exp

(
jnφρbρq

) 4jk
2πJm (kR1)

∫ 2π

0
dφρaρp exp

(−jmφρaρp

)
gW (ρ̄b, ρ̄a) (40)

The above equation calculates XqpW
nm in terms of the wall Green’s function gW (ρ̄b, ρ̄a) by carrying out

integrations over two circles (left and right circles in Figure 3). In our previous paper [11] combining
MoM with Foldy-Lax multiple scattering, the coefficients XqpW

nm were obtained by solving the surface
integral equation of MoM for each wavenumber k. After the XqpW

nm coefficients are obtained, the Foldy
Lax equations of multiple scattering in the presence of the wall can be solved [11]. We use matrix
notations. The dimension is (2M + 1), n = −M,−(M − 1), . . . , (M − 1),M , where M is the maximum
harmonic index. Let superscript t be used to denote the transpose. Then

Ēt (ρ̄− ρ̄q) =
[
E−M (ρ̄− ρ̄q) E−(M−1) (ρ̄− ρ̄q) . . . EM (ρ̄− ρ̄q)

]
(41)

Let X
qpW

be a matrix of dimension (2M + 1) × (2M + 1). Consider N vias in the waveguide. The via
index is q, q = 1, 2, 3, . . . , N .

The T -matrix coefficients. in the absence of the wall, are

Tm = − Jm(ka)

H
(2)
m (ka)

; m = 0,±1, . . . ,±M (42)

In matrix notations, the T matrix in the absence of the wall, T
q
, is a (2M + 1) × (2M + 1) diagonal

matrix, with diagonal element equal to Tm. Let τ q be the T -matrix of the qth via, q = 1, 2, . . . , N ,
including the wall effect. It is calculated by

τ
q =

(
I − T

q
X

qqW
)−1

T
q

(43)

where τ q relates Āq, the scattered coefficient of via q, to the w̄q, the exciting coefficient on via q by

Āq = τ
q
w̄q (44)

Āq and w̄q are both of dimensions (2M + 1) × 1.
Using the scattered field coefficients, Āq and the τ q, we have the Foldy Lax multiple scattering

equations

w̄q = āq,inc +
∑N

p �=q

[
α

+
qp +X

qpW
]
Āp (45)
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where the nm element of the matrix α+
qp is[

α
+
qp

]
nm

= H
(2)
n−m (k |ρ̄p − ρ̄q|) ej(n−m)φρpρq (46)

α
+
qp is of dimension (2M + 1) × (2M + 1).

Substituting (44) into (45), the Foldy Lax multiple scattering equations are

w̄q = āq,inc +
∑N

p �=q

[
α

+
qp +X

qpW
]
τ

p
w̄p (47)

where āq,inc are the incident field coefficients for sources on the antipad [9, 12, 18, 19].
In summary, the procedure of modeling of vias in arbitrarily shaped power/ground planes using

BBGFL and Foldy-lax equation is as follows.
Step 1: solve the broadband wall Green’s function gS

W (k, ρ̄, ρ̄ ′) for the cavity structure of power/ground
planes using BBGFL as described in the previous section.
Step 2: calculates XqpW

nm by Equation (40) using values of the wall Green’s function gW (ρ̄b, ρ̄a) on the
circles in Figure 3.

Step 3: solve the τ q matrix for each via q = 1, . . . , N by Equation (43) using X
qqW

.
Step 4: solve the combined problem of vias and power/ground planes using Foldy-Lax multiple scattering
Equation (47).
Step 5: after the Foldy-Lax multiple scattering equations are solved, we then follow the equations given
in [11] to calculate the currents on the vias. The admittance matrices and the scattering matrices are
then calculated as in [9, 17].

3. NUMERICAL RESULTS

The L-shaped waveguide in Figure 1(b) is used. The dimension parameters are: Lx = Ly = 500 mils,
L1 = 250 mils, and W1 = 100 mils. We show first the results of resonance wavenumber and the
eigenmodes. Then, we show the results of the Green’s functions. The dependence of the broadband
Green’s function on frequency and materials properties are through k2 = ω2μ0ε0εr where εr is the
relative permittivity. We only need to specify k for the modal solution and the Green’s functions.

In calculating the field solution of the modal solutions and the Green’s function, the field points
are located at y = 20 mils, x = [−245 mils, 245 mils] and the source point is located at (25 mils, 20 mils).

Table 1. Comparison of MoM and BBGFL for resonant frequencies of Neumann case.

MoM Mode Number

MoM resonant

wave number

in inverse meter

BBGFL Mode Number

Total/physical

BBGFL resonant

wave number

In inverse meter

0 (constant mode) 2.638 0 (constant mode) 0

1 229.5 1/1 228.7

2 277.0 2/2 276.9

3 371.5 3/3 371.7

4 495.0 4/4 494.8

5 513.9 5/5 513.7

6 561.8 6/6 561.3

7 641.0 7/7 646.0

8 674.4 8/8 661.2

NA NA 9/NA 674.2 (nonphysical mode)

9 750.9 10/9 750.6

10 757.5 11/10 757.5
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We compare the results with that of MoM. In calculating resonant wavenumber and resonant
mode with MoM, we set up the integral equation using the free space Green’s function g0(k, ρ̄, ρ̄ ′) =
H

(2)
0 (k|ρ̄− ρ̄ ′|)/(4j). We then search the values of real k that obey the surface integral equation.

3.1. Computation of Green’s Functions for Neumann Case

3.1.1. Resonant Wavenumber Comparison

In Table 1, we compare the resonant wavenumbers k as computed by BBGFL and MoM. The eigenmatrix
equation of the present approach can give nonphysical modes in addition to physical modes. The
nonphysical modes can be quickly identified because the eigenfunction of a physical mode, for the
Neumann case, is constant outside the original solution boundary. In Table 1, there is 1 nonphysical
mode (the 9th mode) in the BBGFL solution. Thus the 9th mode of MoM is compared with the 10th
mode of BBGF. Results in Table 1 show that BBGFL and MoM are in good agreement.

3.1.2. Comparisons of Modal Solutions

In the BBGFL, the eigenmatrix equations and the resonant wavenumbers are real. Thus the modal
solutions are real. On the other hand, in using MoM to calculate the modes, the Hankel function is
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Figure 4. Comparison of MoM and BBGFL for modal solutions of Neumann case. (a) Mode #1 at
k = 228.7, (b) Mode #3 at k = 371.7, (c) Mode #6 at k = 561.3, (d) Mode #10 at k = 575.5.
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complex. Thus the MoM results have small imaginary parts in the solutions depending on the accuracy
of the nonlinear search in applying MoM. In Figure 4, we compare the modal solutions of BBGFL and
MoM. The eigen functions from MoM are normalized to the same scale as BBGFL. Four of the modes
listed in Table 1 are compared. Results are in good agreement.

3.1.3. Comparisons of Green’s Function gS
H

In Figure 5, we compare the Green’s function computed by BBGFL and MoM for various real
wavenumbers k. In the low wavenumber extractions, we use kΩ

L = 0.044, and kS
L = 220. The results of

BBGFL and MoM are in good agreement.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x in inch

MoM real part
MoM imaginary part

BBGFL real part
BBGFL imaginary part

MoM real part
MoM imaginary part
BBGFL real part
BBGFL imaginary part

MoM real part
MoM imaginary part

BBGFL real part
BBGFL imaginary part

MoM real part
MoM imaginary part
BBGFL real part
BBGFL imaginary part

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x in inch

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x in inch

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x in inch

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

G
re

en
 fu

nc
tio

n 
gH

s

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

G
re

en
 fu

nc
tio

n 
gH

s

1.2

1.4

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

G
re

en
 fu

nc
tio

n 
gH

s

1.2

1.4

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

G
re

en
 fu

nc
tio

n 
gH

s

1.2

(a) (b)

(c) (d)

Figure 5. Comparison between MoM and BBGFL for Green’s function of Neumann case. (a) Neumann
gHs at k = 175.8, (b) Neumann gHs at k = 351.7, (c) Neumann gHs at k = 615.5, (d) Neumann gHs at
k = 879.2.

3.1.4. Comparisons of CPU Times

In Table 2, we compare the CPU times of BBGFL and MoM for computing the Green’s function. In the
comparisons, the input simulation parameters are: the discretization spacing is 2 mils for both MoM and
BBGFL, the BBGFL uses Mo = 30 for both kxm and kyn with total Mα = (1 +Mo)× (1 +Mo) = 961
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Table 2. Comparison of BBGFL and direct MoM for CPU times.

Methods 1 wavenumber point 10 wavenumber points
BBGFL 40.28 s + 0.18 = 40.46 sec 40.28 s + 0.18 ∗ 10 = 42.08 sec

Direct MoM 36.01 sec 36.01 ∗ 10 = 360.1 sec

Methods 100 wavenumber points 1000 wavenumber points
BBGFL 40.28 s + 0.18 ∗ 100 = 58.28 sec 40.28 s + 0.18 ∗ 1000 = 220.28 sec

Direct MoM 36.01 ∗ 100 = 3601 sec 36.01 ∗ 1000 = 36010 sec

modes. For each frequency point, the Green’s function is calculated with 1 source point and 240
observation points. Note, for BBGFL, the CPU time consists two parts: the first part is for computing
eigenfunctions and eigenvalues, and second part is to calculate Green’s function with the computed
eigenfunctions and eigenvalues. In the Table 2, for 1000 wavenumber points, the first part takes 40.28
seconds, while the second part is only 180 seconds for computing the gH of 240 observation points. This
indicates that, even for computation of 240 observation points, the CPU of second part is still negligible.
For broadband modeling with 1000 wavenumber points, the proposed method is more than 162 times
faster than MoM. The Green’s functions are at many wavenumber points. In this problem, the method
of calculating a few wavenumber points followed by interpolation at other wavenumber points, is not
accurate because of the multiple resonances.

3.2. Application of BBGFL to the Simulation of Vias in Arbitrarily Shaped PCB
Power/Ground Plane Pair

We next model the scattering matrices for the problem of multiple vias in the L-shaped PCB/power
ground plane for the frequency range up to 20 GHz. The dielectric thickness d between the two parallel
plates is 30 mils. Thus kd � 1. For the sake of simplicity in combining BBGFL with the Foldy Lax
approach, we only use the zeroth harmonic for the l = 0 mode in the Foldy Lax approach. We included
higher order harmonics for l > 0 modes.

3.2.1. Modeling of Two Signal Vias in a Rectangular Power/Ground Plane Pair with Small Cut Out

Consider a power/ground plane pair with two signal vias as showed in Figure 2. Lx = Ly = 500 mils,
L1 = 100 mils, W1 = 100 mils. The relative permittivity is complex and is set at εr = 3.4(1−j0.02). Vias
1 and 2 are located at (−25, 0) mil and (25, 0) mil, respectively. Using notations as in Reference [12, 19],
the via radius is a = 6.75 mils, and the antipad radius is b = 20 mils.

In Figure 6, we compare the results of the 4 methods for the S-parameters of insertion loss, return
loss, near end crosstalk (NEXT), and far end crosstalk (FEXT). The red curves are results obtained
by using BBGFL with Foldy-Lax. The blue curves are results from HFSS. We also consider the case
with � = 0 only and also the case with higher order � ≥ 1 included. The green curves are results
from direct MoM solution with signal vias and plane pair, with � = 0 mode. Direct MoM means
solving, at every frequency,the surface integral equation of arbitrary ground plane and vias formulated
with free space Green’s function. The black curves are results combining direct MoM solution with
� = 0 mode, and Foldy-Lax solution with � ≥ 1 modes. The results of BBGFL/Foldy-Lax (red) are in
good agreement with HFSS (blue) and MoM/Foldy-Lax (black). It can be seen that all the methods
capture the resonance frequencies, which are caused by the reflections by the PMC walls of the finite
power/ground plane. However, the green results with only � = 0 has large difference compared to other
methods. This means the � > 0 modes are important for the coupling effects caused by the dense
vias (small pitch between two vias). Because the vias are small and are not near the boundary, the
(n,m) = (0, 0) in the wall coupling coefficients XqpW

nm has the dominant effects. In our simulations, we
used R1 = R2 = a (Figure 3).
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3.2.2. Modeling of Two Signal Vias in a Rectangular Power/Ground Plane Pair with Large Cut Out

Consider a power/ground plane pair with two signal vias as showed in Figure 2. Lx = Ly = 500 mils,
L1 = 100 mils, W1 = 200 mils. The relative permittivity is real and is εr = 3.4. Vias 1 and 2 are
located at (−25, 0) mil and (25, 0) mil, respectively. The via radius is 6.75 mils, and the antipad radius
is 20 mils.

In Figure 7, BBGFL is compared with three different methods. The results of the S-parameters
of insertion loss, return loss, near end crosstalk (NEXT), and far end crosstalk (FEXT) are shown.
The red curves are results obtained by using BBGFL with Foldy-Lax. The blue curves are results from
HFSS. The green curves are results from direct MoM solution with � = 0 mode. The black curves are
results combining direct MoM solution with � = 0 mode, and Foldy-Lax solution with � > 0 modes.
The BBGFL/Foldy-Lax (red) results are in good agreement with HFSS (blue) and MoM/Foldy-Lax
(black). It can be seen that all the methods can capture the resonance frequencies, which are caused
by reflections from the walls of the finite plane. The results also show that higher order modes � > 0
modes are important.
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Figure 6. Comparison of BBGFL and different methods for S-parameters from simulations with
Figure 2: Red — BBGFL/Foldy-Lax, Blue — HFSS, Green — direct MoM with L = 0 mode, Black
— combine direct MoM with L = 0 mode and Foldy-Lax with L > 0 modes. (a) Insertion Loss, (b)
Return Loss, (c) Far End Crosstalk, (d) Near End Crosstalk.



Progress In Electromagnetics Research, Vol. 152, 2015 119

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

0

1

-1

-2

-3

-4

-5

-6

-7

-8

In
se

rt
io

n 
Lo

ss
 (

dB
)

-5

0

-10

-15

-20

-25

-30

-35

-40

R
et

ur
n 

Lo
ss

 (
dB

)

MoM with L=0 mode

BBGFL and Foldy-Lax

HFSS

MoM (L=0) and Foldy-Lax (L>0)

MoM with L=0 mode

BBGFL and Foldy-Lax

HFSS

MoM (L=0) and Foldy-Lax (L>0)

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

-9

(c) (d)

F
ar

 E
nd

 C
ro

ss
ta

lk
 (

dB
)

N
ea

r 
E

nd
 C

ro
ss

ta
lk

 (
dB

)

-5

0

-10

-15

-20

-25

-30

-35

-40

-5

0

-10

-15

-20

-25

-30

-35

-40

MoM with L=0 mode

BBGFL and Foldy-Lax

HFSS

MoM (L=0) and Foldy-Lax (L>0)
MoM with L=0 mode

BBGFL and Foldy-Lax
HFSS

MoM (L=0) and Foldy-Lax (L>0)

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

Figure 7. Comparison of BBGFL and different methods for S-parameters: Red — BBGFL/Foldy-Lax,
Blue — HFSS, Green — direct MoM with L = 0 mode, Black — combine direct MoM with L = 0 mode
and Foldy-Lax with L > 0 modes. (a) Insertion Loss, (b) Return Loss, (c) Far End Crosstalk, (d) Near
End Crosstalk.

3.2.3. Modeling of Two Signal Vias and Two Shorting Vias in a Rectangular Power/Power (or
Ground/Ground) Plane Pair with Large Cut Out
Consider a power/power or ground/ground plane pair with two signal vias and two shorting vias as
shown in Figure 8. The parameters are Lx = Ly = 500 mils, L1 = 200 mils, W1 = 100 mils. The
relative permittivity is εr = 3.4(1 − j0.02). Vias 1 and 2 are signal vias, and they are located at (−25,
0) mil and (25, 0) mil respectively. The two shorting vias are located at (0, −25) mil and (0, 25) mil,
respectively. The via radius is 6.75 mils, and the antipad radius is 20 mils.

In Figure 9, the S-parameters of insertion loss, return loss, near end crosstalk (NEXT), and far
end crosstalk (FEXT) are shown. The results are in good agreement.

3.2.4. Modeling of 8 Vias: Four Signal Vias and Four Shorting Vias in a Rectangular Power/Power
(or Ground/Ground) Plane Pair with Large Cut Out

Next, we consider a larger number of vias. Consider a power/power or ground/ground plane pair with
4 signal vias and 4 shorting vias as showed in Figure 10. The parameters are Lx = Ly = 500 mils,
L1 = 200 mils, W1 = 100 mils. The relative permittivity is εr = 3.4(1 − j0.02). Signal Vias 1, 2, 3
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Figure 8. 3D geometry of the simulation with 2 signal vias and 2 shorting vias in an irregular shaped
plate pair with large cut out.

0 2 4 6 8 10 12
Frequency (GHz)

MoM with L=0 mode

BBGFL and Foldy-Lax

HFSS

MoM (L=0) and Foldy-Lax (L>0)

(a) (b)

(c) (d)

MoM with L=0 mode

BBGFL and Foldy-Lax
HFSS

MoM (L=0) and Foldy-Lax (L>0)

MoM with L=0 mode

BBGFL and Foldy-Lax
HFSS

MoM (L=0) and Foldy-Lax (L>0)
MoM with L=0 mode

BBGFL and Foldy-Lax
HFSS

MoM (L=0) and Foldy-Lax (L>0)

0 2 4 6 8 10 12
Frequency (GHz)

0 2 4 6 8 10 12
Frequency (GHz)

0 2 4 6 8 10 12
Frequency (GHz)

-0.2

0

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

-1.8

In
se

rt
io

n 
Lo

ss
 (

dB
)

-2

-15

-10

-20

-25

-30

-35

-40

-45

-50

R
et

ur
n 

Lo
ss

 (
dB

)

-15

-10

-20

-25

-30

-35

-40

-45

-50

-15

-10

-20

-25

-30

-35

-40

-45

-50

F
ar

 E
nd

 C
ro

ss
ta

lk
 (

dB
)

N
ea

r 
E

nd
 C

ro
ss

ta
lk

 (
dB

)

Figure 9. Comparison of BBGFL and different methods for s-parameters from simulations with
Figure 8: Red — BBGFL/Foldy-Lax, Blue — HFSS, Green — direct MoM with L = 0 mode, Black
— combine direct MoM with L = 0 mode and Foldy-Lax with L > 0 modes. (a) Insertion Loss, (b)
Return Loss, (c) Far End Crosstalk, (d) Near End Crosstalk.
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Figure 10. 3D geometry of the simulation with 4 signal vias and 4 shorting vias in an irregular shaped
plate pair with large cut out.

and 4 are located at (−25, 50), (25, 50), (−25, −50), and (25, 50) mils, respectively. Shorting vias are
located at (0, 75), (0, 25), (0, −25), and (0, −75) mils, respectively. Two shorting vias are located at
(0, −25) mil and (0, 25) mil, respectively. The via radius is 6.75 mils, and the antipad radius is 20 mils.
The results are shown in Figure 11.

The results from the various methods are in good agreement.

3.2.5. Comparisons of CPU Time for Vias Simulations

In Table 3, we compare the CPU time used in the simulations of Figure 8. In the comparisons, the
input parameters are: the discretization spacing is 4mils for both MoM and BBGFL, the BBGFL uses
Mo = 20 for both kxm and kyn. For BBGFL, the CPU time consists three parts. The first part is
for computation of eigenfunctions and resonant wavenumbers. The second part is for creating response
Green’s function with the computed eigenfunctions and resonant wavenumbers. The third part is solve
the Foldy-Lax equations with the response Green’s function. We show the sum of the CPU of the 3
parts. The CPU time of HFSS contains two parts. The first part is for simulation setup (CAD meshing,
etc.) which is done only once, and the second part is for FEM simulation which needs to be repeated for
every frequency point. For the simulations of 1000 frequency points, BBGFL takes 4.7 seconds for first
part, 2 seconds for the second part, and 5 seconds for the third part. For the total CPU time used for
100 frequency points, the proposed method is 59 times faster than direct MoM, and is 103 times faster
than HFSS. For the total CPU time used for 1000 frequency points, the proposed method is 273 times
faster than direct MoM, and is 447 times faster than HFSS. This shows that the BBGFL, combined
with Foldy-Lax, is much more efficient than MoM and HFSS for broadband simulations. It is to be
noted that large number of frequency points are necessary for multiple resonances for the cavity.

Table 3. Comparison of CPU times using different methods: BBGFL/Foldy-Lax, direct MoM, and
HFSS.

Methods 1 frequency point 10 frequency points

BBGFL/Foldy-Lax 4.7 + 0.002 + 0.005 = 4.707 sec 4.7 + 0.002 ∗ 10 + 0.005 ∗ 10 = 4.77 sec

Direct MoM 3.2 sec 3.2 ∗ 10 = 32 sec

HFSS 35 + 5.2 = 40.2 sec 35 + 5.2 ∗ 10 = 87 sec

Methods 100 frequency points 1000 frequency points

BBGFL/Foldy-Lax 4.7 + 0.002 ∗ 100 + 0.005 ∗ 100 = 5.4 sec 4.7 + 0.002 ∗ 1000 + 0.005 ∗ 1000 = 11.7 sec

Direct MoM 3.2 ∗ 100 = 320 sec 3.2 ∗ 1000 = 3200 sec

HFSS 35 + 5.2 ∗ 100 = 555 sec 35 + 5.2 ∗ 1000 = 5235 sec
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Figure 11. Comparison of BBGFL and different methods for S-parameters from simulations with
Figure 10: Red — BBGFL/Foldy-Lax, Blue — HFSS, Green — direct MoM with L = 0 mode, Black
— combine direct MoM with L = 0 mode and Foldy-Lax with L > 0 modes. (a) Insertion Loss, (b)
Return Loss, (c) Far End Crosstalk, (d) Near End Crosstalk.

4. CONCLUSION

In this paper, we present a new technique, BBGFL, for fast and accurate broadband modeling
and simulations of scattering problems in arbitrarily shaped waveguides or cavities. Results show
that BBGFL and direct MoM are in good agreement on resonance frequencies, modes, and Green’s
function. Direct MoM refers to the approach based on free space Green’s function that was used
in References [10, 11]. The proposed method is also implemented for practical PCB applications.
We combined BBGFL with Foldy-Lax multiple scattering equation, to simulate vias in arbitrarily
shaped power/ground plane pairs. Simulation results show that BBGFL/Foldy-Lax results are in good
agreement with MoM and HFSS in S-parameters.

Even including the calculation of modal solutions and the 1-time MoM low wavenumber extraction,
the method of BBGFL/Foldy-Lax is still many times faster than direct MoM and HFSS for broadband
simulations. We are presently extending the approach to more complicated cases. With fast broadband
simulations over a wide frequency range, the results in the time domain can also be obtained from the
frequency domain results. We have also implemented the BBGFL with MoM for the vias instead of
using Foldy-Lax equations [12, 13]. The case of EMC was also studied [12, 13].
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APPENDIX A.

In this appendix, a modal series representation is given for the impedance matrix elements Pmn for the
non-self-patch and for the self-patch, when the boundary σ consists of straight line segments. Note the
calculations of Pmn are needed for only a single low wavenumber kΩ

L .
Let the endpoints of the nth patch be at (x1, y1) and (x2, y2). The integration is over the nth

patch. The point matching is at the center of the mth patch. Let the slope of the nth patch be s which
is a constant for the patch, so that y2−y1

x2−x1
= s, and dy = sdx. Let (x, y) be the field point of point

matching and (x′, y′) be the source point on the patch.

Then on the patch, y′ = s(x′ − x1) + y1, dl′ = dx′
√

1 + s2 = dy′
√

1 + (1
s )2, Δt = Δx

√
1 + s2 =

Δy
√

1 + (1
s )2.

If we consider the L-shape case, then s = 0, or s = ∞ on the two arms of L. The patch integral
becomes

1
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∫
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A.1. Non Self-Patch

Results are
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A.2. Self-Patch

Note that in Equation (12a) we only need to calculate the self-patch for the response gΩ
HR(kΩ

L , ρ̄, ρ̄
′). We

divide the self patch into three parts of Δx
3 each: the left part, the middle part and the right part. The

left part and the right part are evaluated directly from the modal series expansion. The middle part is
set to be the average of the left part and the right part, making use of the fact that gΩ

HR(kΩ
L · ρ̄m, ρ̄

′) is
not singular and is smooth on the self-patch
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In L and R of the self patch, note that ρ̄ �= ρ̄ ′ since the middle part is excluded. On the left part L and
the right part R
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where
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is the tangential vector on the patch. Thus on L and R,

n̂′t · ∇′
tg0
(
kΩ

L , ρ̄, ρ̄
′) = 0 (A9)

Hence in the integrands of the left part L and right part R,
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tg
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′) = n̂′t · ∇′
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H
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Thus, using (A2), (A4), (A5) and (A10), L is equal to the expression I of (A2) with the
replacements, x2 → x1 + Δx

3 , y2 → y1 + Δy
3 , Δx → Δx

3 , Δy → Δy
3 . For R, it is equal to the expression

I of (A2) with the replacements, x1 → x2 − Δx
3 , y1 → y2 − Δy

3 , Δx→ Δx
3 , Δy → Δy

3 .
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